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The majority of smokers with chronic obstructive pulmonary disease (COPD) have mild

airflow limitation as determined by simple spirometry. Although small airway dysfunction

is the hallmark of COPD, many studies attest to complex heterogeneous physiological

impairments beyond increased airway resistance. These impairments are related to

inflammation of lung parenchyma and its microvasculature, which is obscured by

simple spirometry. Recent studies using advanced radiological imaging have highlighted

significant structural abnormalities in smokers with relatively preserved spirometry.

These important studies have generated considerable interest and have reinforced

the pressing need to better understand the physiological consequences of various

morphological abnormalities, and their impact on the clinical outcomes and natural

history of COPD. The overarching objective of this review is to provide a concise overview

of the importance and utility of cardiopulmonary exercise testing (CPET) in clinical and

research settings. CPET uniquely allows evaluation of integrated abnormalities of the

respiratory, cardio-circulatory, metabolic, peripheral muscle and neurosensory systems

during increases in physiologic stress. This brief review examines the results of recent

studies in mild COPD that have uncovered consistent derangements in pulmonary gas

exchange and development of “restrictive” dynamic mechanics that together contribute

to exercise intolerance. We examine the evidence that compensatory increases in

inspiratory neural drive from respiratory control centers are required during exercise in

mild COPD to maintain ventilation commensurate with increasing metabolic demand.

The ultimate clinical consequences of this high inspiratory neural drive are earlier onset of

critical respiratorymechanical constraints and increased perceived respiratory discomfort

at relatively low exercise intensities.

Keywords: cardiopulmonary exercise testing, chronic obstructive pulmonary disease, dyspnea, neural drive,

respiratory mechanics, gas exchange

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a progressive and debilitating inflammatory
disease of the airways, alveoli, and microvasculature. Patients classified in the mild COPD stage
by Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria represent the majority
of total patients with COPD, with an estimated global prevalence of 7–11% in adults over 40 years
of age (1–3). Such patients with mild COPD have an increased risk of morbidity and mortality
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compared to healthy non-smokers, and have reduced health-
related quality of life (4). The most commonly reported symptom
in patients with mild COPD is dyspnea (breathlessness), defined
by a 2012 American Thoracic Society (ATS) statement as
“a subjective experience of breathing discomfort that consists
of qualitatively distinct sensations that vary in intensity” (5).
Dyspnea is particularly troublesome during exertion in patients
with mild COPD, and is often disproportionate to the degree
of airflow limitation (6). Further, dyspnea upon exertion has
been linked to exercise intolerance in these patients (6, 7).
The effective management of this complex and multifactorial
symptom, exercise intolerance and the associated poor health
status, remains a substantial challenge for caregivers. Interest
in systematic evaluation of the heterogeneous physiological
derangements of mild COPD has mounted since the discovery
of widespread structural abnormalities, quantified by imaging, in
large numbers of smokers who have normal spirometry as well as
in those who meet GOLD diagnostic spirometric criteria (8, 9).
In this context, our understanding of the nature of physiological
impairment and its negative consequences (dyspnea and exercise
intolerance) in mild COPD has been considerably enhanced
by the use of non-invasive cardiopulmonary exercise testing
(CPET) using treadmill or cycle ergometry, which allows for the
measurement of subjective (i.e., dyspnea measured by Borg scale)
and physiologic (breath by breath measures of ventilatory and
metabolic) parameters during a standardized physical stimulus or
stress (6, 7, 10–12). Conventional CPET is particularly valuable
in mild COPD where apparently disproportionate dyspnea and
reduced exercise tolerance remain unexplained after routine
spirometry. This review will outline evolving concepts of the
physiological underpinnings of dyspnea and exercise intolerance
in mild COPD, and highlight the clinical utility of CPET.

For the purpose of this review, we propose that mild COPD
refer to patients with the following criteria: (1) relevant long-
term exposure to tobacco smoke (i.e., current or ex-smoker with
significant smoking history), (2) persistent symptoms of dyspnea,
cough, and/or sputum production that are not explained by
other respiratory disorder, (3) a post-bronchodilator forced
expiratory volume in 1 s (FEV1) to forced vital capacity (FVC)
ratio <0.7, with an FEV1 >80% predicted, measured by simple
spirometry. Essentially, we focused our review on physiological
exercise studies undertaken in smokers meeting GOLD Stage 1B
COPD criteria.

EXERTIONAL DYSPNEA IN COPD:
CURRENT CONSTRUCTS

Dyspnea is believed to arise from an imbalance between
inspiratory neural drive (IND) to breathe and the capacity
of the respiratory system to respond (13). This imbalance is
variably termed demand-capacity imbalance, efferent-afferent
dissociation, neuromechanical, or neuromuscular dissociation.
This theory is supported by studies that demonstrate a strong
association between the rise in dyspnea intensity during exercise
and simultaneous increase in several physiologic ratios (IND,
ventilation and muscular effort, all relative to their maximal

values) which collectively reflect demand-capacity imbalance
of the respiratory system [Figure 1; (15–17)]. Together, these
studies support the notion that dyspnea increases during exercise
as a function of increasing IND (from bulbo-pontine and cortical
respiratory control centers) in the face of an ever-decreasing
capacity of the respiratory system to appropriately respond,
because of significant mechanical constraints.

MECHANISMS OF INCREASED
INSPIRATORY NEURAL DRIVE IN MILD
COPD

Recent studies in mild COPD have shown that dyspnea during
exercise is associated with disproportionately increased IND (as
measured by diaphragm electromyography, EMGdi) compared
with healthy controls [Figure 1A; (7)]. The abnormally high
IND in mild COPD is mainly attributed to: (1) reduced
ventilatory efficiency during exercise (i.e., increased ventilation
relative to carbon dioxide production, VE/VCO2), and/or (2)
progressive expiratory flow limitation (EFL) and abnormal
dynamic breathing mechanics (6, 10, 11).

Pulmonary Gas Exchange Abnormalities
The increased IND during exercise in COPD patients is the
result of variable perturbation of both chemical and respiratory
mechanical factors (18, 19). In both health and COPD, IND
increases as carbon dioxide output (VCO2) increases during
exercise in response to greater energy expenditure and metabolic
demand (20). Thus, exercise hyperpnea is closely linked to
pulmonary CO2 gas exchange. Tobacco-related injury of the
lung parenchyma, small airways, and microvasculature in mild
COPD leads to heterogeneous ventilation-perfusion mismatch
and significant abnormalities in pulmonary gas exchange (11, 21–
23). In mild COPD during exercise, VE/VCO2, physiological
dead space (VD), the dead space to tidal volume ratio (VD/VT),
and alveolar ventilation (VA) are elevated when compared
with health (11). When combined with EFL, these elevated
ventilatory requirements lead to accelerated progression of
dynamic mechanical constraints, dyspnea and reduced exercise
tolerance (10, 11). Additionally, the associated tachypnea and
shallow breathing pattern further increase the dead space to tidal
volume ratio (VD/VT) (11).

Recently, attenuated pulmonary capillary perfusion has been
demonstrated at rest and during exercise in mild COPD
(11, 21, 24, 25). Indeed, several studies utilizing various
radiological imaging techniques have confirmed important
structural and functional abnormalities of the small airways
and microvasculature in smokers with normal spirometry and
in patients with mild COPD (8, 9, 23, 26). Quantitative high-
resolution computed tomography (CT) imaging has shown that
patients with mild COPD can have significant emphysema,
pulmonary gas trapping, small airway thickening, and vascular
abnormalities (8). Studies using contrast-enhanced MRI have
provided evidence of significant pulmonary capillary perfusion
abnormalities suggesting tobacco smoke-induced vasculopathy
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FIGURE 1 | Ventilatory drive and respiratory mechanical response to exercise in patients with mild chronic obstructive pulmonary disease (COPD) compared to

healthy controls. (A) The ratio of diaphragmatic electromyography (EMGdi) to maximal EMGdi (EMGdi,max) relative to work rate, (B) dyspnea intensity (measured by

modified 10-point Borg scale) relative to the ratio of EMGdi/EMGdi,max (C) ventilation (VE) relative to the ratio of EMGdi/EMGdi,max (D) the ratio of

transdiaphragmatic pressure (Pdi) relative to maximal Pdi (Pdi,max) relative to work rate (E) neuromechanical dissociation (represented as the ratio of

EMGdi/EMGdi,max to Pdi/Pdi,max) relative to work rate (F) total work of breathing relative to work rate. Data are presented as Mean ± SEM. Triangles represent the

tidal volume/minute ventilation inflection point. Reproduced with permission of the © ERS 2020: Guenette et al. (7).

may be present even in smokers with mild spirometric
abnormalities (9, 23).

Moreover, new studies have shown that a low resting diffusing
capacity for carbon monoxide (DLCO)—which provides a
window into themicrovasculature—is associated with ventilatory
inefficiency (high VE/VCO2) and increased exertional dyspnea
in smokers with and without airway obstruction (11, 24, 27). It
has become clear that DLCO reliably evaluates the integrity of
the alveolar-capillary interface in mild COPD where significant
maldistribution of alveolar ventilation is absent, unlike more
advanced disease (28). Elbehairy et al. demonstrated consistently
higher ratings of dyspnea intensity and reduced exercise
tolerance in COPD patients with a DLCO below the lower limit
of normal (<LLN), when compared with patients with preserved
DLCO [Figure 2A; (12)]. The higher dyspnea ratings and earlier
exercise termination in the low DLCO groups were linked to
significantly greater ventilatory inefficiency (i.e., high VE/VCO2)
mainly reflecting higher physiological dead space [Figure 2C;
(11, 12)]. Accordingly, compromised CO2 elimination due
to ventilation-perfusion inequalities and resultant increased
chemo-stimulation gave rise to high ventilatory requirements
(Figure 2B) that accelerates dynamic mechanical constraints
(breathing pattern abnormalities and critical tidal volume

constraints) at lower exercise intensities than patients with
preserved DLCO (12).

Other chemical factors which are believed to contribute to
increased IND during exercise in more advanced COPD are less
likely to be important inmild COPD. These include: (1) increased
chemosensitivity and a lower regulated level of arterial pCO2

(21, 29–32); (2) increased chemoreceptor stimulation [due to
critical arterial hypoxemia, low mixed venous O2 returning to
areas in the lung with low ventilation-perfusion (V/Q) ratios]
(11, 33–36); (3) skeletal muscle deconditioning (manifesting
as metabolic acidosis at relatively low VO2) which result in
increased afferent ergoreceptor activation (due to reduced O2

delivery to the peripheral muscles) (37, 38); (4) reduced cardiac
output as a result of reduced pulmonary vascular volume and
low left ventricle filling (leading to increased V/Q mismatch
and physiologic dead space) (39); (5) altered afferents from
pulmonary vessels and right heart due to increased pulmonary
vascular pressures (40); and (6) increased sympathetic nervous
system activation which increases chemosensitivity (41, 42). At
this point, there is insufficient evidence to implicate the above-
listed chemical factors in contributing to increased IND in
mild COPD with the notable exception of decreased ventilatory
efficiency which is likely to be important.
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FIGURE 2 | Exertional dyspnea intensity (Borg scale; A), ventilation (B), ventilatory equivalent for carbon-dioxide (VE/VCO2; C), partial pressure of end-tidal CO2

(PETCO2; D), and oxygen saturation by pulse oximetry (SpO2; E); all for a given oxygen uptake during symptom-limited incremental cycle exercise in chronic

obstructive pulmonary disease patients with normal single-breath diffusing capacity of the lung for carbon monoxide (DLCO; open symbols) and those with low DLCO

(closed symbols) in the first tertile of forced expiratory volume in 1 s (FEV1). Tertile 1 (FEV1 > 73.5%predicted, square symbols). Data are means ± SE. *P < 0.05,

normal vs. low DLCO. †P < 0.05, difference in dyspnea/oxygen uptake slope between normal and low DLCO. Elbehairy et al. (12).

Dynamic Respiratory Mechanics
Small airway dysfunction and obliteration is regarded as the
hallmark feature of mild COPD and has important clinical
consequences. Indeed, one study in symptomatic smokers who
did not meet spirometric criteria for COPD showed significantly
increased IND during exercise compared with healthy controls,
in proportion to increased airway resistance (EMGdi) (43). In
mild GOLD Stage 1 COPD, in mild GOLD Stage 1 COPD, EFL is
variably present at rest, and often quickly becomes evident during
the hyperpnea of exercise where it is associated with dynamic
lung hyperinflation (DH) and its important negative sensory
consequences (44). In some individuals with mild COPD, defined
by spirometric criteria, localized emphysematous destruction
of the lung’s connective tissue matrix can alter lung elasticity
(increase in lung compliance), resetting the balance of forces
between inward lung recoil pressure and outward chest wall
recoil at end-expiration. This results in an increased relaxation
volume of the respiratory system (end-expiratory lung volume,
EELV) compared with healthy controls. In patients with mild
COPD exhibiting EFL at rest, dynamic EELV is influenced by
the prevailing breathing pattern. If FB increases abruptly (and
expiratory time decreases and/or VT increases) in patients with
mild COPD and significant EFL, EELV temporarily and variably
increases above its resting value (i.e., increased DH) during
exercise. DH reflects the effect of the slow mechanical time-
constant for lung emptying: expiratory time with each breath
during exercise is simply of insufficient duration to allow EELV
to decline to the predicted relaxation volume (14, 45–47).

The resting inspiratory capacity (IC) and inspiratory reserve
volume (IRV) in mild COPD are generally preserved and
VT is therefore positioned on the more linear, mid-portion
of the relaxed respiratory system sigmoidal pressure-volume
relationship (48). However, during exercise when DH occurs, VT

becomes positioned closer to TLC at relatively low work rate
which means that the inspiratory muscle fibers are shortened and
functionally weakened and must contend with increased elastic
mechanical loading. The difference between end-inspiratory
lung volume (EILV) and TLC (i.e., IRV) largely dictates

the relationship between IND and the mechanical/muscular
response of the respiratory system and the degree of perceived
dyspnea (49). Thus, the rate of dynamic decrease in IRV in
mild COPD provides indirect information about the extent
of neuromechanical dissociation of the respiratory system and
has strong correlation with dyspnea intensity (49). Thus, when
VT/IC ratio reaches ∼0.7 during exercise or IRV reaches <0.5–
1.0 L), a widening disparity occurs between IND and the VT

response: IND continues to rise and VT expansion becomes
progressively constrained and eventually fixed, representing the
onset of significant neuromechanical dissociation and escalation
of dyspnea (50, 51).

Recent studies have clearly established that in mild COPD,
reliance on traditional assessments of breathing reserve
[estimated maximal ventilatory capacity (MVC) minus peak
VE] can underestimate true ventilatory limitation indicated
by premature attainment of critical respiratory mechanical
constraints and accompanying severe dyspnea at relatively low
work rates (10).

The question arises whether bronchodilator treatment, which
partially reverses the above described abnormal mechanics,
provides subjective benefits in patients with mild COPD. A study
of symptomatic mild COPD patients showed that short-acting
bronchodilators improved FEV1, reduced residual volume (RV)
and resting airway resistance, DH, and work of breathing during
exercise compared to placebo. However, there was no observed
improvement in exercise endurance or exertional dyspnea, except
at high VE (52). A similar multi-center randomized double-
blind study examining the effect of long-acting bronchodilator
(tiotropium) in mild COPD patients showed a positive effect
on resting and dynamic lung hyperinflation but with no
improvement in exercise endurance or exertional dyspnea (53).
The unimpressive effects of bronchodilators in mild COPD can
be explained by the fact that resting IC is preserved in the
majority of individuals. Thus, small improvements in dynamic
respiratory mechanics at high ventilation levels near end-exercise
are less likely to provide appreciable subjective benefit. Moreover,
bronchodilators do not affect ventilatory inefficiency during
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FIGURE 3 | (A–I) Proposed panel displays during interpretation of an incremental cardiopulmonary exercise test. Data showing selected perceptual, ventilatory control,

dynamic respiratory mechanics, and breathing pattern response to incremental cycle exercise in patients with mild chronic obstructive pulmonary disease (COPD) and

age-matched healthy controls. Data are presented as Mean ± SEM. VE/VCO2: ventilatory equivalent for carbon dioxide; IRV: inspiratory reserve volume; Fb: breathing

frequency; PETCO2: partial pressure of end-tidal carbon dioxide; SpO2: arterial oxygen saturation measured by pulse oximetry; TLC: total lung capacity. *p < 0.05 mild

COPD versus healthy controls at rest, at standardized work rates or at peak exercise. Adapted with permission of the American Thoracic Society. Copyright © 2020

American Thoracic Society. All rights reserved. Cite: Author(s)/Year/Title/Journal title/Volume/Pages. The American Journal of Respiratory and Critical Care Medicine is

an official journal of the American Thoracic Society. Readers are encouraged to read the entire article for the correct context at https://www.atsjournals.org/doi/full/10.

1164/rccm.201211-1970OC The authors, editors, and The American Thoracic Society are not responsible for errors or omissions in adaptations.

exercise in mild COPD—a residual source of high IND and
dyspnea (54).

THE ROLE OF CPET IN UNCOVERING THE
CAUSE OF ACTIVITY-RELATED
DYSPNOEA

Accurate clinical interpretation of CPET requires comprehensive
pre-assessment in each individual. A number of validated
questionnaires are available to evaluate the extent of exertional
dyspnea and its impact on quality of life and the patient’s
ability to undertake everyday physical activities (55, 56).
Those with habitually reduced physical activity may have
significant skeletal muscle deconditioning (a known contributor

to higher ventilatory demand and increased dyspnea) (57).
Documentation of comorbidities such as asthma, obesity,
cardiocirculatory disorders, and musculoskeletal problems is
also important. All patients with dyspnea disproportionate to
spirometry should undertake additional tests such as single
breath DLCO and plethysmographic lung volumes and resting
arterial O2 saturation.

CPET Interpretation: Panel Displays
To evaluate the magnitude of dyspnea intensity and exercise
intolerance (at peak work rate or VO2) and identify potential
contributing factors in mild COPD (Figure 3), the following
responses are captured during incremental cycle CPET to
tolerance: (1) perceptual responses: dyspnea (Borg) ratings as
a function of work rate and/or VE; (2) ventilatory control:
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VO2/work rate, VE/work rate, (VE/VCO2)/work rate, O2

saturation (SpO2)/work rate, end-tidal CO2 (PETCO2)/work rate;
(3) dynamic respiratory mechanics: change in IC, IRV, VT, and
breathing frequency (FB), all as a function of increasing work rate
or VE; and (4) cardiocirculatory responses: heart rate relative to
predicted peak heart rate and O2 pulse.

From this simple format, we can evaluate the extent of
dyspnea and exercise intolerance in the individual. We can
determine if ventilation slopes are increased relative to controls
(indicating higher ventilatory drive) and enumerate its potential
underlying cause(s) [e.g., increased ventilatory inefficiency
(VE/VCO2), critical hypoxemia, or early ventilatory threshold].
We can also evaluate the extent of mechanical respiratory
constraints (operating lung volumes, breathing pattern) (see
also Evaluation of dynamic respiratory mechanical abnormalities
during conventional CPET).

The dominant abnormalities in patients with mild COPD
include: (1) increased IND secondary to high VD as indirectly
assessed by VE/VCO2 (higher nadir and steeper slope, see
also Measurement and interpretation of exercise ventilatory
efficiency) compared to age- and sex-matched healthy controls
(Figure 3C); and (2) increased pulmonary gas trapping due to
the combined effects EFL and increased ventilatory demand. The
result is earlier critical mechanical constraints (reduced IC and
IRV due to increased EELV, Figures 3D,E), and consequently
higher exertional dyspnea ratings earlier in exercise (Figure 3A),
compared to age-matched healthy individuals. In mild COPD
patients free from significant ventilatory constraints at lower
exercise intensities, the measured VE/VCO2 (higher VE/VCO2

nadir and steeper VE/VCO2 slope compared to health) is a
reliable surrogate for increased physiological dead space (58).

Influence of Co-morbidities in COPD CPET

Interpretation

In smokers with persistent dyspnea but unremarkable spirometry
there is justifiably a high index of suspicion for cardiovascular
dysfunction which usually prompts a cascade of investigations
to rule out active ischemic heart disease. The cardiocirculatory
responses during CPET indicating concomitant left ventricular
dysfunction include high VE/VCO2 nadir, uniformly low
PETCO2, relative tachycardia, reduced O2 pulse (VO2/HR),
reduced VO2/work rate slope, and early ventilatory threshold
and complaints of dominant leg discomfort indicating impaired
oxygen delivery to the peripheral muscles. It must be
remembered that profound skeletal muscle deconditioning
as a result of longstanding avoidance of physical activity can
present with similar physiological responses to exercise as those
encountered in patients with reduced cardiac output. Relevant
clinical history and the incorporation of 12-lead ECG into CPET
to detect undiagnosed ischemic heart disease in these patients
can be informative. The findings of very high VE/VCO2 nadir
(>35), arterial O2 desaturation together with physiological
features of LV dysfunction (listed above) raises the possibility of
pulmonary arterial hypertension which should prompt further
relevant investigations.

Obesity also influences exercise responses in COPD in a
manner that is readily discernable (50, 59). There is an upward

parallel shift in the VO2/WR slope, explained by the increased
metabolic requirement of lifting heavy limbs during cycling.
Obese COPD patients have an increased resting IC (and thus
lower EELV) which means that the patient can exercise to a
higher ventilation before the VT plateau or minimal IRV is
reached (60). In severe obesity, IC becomes eroded due to
mass loading effect and reduced respiratory system compliance,
pulmonary gas exchange becomes compromised, PCO2 may not
decline or actually increase during exercise, and the load/capacity
imbalance of the respiratory muscles reaches a critical level (59).
These patients often attain physiological limits of the respiratory
system and distressing dyspnea at relatively low exercise levels
compared with those with normal weight COPD (59, 60).

Clinical and Therapeutic Implications
CPET uniquely exposes the nature and extent of physiological
impairment that can exist in individual smokers with mild
COPD who present to the clinician with troublesome symptoms
of dyspnea and exercise intolerance. The new CPET-derived
information alerts the clinician of the importance of careful
follow-up to monitor disease progression and may persuade
the patient to live a healthier lifestyle and avoid further lung
injury from tobacco smoking. While CPET can provide a deeper
understanding of the mechanisms of dyspnea in the individual,
patients, management options are currently limited beyond
smoking cessation, weight reduction (when appropriate) and
encouragement of regular physical activity. In the setting of
mechanical abnormalities such as dynamic lung hyperinflation
during exercise, a trial of a short-or long-acting bronchodilator
seems warranted even as we await definitive evidence from
future clinical trials of bronchodilator efficacy in mild COPD
populations. At present, no treatment options are available
for a minority of symptomatic patients with mild COPD who
manifest features of “a microvascular phenotype” (low DLCO;
high VE/VCO2 nadir, with or without minor centrilobular
emphysema on CT) (61). Future studies that elucidate the
pathogenesis of vascular injury in smokers with mild COPD will
hopefully lead to the development of new targeted therapies.
Finally, CPET may help identify clinically important co-morbid
conditions in patient with Mild COPD that require specific
therapeutic interventions.

CONCLUSIONS

“Mild COPD” is in many respects a misnomer as it mainly
signifies presence of mild airflow limitation, measured by simple
spirometry. It is now well-established that such individuals
often have persistent troublesome symptoms, and consistently
report reduced physical activity and poor health status. We
now know that spirometry, while useful for defining severity
of airflow limitation, can obscure extensive and heterogeneous
physiological impairment of the lungs that additional tests
and modern imaging techniques can reliably uncover. CPET,
which examines the respiratory system under stress, is uniquely
positioned to expose, in an integrated manner, the nature
and extent of physiological impairment, and its negative
sensory consequences. The most consistent abnormalities in
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mild COPD during exercise are high inspiratory neural drive,
reduced ventilatory efficiency, and early dynamic mechanical
constraints to increasing ventilation as metabolic demand
increases. Patients with unremarkable spirometry (and normal
arterial O2 saturation during walking) who have DLCO <LLN
and high VE/VCO2 nadir during CPET, are more likely to
experience dyspnea and reduced exercise tolerance than those
who do not exhibit these features. While CPET results do
not currently influence therapeutic choices on an individual
basis, the information obtained provides the clinician with
valuable insights into the underlying causes of exertional dyspnea
in mild COPD. Moreover, CPET is potentially important in
helping to define discreet physiological phenotypes of COPD
(e.g., dominant microvascular dysfunction, dominant small
airway dysfunction, or mixed patterns) linked to clinical

outcomes. This type of deep physiological phenotyping could
allow more refined structure-function analysis to ascertain the
clinical relevance of morphometric abnormalities revealed by
novel imaging. Ultimately, such phenotypic characterization
of individuals which incorporates CPET, has the potential to
guide more precise interrogation of the pathobiology of COPD
to hasten the discovery of new therapeutic targets for this
complex disease.
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