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Abstract: The breeding improvement of triticale is tightly associated with the introgression of
dwarfing genes, in particular, gibberellin (GA)-insensitive Ddw1 from rye. Despite the increase in
harvest index and resistance to lodging, this gene adversely affects grain weight and size. Growth
regulation factor (GRF) genes are plant-specific transcription factors that play an important role in
plant growth, including GA-induced stem elongation. This study presents the results of a two-year
field experiment to assess the effect of alleles of the TaGRF3-2A gene in interaction with DDW1 on
economically valuable traits of spring triticale plants grown in the Non-Chernozem zone. Our results
show that, depending on the allelic state, the TaGRF3-2A gene in semi-dwarf spring triticale plants
influences the thousand grain weight and the grain weight of the main spike in spring triticale, which
makes it possible to use it to compensate for the negative effects of the dwarfing allele Ddw1. The
identified allelic variants of the TaGRF3-2A gene can be included in marker-assisted breeding for
triticale to improve traits.
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1. Introduction

Triticale is an important food crop that combines the genomes of wheat and rye. Due
to its high ecological plasticity and adaptability, triticale is successfully grown in poor soils
and is resistant to a wide range of fungal diseases [1–8]. Triticale is grown as a forage crop
for grain and green mass. Recently, triticale grain has also been used for the production
of biogas and bioethanol, and it may also have prospects in the production of functional
foods [9–11].

Triticale breeding has made significant progress; thanks to breeding, it was possible to
improve its feeding qualities and remove such undesirable traits as preharvest sprouting
and lodging. As a result of lodging, the straw cannot withstand a heavy ear and bends
towards the ground. Lodging reduces the efficiency of photosynthesis due to changes
in the architecture of the stem, leads to seed germination and phytotoxin contamination,
slows down maturation, and requires additional costs for drying [12,13].

The development of semi-dwarf varieties is a reliable way to solve the lodging problem.
Dwarfing genes reduce the height of the straw, increasing the yield via higher grain number
per ear yield without the risk of losing it as a result of lodging [14,15]. However, in
experiments with isogenic recombinant lines, the dwarfing genes, as a rule, reduce the
thousand grain weight, impair the assimilation of soil nitrate nitrogen, and reduce drought
resistance, and they can extend the periods of flowering and heading [16,17].
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Growth regulation factor (Grf ) genes are plant-specific transcription factors that play
an important role in plant growth, including gibberellin (GA)-induced stem elongation [18].
In rice, a mechanism for the regulation of the activity of DELLA protein, which inhibits
nitrogen assimilation and carbon fixation, by means of OsGRF4 was revealed: in dwarf
rice plants and transgenic wheat plants with the GRF4ngr2 allele, the activities of glutamate
synthase and nitrate reductase were higher than those in control plants. As a result of
the expression of this allele, a larger grain was formed while maintaining the semi-dwarf
phenotype [19,20]. In common wheat, 30 TaGRF genes were identified on 12 chromosomes,
which were divided into four phylogenetic groups [21,22]. Analysis of the TaGRF3 gene
sequence on the 2D common wheat chromosome using molecular markers showed its allelic
diversity among the accessions of the collection, as well as a correlation with thousand
grain weight and the size of wheat kernels [23]. A number of authors propose that it is the
tuning of genes of nitrogen metabolism in low-stemmed varieties that will drive a new
wave of the green revolution, increasing the absorption of nitrogen and, as a consequence,
the weight of the grain [19,24,25].

The triticale genome makes it possible to successfully combine genes for dwarfism
from both wheat and rye. Among the dwarfing genes of rye, the dominant allele Ddw1 has
the greatest agricultural value. The Gibberellin 2-Oxidase gene is considered a candidate
for Ddw1, while its ortholog in wheat is considered to be the Rht12 gene [14,26–30]. It is
able to reduce the height of plants by 25–30%, but at the same time, it reduces the thousand
grain weight and the weight of grains per ear [31–37]. Ddw1 is successfully used in triticale
breeding in Poland, Romania, and other European countries [14,38,39]. In our work, we
carried out a two-year study on the interaction of the TaGRF3-2A (hereafter designated in
the test as Grf3) and Ddw1 genes in spring triticale in the field conditions of the Central
Non-Chernozem (Non-Black Earth) Region of the Russian Federation.

2. Results

The field experiments in 2018 and 2019 differed in terms of meteorological conditions
(Table 1). In general, 2019 was more favorable for the formation of the spring triticale
yield for all families and any combination of genes. The yield elements formed in 2019,
on average, were higher than those in 2018: the vegetative mass of the main spike in 2019
exceeded that in 2018 by 17% (0.5 g), the grain weight of the main spike was increased by
18% (0.4 g), the thousand grain weight was increased by 22% (11.3 g), the number of fertile
tillers was on average 33% higher (one shoot), and the harvesting index was 8% higher.
In addition, in 2018, only 23.5% of plants had six internodes; in 2019, 41.3% of plants had
six internodes.

Table 1. Agroclimatic conditions of field experiments in 2018–2019.

Month
Sum of Precipitation (mm) Average Temperature (◦C)

2018 2019 2018 2019

May 44 58 16.1 16.2

June 54 55 17.2 19.6

July 85 64 20.3 16.7

August 20 48 19.8 16.4

The effect of Ddw1 on economically valuable traits of spring triticale in our experiments
generally showed trends the same as those in studies by other authors and in our previous
studies [31–35,40]. On average, for both years of the experiment, Ddw1 reduced the height
of spring triticale plants by 33% (28.2 cm). The vegetative mass of the main spike and
the grain weight of the main spike, on average, in semi-dwarf plants (Ddw1Ddw1) were
lower than those in tall plants (ddw1ddw1) by 10% (0.3 g) and 9% (0.2 g), respectively. The
thousand grain weight in semi-dwarf plants was, on average, 6% lower, and the presence
of Ddw1, on average, increased the harvesting index by 8% (0.05 units). Plants of spring
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triticale with Ddw1, on average, came to heading and anthesis 5 days later than did tall
triticale plants.

2.1. Spike Architecture and Productivity

We revealed a statistically significant effect of allelic variants of the TaGRF3-2A (here-
after designated in the test as Grf3) gene upon interaction with the Ddw1 gene on the grain
weight of the main spike in both generations.

The grain weight of the main spike in F4:5 (2018) in semi-dwarf Ddw1-carrying plants
with the Grf3(274) allele was 35% (0.7 g) higher than that in such plants with the Grf3(262)
allele. In F5:6 (2019), the Grf3(274) allele increased the grain weight from the main spike
by 12% (0.3 g) (Table S1) (Figure 1). In tall plants of spring triticale (without Ddw1) in
F4:5 (2018) and F5:6 (2019), no statistically significant difference was observed in the grain
weight per spike between different Grf3 genotypes.
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Figure 1. The effect of the allelic state of DDW1 and Grf3 on grain weight of the main spike.

The thousand grain weight in spring triticale plants with the dwarfing Ddw1 and
Grf3(274) alleles was statistically significantly higher by 5.94 g (16%) compared to that in
semi-dwarf plants with the Ddw1/Grf3(262) combination in F4:5 (2018). In F5:6 (2019), the
difference between the same combinations of alleles was 2.96 g (6%), but no statistical
significance was found. In tall plants of spring triticale (without Ddw1) in F4:5 (2018) and
F5:6 (2019), no statistically significant difference in thousand grain weight between different
allelic variants of the Grf3 gene was found. The number of grains per main spike did not
show statistically significant differences between the combinations of genes in both years
of the study, although certain trends were observed (Table S1, Figure 2).
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Figure 2. The effect of the allelic state of DDW1 and Grf3 on thousand grain weight.

2.2. Flowering and Heading

We obtained a rather unexpected effect when assessing the effect of the combination
of the studied genes on flowering and heading. As expected, the presence of Ddw1 resulted
in later flowering: semi-dwarf plants bloomed, on average, 5 days later than tall plants.
However, when taking into account the allelic state of the Grf3 gene, it was found that in
F5:6 (2019) in semi-dwarf plants with the Grf3(274) allele, heading and anthesis occurred, on
average, 7 days earlier than in plants with the Grf3(262). In F4:5 (2018), the difference was
5–6 days, but due to unfavorable conditions in 2018, the transition between the phases was
significantly extended in time, which did not result in statistically significant differences. In
tall plants, the Grf3 gene had no effect on the heading and anthesis time (Table S1, Figure 3).
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2.3. Plant Height, Internodes, and Main Spike Length

An analysis of the effect of Ddw1 on the anatomical structure of the stem in the field
experiment showed the expected results of a significant decrease in plant height (Table S1,
Figure 4).
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Figure 4. Schematic diagram showing the internode and spike length of the main shoot of spring trit-
icale plants with different combinations of the DDW1 and Grf3 alleles. Genotypes are as follows: 2/2
Ddw1Ddw1Grf3(274)Grf3(274), 2/0 Ddw1Ddw1Grf3(262)Grf3(262), 0/2 ddw1ddw1Grf3(274)Grf3(274),
0/0 ddw1ddw1Grf3(262)Grf3(262).

The allelic state Grf3 had little effect on plant height. Allele Grf3(274) insignificantly
increased plant height in all combinations by from 1 to 6 cm. However, this was more
obvious in semi-dwarf plants. The plants with the Grf3(274) allele were 6 cm taller than
those with the Grf3(262) allele.

3. Discussion

Experimental conditions in the Non-Black Earth Zone in 2018 and 2019 differed both in
meteorological conditions and in average plant productivity. Thus, in the present study, we
compared two different years, which allowed us to compare the manifestation of TaGRF3-
2A (designated here as Grf3) under different conditions in low-stem and high-stem plants
of spring triticale.

In the present study, we showed that the allelic state of TaGRF3-2A in semi-dwarf
plants carrying Ddw1 affects plant productivity, thousand grain weight, and grain weight
from the main spike, demonstrating a partial compensatory effect on these traits in com-
parison with the negative effect of the Ddw1 gene. At the same time, it can be noted that
the effect manifested more significantly under 2018 conditions, which were unfavorable
for spring triticale. In our previous study [34], we showed the effect of TaGRF3-2D on the
weight and dimensions of the seed in a bread wheat collection. Zan et al. (2020) showed
that the TaGRF3 gene (as well as its B- and D-genome homologues TaGRF-15 and TaGRF-23)
has an increased level of expression in the ear [41].
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The effect of Ddw1 on the linear parameters of the stem under the influence in both
years of the field experience was quite similar: the overall decrease was 33%, which is
generally consistent with previous studies [31–35]. On the whole, TaGRF3-2A did not
have a significant effect on the height of triticale plants; however, the allele state Grf3(274)
increased the length of individual internodes and the length of the spike. Expression data
from Zan (2020) and Huang (2021) showed that TaGRF3-2A (Grf3) has higher expression
in the stem and apical meristem. Thus, the presence of the TaGRF3-2A (274) allele in
semi-dwarf plants leads to only a slight increase in plant height (up to 6 cm) and, therefore,
does not interfere with the semi-dwarf phenotype of the variety required for intensive
cultivation technology and control of lodging [22,41].

It is known that both genes studied by us are involved in gibberellin pathways and
thus affect the linear dimensions of the stem, ear, and grain. The gibberellin-sensitive Ddw1
gene was shown to co-segregate with the ScGA2ox12 gibberellin-2 oxidase gene [30], while
its most likely wheat homolog, the Rht12 gene, probably decreases plant height through
its influence on the TaGA2ox-A14 gibberellin metabolism gene [42,43]. Rice OsGRF genes,
through participation in gibberellin pathways and in interaction with miR396, affect stem
length [18], grain size [20], and plant architecture as a whole [44]. Thus, we can assume the
interaction of TaGRF3-2A and DELLA proteins in the formation of the stem and spike such
as at the stage of the apical meristem, the initiation of generative organs in the spike, stem
growth, and grain filling by means of gibberellin pathways.

It is known that gibberellin-sensitive dwarfing genes significantly extend the periods
of heading and anthesis in cereals. This has been demonstrated for the Ddw1 genes in
triticale [32–35,45,46], which negatively correlate with Fusarium spike resistance. A similar
effect was also noted in its most likely homologue, the Rht12 gene in wheat [47–49]. The
later the flowering, the shorter the favorable period for grain filling [50]. We showed that
due to the presence of TaGRF3-2A (274) in semi-dwarf plants, flowering and heading occur
earlier, which increases the period for grain formation. As a discussion, we can assume the
hormonal influence of the TaGRF3-2A (274) allele on the rate of cell division/elongation
in grain, since we have shown its positive effect on an increase in the linear dimensions
of the ear and stem. However, the study of the influence of the TaGRF3-2A gene requires
further field studies in different crops and molecular genetic studies to study its mechanism
of action.

4. Materials and Methods
4.1. Plant Material

As a parental form, triticale cultivars bearing contrasting combinations of DDW1
and Grf3 alleles were chosen. Tall spring triticale cv. ‘Dublet’ with genotype ddw1ddw1
Grf3(274)Grf3(274) (Danko Hodowla Ro’slin Sp. z o.o., Poland) was used as the pa-
ternal form, and semi-dwarf winter triticale cv. ‘Hongor’ with genotype Ddw1Ddw1
Grf3(262)Grf3(262) (Lukyanenko National Grain Centre, Russia) was used as the maternal
form. The hybrid F1 plants were grown in vegetation pots in 2016 in a greenhouse at the
Center of Molecular Biotechnology. The F2 seeds were planted in vegetation pots at 10
seeds per pot. The F2:3 seeds of the spike of each of the F2 plants were manually threshed
and combined into a single family. The homozygous F2:3 plants with Ddw1 and ddw1
alleles were selected by genotyping and grown to produce the F3:4 plants. The F5 and F6
seeds of the spike of each plant were obtained by mechanical threshing of F4:5 and F5:6
combining typical plants, respectively [35]. Each generation was additionally genotyped
using molecular markers.

4.2. Field Experiment

A field experiment with plants was carried out in Moscow at the Field Experimental
Station of the RSAU-Moscow Timiryazev Agricultural Academy (55◦50′ N, 37◦33′ E) in
2018–2019. Moscow (Central Non-Black Earth Region, moderate continental climate) is
distinguished by a large amount of precipitation, moderate temperatures, and sod-podzolic
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soils. Sowing was performed in Moscow on May 5 in 2018 and on April 23 in 2019. Sowing
in both years was carried out by the cassette method using an SKS-6-10 breeding seeder
with the following parameters: plot length 1 m, in 4 rows with a row spacing of 30 cm
and a distance between plots of 50 cm. Weeds were pulled out by hand, and the necessary
treatment with pesticides was carried out to protect the plants from pests. Each plant was
manually harvested upon reaching the full ripeness phase; the final harvest days were on
19 August 2018 and 23 August 2019 (Table 1).

In the present study, we used data from the analysis of F4:5 plant material obtained
in 2018 (published in Kroupin et al. 2019) and newly obtained F5:6 plant material grown
in 2019 [34]. The F5 and F6 seeds of the spike of each plant were obtained by mechanical
threshing of F4:5 and F5:6 plants, respectively. The plants of F4:5 were grown and harvested
in 2018 and mechanically threshed using an MKS-1M spike thresher (MZOK Company,
Moscow, Russia). F5 seeds from each plant were combined into a single family (recombinant
inbred line) and were used to grow F5:6 plants in 2019. The allelic states of DDW1 and Grf3
were determined in parental F4:5 (using stored DNA) and F5:6 plants such that the seeds
from homozygous plants were selected for growing and subsequent analysis.

The weather conditions in 2018 and 2019 are displayed in Table 1. The numbers of
plant samples in the analyzed families are shown in Table 2.

Table 2. Numbers of analyzed F4:5 (2018) and F5:6 (2019) plant samples by genotype.

Genotype F4:5(2018) F5:6(2019)

Ddw1Ddw1 Grf3(274)Grf3(274) 45 268

ddw1 ddw1 Grf3(274)Grf3(274) 216 304

ddw1 ddw1 Grf3(262)Grf3(262) 351 472

Ddw1Ddw1 Grf3(262)Grf3(262) 106 262

Analyzing the data presented in Table 1, it can be noted that in 2018, at the end of the
growing season, unfavorable conditions occurred in the form of an extremely small amount
of precipitation in August (25.6% of the norm), while 2019 had more even meteorological
values, according to which the current climatic norm was approached.

4.3. Plant Structural Analysis

The following phenotype features of each plant were recorded (all spike parameters
were measured in the main spike): plant height (PH, centimeters), spike length (SL, centime-
ters), spikelet number per spike (SNS), spike density (SD, calculated as tenfold SNS divided
by SL), grain weight per spike (GWS, grams), grain number per spike (GNS), grain weight
per spikelet (GNSpl, grams), thousand grain weight (TGW, calculated as thousandfold
GWS divided by GNS, grams), number of fertile tillers (NFT), number of internodes (NI),
heading date (HD, days after sowing), flowering date (FD, days after sowing), harvest
index (HI), peduncle length (first internode below the spike, centimeters), second upper
internode length (centimeters), third upper internode length (centimeters), fourth upper
internode length (where present, centimeters), second lower internode length, and first
lower internode (the lowest) length (centimeters). The harvest index was calculated as the
ratio of the grain weight from the main spike to the total weight of the unthreshed spike
and the peduncle. Flowering and heading phases were determined visually for the whole
family. The seeds were counted by the SeedCounter application [51]. A total of 1293 spring
triticale plants were analyzed in 2018, and 1193 were analyzed in 2019.

4.4. Plant Genotyping

During the tilling phase, a leaf fragment of approximately 2 cm long was sampled
from each plant, and DNA was isolated by the CTAB method for verification of the DDW1
and Grf3 hybrid genotype. DNA was extracted from no fewer than two labeled plants



Plants 2021, 10, 2012 8 of 11

per family to determine the allelic states of DDW1 and Grf3. The primers targeted the mi-
crosatellite locus REMS1218, which is tightly linked to DDW1. The alleles of the REMS1218
microsatellites were assayed by PCR with subsequent fragment analysis performed using
a Nanophor05 (Syntol, Russia Federation, Moscow) (Figure 5). Additionally, we used
CAPS marker for the detection of the dwarfing Ddw1 allele [52]. To detect polymorphism
in the microsatellite locus of the 5’-untranslated region in Grf3, we designed primers F:
5’-GTAGGAGTAAAAGGCAAAAGCACG-3’ and R: 5’-ACAGGGAGGCAAAGGGCATC-
3’ (Figure 6) [23,31]. The alleles of Grf3 were assayed by PCR with subsequent fragment
analysis performed using a 3130xl Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA).
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Figure 6. Identification of the allelic state of Grf3 in parental spring triticale cultivars using fragment
analysis: Grf3(274) in Dublet and Grf3(262) in Hongor.

4.5. Statistical Analysis

Data analysis was performed using R v3.6.3. An analysis of variation (ANOVA)
between the allelic state of Ddw1 and Grf3 genes and phenotype was carried out using the
Anova function from the “car” package [53] on a significance level of p < 0.05. For pair-wise
comparisons, Tukey’s test was used. Plots were created using the “ggplot2” package [54].
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5. Conclusions

In our study, we demonstrated a partial compensatory positive effect of the TaGRF3-2A
gene on important yield components, such as grain weight of the main spike, thousand
grain weight, and heading and anthesis time, in the presence of the dwarfing Ddw1 allele.
The Ddw1 allele is necessary in modern triticale breeding, but it has a sharply negative effect
on these traits. Based on this and our previous work, we propose an effective molecular
marker for the allelic state of the TaGRF3-2A gene. This allows the TaGRF3-2A gene to be
quickly incorporated into the breeding process to compensate for the negative effects of
gibberellin-sensitive dwarfing genes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10102012/s1, Table S1: Effects of TaGRF3-2A and Ddw1 in the spring triticale ‘Hongor’ ×
‘Dublet’ population F4:5 and F5:6 in the field experiments.
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