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Abstract: Diabetic retinopathy is a major cause of ocular complications in patients with type 1 and
type 2 diabetes in developed countries. Due to the continued increase in the number of people
with obesity and diabetes in the United States of America and globally, the incidence of diabetic
retinopathy is expected to increase significantly in the coming years. Diabetic retinopathy is widely
accepted as a combination of neurodegenerative and microvascular changes; however, which change
occurs first is not yet understood. Although the pathogenesis of diabetic retinopathy is very complex,
regulated by numerous signaling pathways and cellular processes, maintaining glucose homeostasis
is still an essential component for normal physiological functioning of retinal cells. The maintenance
of glucose homeostasis is finely regulated by coordinated interplay between glycolysis, Krebs cycle,
and oxidative phosphorylation. Glycolysis is the most conserved metabolic pathway in biology and is
tightly regulated to maintain a steady-state concentration of glycolytic intermediates; this regulation
is called scheduled or regulated glycolysis. However, an abnormal increase in glycolytic flux
generates large amounts of intermediate metabolites that can be shunted into different damaging
pathways including the polyol pathway, hexosamine pathway, diacylglycerol-dependent activation
of the protein kinase C pathway, and Amadori/advanced glycation end products (AGEs) pathway.
In addition, disrupting the balance between glycolysis and oxidative phosphorylation leads to
other biochemical and molecular changes observed in diabetic retinopathy including endoplasmic
reticulum-mitochondria miscommunication and mitophagy dysregulation. This review will focus on
how dysregulation of glycolysis contributes to diabetic retinopathy.

Keywords: hyperglycemia; diabetic retinopathy; neurovascular dysfunction; metabolic deregulation;
glycolytic pathway; endothelial cell; glycolytic overload

1. Introduction

Diabetic retinopathy (DR) is a specific neuroretinal and microvascular complication of both
type 1 and type 2 diabetes, the prevalence of which is strongly related to both the duration of
diabetes and the level of glycemic control [1,2]. According to World Health Organization (WHO),
DR accounts for an estimated 15–17% of total blindness in Europe and the USA [3], with no apparent
ethnic variations in the occurrence of vision loss [4]. As the number of cases of diabetes is expected
to increase from 366 million in 2011 to 552 million in 2030 [5], DR will become an even larger
problem in the near future [6]. In the modified Airlie House classification of DR, human DR
begins from non-proliferative DR (NPDR), characterized by increased occlusion, capillary dropout,
vascular permeability, and number of microaneurysms (swellings on the side of tiny blood vessels that
wax and wane). With increasing severity, DR progresses to the advanced stage of proliferative diabetic
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retinopathy (PDR), characterized by the formation of a fibrovascular membrane (FVM) and aberrant
neovascularization on the surface of the retina rather than physiological vascularization within the
retina itself [7]. At this stage, patients are at risk of blindness due to relentless abnormal fibrovascular
proliferation with subsequent bleeding and tractional retinal detachment. The Diabetic Retinopathy
Study (DRS) recommended prompt pan-retinal photocoagulation (PRP, also called scatter laser
treatment) in all patients with PDR who meet the high-risk criteria (HRC) of having neovascularization
that is at least one-half disc area in size associated with pre-retinal or vitreous hemorrhage [8]. However,
PRP causes decreased visual acuity, reduced dark adaptation, and worsening of diabetic macular edema
(DME) over the course of 2 years [9]. The advent of anti-vascular endothelial factor (VEGF) agents,
according to The Diabetic Retinopathy Clinical Research Network (DRCR.net) studies, has added a
potentially viable alternative or adjunct tool to PRP in the armamentarium of treating PDR and DME,
through at least 2 years of treatment [10,11]. However, a transition from angiogenesis to fibrosis can
occur when the vitreous level of VEGF decreases and the levels of connective tissue growth factors
(CTGF, CCN2) increase [12]. In addition, subsequent prospective studies showed that the resistance to
anti-VEGF has become a major clinical concern in patients receiving long-term therapy [13–17]. This is
in part due to the upregulation of alternative pro-angiogenic factors to overcome VEGF blockade [18,19].
Hence, new strategies need to be developed with the goal of helping patients for whom anti-VEGF
treatments are not effective.

The pathogenesis of DR is regulated by numerous factors via integrated molecular signaling
pathways and cellular processes [20]. However, disruption of glucose homeostasis, an essential
component for normal physiological functioning of retinal cells [21], plays one of the most critical roles
in the development of DR. The maintenance of glucose homeostasis is finely regulated by coordinated
interplay between glycolysis, Krebs cycle, and oxidative phosphorylation (OxPhos). Dysregulation of
glucose homeostasis in many retinal cell types has been linked to the neural and microvascular
complications of DR [22]. Glycolysis is the most conserved metabolic pathway in biology that is
used by all prokaryotic and eukaryotic cells in generating energy from glucose [23]. This metabolic
pathway is tightly regulated to maintain a steady-state concentration of glycolytic intermediates;
this regulation is called scheduled or regulated glycolysis. However, an abnormal increase in glycolytic
flux generates large amounts of intermediate metabolites that can be shunted into different damaging
pathways including polyol pathway, hexosamine pathway, diacylglycerol-dependent activation of
the protein kinase C pathway, and advanced glycation end products (AGEs) pathway. In addition,
disrupting the balance between glycolysis and oxidative phosphorylation leads to other biochemical and
molecular changes observed in DR, including endoplasmic reticulum–mitochondria miscommunication
and mitophagy dysregulation. The following sections will discuss the contribution of glycolysis
dysregulation to these pathways in DR.

1.1. General Structure and Function of Neurovascular Unit of Retina

The retina is a neurovascular tissue which has several layers of neurons interconnected by synapses
(Figure 1). Rod and cone photoreceptor cells represent the neurons of outer retina, while bipolar,
horizontal, amacrine, and ganglion cells represent the neurons of the inner retina. Neural signals from
photoreceptor cells are processed by the second order neurons, bipolar and horizontal cells. Then,
signals from these second order neurons target the retinal ganglion cells (RGCs) of the inner retina [24].
The neurons of the outer and inner of retina integrate to perform sensory functions and define color
perception, spatial resolution, and contrast discrimination [25].
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Because retinal neurons require an exceptional amount of energy to execute visual function,
a continuously supply of nutrients and oxygen is essential [26]. There are two distinct retinal vascular
systems supplying nutrients and oxygen to the retinal neurons which are choriocapillaries and the
central retinal artery. The choriocapillaris supplies nutrients and oxygen via diffusion to the avascular
photoreceptor layer of the outer retina. For example, glucose fuel reaches the photoreceptors after
travelling from the choriocapillaris through glucose transporters (GLUT 1 and GLUT3) present in
a monolayer of pigmented cells situated between the neuroretina and the choroid called the retinal
pigment epithelium (RPE). The RPE collaborates with the fenestrated choriocapillaries and Bruch’s
membrane to form the outer blood retinal barrier (oBRB) [27–29].

On the other hand, the central retinal artery supplies nutrients and oxygen to the inner retinal
neurons [26]. The endothelial cells line the lumen of the microvasculature, act as a physical barrier
between blood and surrounding tissue, and play a critical role in regulating the retinal homeostasis [30].
Pericytes wrap around the retinal capillaries and modulate the endothelial cell function [24]. In addition
to the maintenance of vessel wall structural support, pericyte coverage regulates the expression of
tight junction proteins in the adjacent endothelial cells [24]. A basal membrane separates pericytes
from endothelial cells; however, holes in this membrane matrix allow the formation of cell to cell
junctions between the pericytes and endothelial cells [31,32]. Matea and Newman [33] were the first
to popularize the term neurovascular unit in the inner retina to describe the interactions between
neurons, Müller glial cells, and vascular cells in controlling blood flow. Müller glial cells and
astrocytes are two types of glial cells present between the neurons and the retinal vasculature which
provide nutritional and regulatory support of neurons [34]. Müller glial cells span the entire retina
from the retinal pigment epithelium to the inner limiting membrane and participate in vascular
responses to meet the metabolic demands of the neurons by interchanging metabolites including
lactate and amino acids from the circulation [35]. Furthermore, Müller glial cells are actively involved
in regulating the glutamate/glutamine cycle, which is critical to control neurotransmission to protect
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from glutamate excitotoxicity, and to regulate blood–retinal barrier properties [35]. Astrocytes synapse
on blood vessels to maintain autoregulation [36]. Microglia are a heterogenous population of resident
macrophages that interact with neurons, glia, and endothelium to monitor local cellular and synaptic
activity [37]. Microglia are responsive to changes in retinal environment, and they can be triggered by
proinflammatory cytokines, damaged cells, or any immune-stimulatory agents. Activated microglia
have the ability to respond to stress by releasing proinflammatory cytokines [38] and dispose of
the dying cells via phagocytosis [39]. However, if microglia are sustained in an activated state,
the secreted cytokines can affect other cell types in the proximity, particularly neuronal and vascular
cells, bringing about the progression of many retinal diseases, including DR [40]. In summary,
retinal neuronal cells are protected from harmful molecules in the circulation by oBRB, comprised of
RPE, and the inner BRB (iBRB), comprised of endothelial cells [41]. Tight junctions between neighboring
RPE cells and endothelial cells play a regulatory role in the strict control of fluid and solutes crossing
the blood–retinal barrier, and they prevent the entrance of toxic molecules and plasma components
into the retina [41]. To perform normal visual functions, highly coordinated activity of neuronal, glial,
microglial, and microvasculature is required.

1.2. Metabolic Pathways Implicated in DR

The maintenance of glucose homeostasis is regulated by interplay between glycolysis, Krebs cycle,
and OxPhos. Two intriguing features make glycolysis the most widespread metabolic pathway found
in Earth’s life: (1) it does not require oxygen nor (2) compartmentalization by internal membranes,
as the Krebs cycle and OxPhos do. These make glycolysis a more accessible source of ATP. In general,
the glycolysis pathway primarily involves the intracellular breakdown of glucose into pyruvate or
lactate following transporter-mediated glucose uptake. During this process, different intermediates
are generated that are used as substrates for energy production as well as substrates for energy storage
via the pathways of glycogenesis and lipogenesis [42]. Glycolysis is a nine-reaction pathway that
is divided into two phases; upper and lower glycolysis. Upper glycolysis is an “investment phase”
where ATP is consumed to set up the reactions of lower glycolysis, the “payoff phase” where ATP
is generated. Upper glycolysis converts glucose into two trioses (dihydroxyacetone phosphate
(DHAP) and glyceraldehyde 3-phosphate (GA-3P)) after conversion through three intermediates,
glucose 6-phosphate (G6P), fructose 6-phosphate (F6P), and fructose 1,6-bisphosphate, generated by
hexokinase (HK), phosphoglucose Isomerase (PGI), and phosphofructokinase (PFK), respectively.
On the other hand, lower glycolysis converts the trioses into pyruvate or lactic acid through three
intermediates, 3-phosphoglycerate (3-PG), 2-phosphoglycerate (2-PG), and phosphoenolpyyruvate
(PEP), generated by phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGM), enolase (ENO),
respectively. The connection between upper and lower glycolysis is regulated by the enzyme called
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which catalyzes the conversion of GA-3P to
1,3-bisphosphateglycerate (1,3 Bis-PG) and then to 3-PG. Under physiological conditions, all tissues,
including those with the highest concentrations of glycolytic enzymes such as the brain and the
retina, regulate glycolysis tightly to maintain a steady-state concentration of glycolytic intermediates;
this regulation is called scheduled or regulated glycolysis (Figure 2A). Nevertheless, increased flux
through glycolysis, which is commonly seen under ischemic conditions, results in glycolytic overload
or unscheduled glycolysis (Figure 2B), which generates large amounts of intermediate metabolites that
can be shunted into different damaging pathways [43]. In the following section, we describe how an
abnormal increase in the steady-state concentrations of upper and lower glycolytic intermediates leads
to multiple damaging pathways in DR. More detailed understanding of this metabolic alteration may
identify new targets for improved therapy of DR.
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Figure 2. The contribution of unscheduled glycolysis to diabetic retinopathy. (A) represents key
regulatory steps of scheduled glycolysis, while (B) represents hyperglycemia-linked glycolytic
overload and metabolic dysfunction in unscheduled glycolysis resulting from activation of the
polyol, hexosamine, PKC, and AGEs pathways, which further cause oxidative stress and inflammation
leading to retinal cell dysfunction. Yellow arrows depict metabolic dysfunction in unscheduled
glycolysis. Abbreviations: Glucose-6-P, glucose-6-phosphate; Fructose-6-P, fructose-6-phosphate;
Fructose 1,6-bis-P, fructose 1,6-bis-Phosphate; GA-3-P, glyceraldehyde-3-phosphate; DHAP,
dihydroxyacetone phosphate; 1,3 bis PG, 1,3 diphosphoglycerate; 3-PG, 3-phosphoglycerate; 2-PG;
2-phosphoglycerate; PEP, phosphoenolpyruvate; HK, hexokinase; G6PI, glucose 6-phosphate
isomerase; PFK, phosphofructokinase; TPI, triose phosphate isomerase; Aldo, aldolase; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate
mutase; PK, pyruvate kinase; L-LD, L-lactic dehydrogenase; HK2, hexokinase2; OS, osmotic stress; AR,
aldolase reductase; SDH, sorbitol dehydrogenase; GlucN-6-P, glucosamine-6-P; UDP-GlcNAc, uridine
diphosphate-N-acetylhexosamine; GFAT, glutamine fructose-6-P amidotransferase; Gln, glutamine;
Glu, glutamate; G3P, glycerol-3-P; PKC, protein kinase C; MG, methylglycoxal; MGS, methylglycoxal
synthase AGE, advance glycation end-products. The figure is adopted with modification from [43].

1.2.1. Involvement of Upper Glycolysis in Glycolytic Overload during DR

In regulated or scheduled glycolysis, upper glycolysis is regulated at three rate-limiting steps:
(1) glucose uptake (which is regulated by glucose transporters (GLUT)) (2) glucose phosphorylation
(which is catalyzed by different forms of hexokinase isozymes), (3) the generation of
fructose1,6-biphosphate (which is catalyzed PFK). Recent research evidence revealed that increased
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hexokinase 2 (HK2) activity and increased G6P concentration are linked to the initiation of unregulated
or unscheduled glycolysis, which leads to an abnormal increase in steady-state concentrations of upper
glycolytic intermediates, including G6P, DHAP, and GA3P [43]. The accumulation of these upper
glycolytic intermediates has been shown to be linked to the development of DR through shunting
into four pathways: the polyol pathway, hexosamine pathway, diacylglycerol-dependent activation of
the protein kinase C pathway, and Amadori/advanced glycation end products (AGEs) pathway as
detailed below:

Shunting into Polyol Pathway

In regulated or scheduled glycolysis, glucose is normally phosphorylated by hexokinase, but when
there is excess glucose uptake, hexokinase becomes saturated and any excess glucose is shunted into
the polyol pathway. The polyol pathway is a two-step metabolic pathway in which glucose is reduced
to sorbitol by a rate limiting enzyme known as aldose reductase using NADPH as a cofactor. Then,
the enzyme sorbitol dehydrogenase converts the sorbitol to fructose using the cofactor NAD+ [44].

A hyperglycemia-induced increase in aldose reductase concentration is correlated with increased
damage to certain cells of the retina, including endothelial cells [45–47], pericytes [48,49],
ganglion cells [45], Müller glial cells [45], retinal pigment epithelial cells [45], and neurons [50].
The detrimental effects of the polyol pathway in DR could be explained by several mechanisms. First,
activation of polyol pathway lowers the concentration of NADPH and NAD+, which are required
for regeneration of glutathione, and consequently results in decreases in antioxidant defenses and
overproduction of reactive oxygen species (ROS), leading to oxidative stress [51]. Second, as sorbitol
is less permeable through the cell membranes, sorbitol accumulation within retinal cells during
hyperglycemia causes cellular hyperosmolality, which subsequently induces an increase in intracellular
water and osmotic damage [52]. Third, the fructose produced in the polyol pathway during diabetes
is phosphorylated to fructose-3-phosphate, which in turn is broken down to 3-deoxyglucose and
3-deoxyglucosone. These two compounds play an important role in the production of AGEs [53,54].
Taken together, shunting glucose metabolism into the polyol pathway due to overwhelming upper
glycolysis contributes to DR by inducing osmotic as well as oxidative stress and AGE formation in
different retinal cells.

Shunting into Hexosamine Pathway

In unscheduled glycolysis, the accumulation of the upper glycolytic intermediate fructose-6-phosphate
leads to the formation of N-acetyl glucosamine-6-phosphate (GlucN-6-P) by glutamine fructose-6-phosphate-amido

transferase (GFAT), the rate limiting enzyme in the hexosamine pathway [55]. GlucN-6-P is rapidly
transformed into uridine-5-diphosphate (UDP)-N-acetylglucosamine (UDP-GlcNAc), which is a
precursor for all other amino sugars required for the biosynthesis of glycoproteins, glycolipids,
proteoglycans, and glycosaminoglycans. While a small fraction of glucose is metabolized
through hexosamine pathway under euglycemia, the hexosamine pathway is overstimulated
under hyperglycemic condition, resulting in excess protein glycosylation that may disrupt gene
expression and cellular functions in the retina, especially in neurovascular cells (reviewed in [56]).
The contribution of shunting glucose metabolism into the hexosamine pathway to the pathogenesis
of DR has been attributed to multiple mechanisms. Firstly, it increases retinal neuronal cell
death by blocking the neuroprotective effect of the insulin/Akt signaling pathway [57]. Secondly,
it promotes retinal ganglion cell death in the diabetic mouse model by increasing O-GlcNAcylation of
NF-κB p65 subunit and its activation [58,59]. Thirdly, activation of hexosamine pathway increases
O-GlcNAcylation of p53, which is associated with increased retinal pericyte apoptosis, leading to the
early DR vascular dysfunction [58,60]. Finally, recent research reported that under hyperglycemic
conditions, the product of the hexosamine pathway, UDP-N-acetyl glucosamine, competes with
phosphorylation at post-translation modification sites on transcription factors, which disrupts the
phosphorylation-mediated regulation of inflammatory responses that normally occurs through
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transcription growth factor-β [61]. In summary, the hexosamine pathway is activated when there
is an excess of upper glycolytic intermediate fructose-6-phosphate that cannot be drained by
glycolysis, and the activation of this pathway leads to DR, mainly through stabilizing transcription
factor–promoter interactions that are well-known to be involved in DR.

Shunting into Diacylglycerol (Dag)/Protein Kinase C (PKC) Pathway

Under hyperglycemic conditions, the high intracellular glucose concentration causes accumulation
of the upper glycolytic intermediate GA-3P, which then further enhances the production of DAG.
DAG activates different isoforms of PKC within the cell [62]. Activation of PKC has been linked to the
pathogenesis of DR at several levels. First, activation of PKC under hyperglycemic conditions causes
retinal vascular dysfunction and pericyte losses [62–64]. Second, hyperglycemia-induced accumulation
of DAG activates PKC-β, which alters the enzyme activities of NO, ET-1 and VEGF in endothelial
cells and leads to vascular dysfunction. Third, hyperglycemia-induced accumulation of DAG also
activates PKC-δ, which induces pericyte loss by two distinct pathways: (1) increasing ROS production
and NF-κB activation and (2) upregulating the expression of a protein tyrosine phosphatase, SHP-1,
to weaken the important survival signaling pathway of platelet-derived growth factor (PDGF) [62].
Thus, in unscheduled glycolysis, the accumulation of upper glycolysis trioses leads to DAG formation
and downstream activation of several PKC isoforms, which are likely to be responsible for metabolic
dysfunction in DR.

Shunting into Glycation End Products (Amadori/AGEs) Pathway

Glycation end products play an important role in the pathogenesis of DR [65–68]. Intracellular production
of glycation end products involves nonenzymatic-glycation reactions between reducing sugars in
upper glycolic metabolites and the free amino groups in proteins, lipids, and DNA. The formation of
glycation end products begins with the formation of an unstable Schiff base between active aldehyde
in reducing sugar and an amino group, which spontaneously rearranges itself into a relatively
stable Amadori adduct [65,66]. Studies from our group recognized Amadori-glycated albumin
(AGA)/inflammation cascade as a mechanism contributing to DR via activating microglia to secrete
their inflammatory cytokines [67]. Further molecular rearrangements of AGA lead to the generation of
AGEs [65]. In addition, methylglyoxal, which is formed from upper glycolysis metabolite, DHAP,
by the enzyme methylglyoxal synthase, reacts with amino acids in proteins to generate AGEs.
AGEs can interact with a wide range of cell surface AGE-binding receptors, including receptors
for AGEs (RAGEs), leading to the formation of prooxidants and the activation of proinflammatory
molecules [69]. RAGE is a member of an immunoglobulin receptors superfamily that is ubiquitously
expressed in various retinal cells and is reported to be upregulated in diabetic patients. Binding of
AGEs to RAGEs induces the activation of various downstream pathways, such as extracellular
signal-regulated kinase 1/2, mitogen-activated protein kinases, and P38, which in turn activates NF-κB
to induce the production of pro-inflammatory cytokines and/or oxidative stress [70,71]. AGEs affect
cells by three main mechanisms: as adducts occurring on modified serum proteins, as endogenous
adducts formed through glucose metabolism, or as extracellular matrix-immobilized modifications of
long-lived structural proteins [72]. In DR, the accumulation of AGEs under hyperglycemic conditions
evokes intracellular signaling cascades that lead to pericyte apoptosis and breakdown of the inner
blood retinal barrier [73]. Moreover, hyperglycemia-induced AGE accumulation causes prolonged
upregulation of the unfolded protein response (UPR) and autophagy via ER stress, which also
promotes pericyte apoptosis [74]. Collectively, unscheduled glycolysis in diabetes accelerates the
formation of AGEs, which act as major pathogenic mediators with several mechanism of actions
leading to retinal cell damage.
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1.2.2. Involvement of Lower Glycolysis Overload in DR

In regulated or scheduled glycolysis, lower glycolysis transforms GA-3P into pyruvate or lactate
in a series of enzymatic reactions. Contrary to upper glycolysis, these reactions are required to pay off

ATPs invested in upper glycolysis, and therefore the generated intermediates cannot be shunted into
other pathways. Lower glycolysis is mainly regulated at import and export of lactate (controlled by
monocarboxylate transporter (MCT)). This highlights the importance of the final enzymes involved in
pyruvate or lactate production, which are pyruvate kinase (PK) and lactate dehydrogenase A (LDHA),
respectively, to glycolytic flux control. Rod and cone photoreceptor cells are the most metabolically
active neurons in the outer retina [75]. Glucose that fuels photoreceptors comes from the choroidal
blood and travels to the retina through a monolayer of RPE [29]. If the metabolic enzymes within
the RPE do not consume the glucose, it moves down a concentration gradient toward the opposite
side of the RPE cell, where it exits into the retina through transporters (Glut1 and 3) on the apical
surface of the RPE [29]. Under normal conditions, photoreceptors, like tumor cells, mostly rely on
aerobic glycolysis for their energy demand and release a substantial amount of lactate, even when
oxygen is available [76–78]. Moreover, recent studies suggested that a balanced retinal metabolic
ecosystem between RPEs, photoreceptors, and neuroglia is required to maintain proper function
of each cell type [29,79]. Large amounts of lactate produced from photoreceptors are used as an
alternative fuel in RPE cells and serve as a signal that prevents the RPE from utilizing glucose as
an energy source, making more glucose available to the photoreceptors, as depicted in Figure 3A.
However, under diabetic conditions, hyperglycemia results in metabolic reprogramming in RPE due to
mitochondrial dysfunction [80,81], causing a glycolytic shift and lactate overproduction from RPE cells
towards photoreceptors, which leads to photoreceptor cell death [29,79], as depicted in Figure 3B.
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Figure 3. Schematic representation showing glucose metabolism in RPE and photoreceptors in the
RPE-retinal ecosystem. (A) Normal glucose metabolism in RPE and photoreceptors in the RPE-retinal
ecosystem under normal physiology leading to normal vision. (B) Hyperglycemia linked metabolic
dysfunctions in RPE and photoreceptors in RPE-retinal ecosystem causing visual dysfunction in DR.
Abbreviations: RPE, retinal pigment epithelium; Glut-1, Glucose transporter 1; MCT1, monocarboxylate
transporter 1; AG, aerobic glycolysis.
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In addition to RPE, photoreceptors export the lactate as fuel for neighboring Müller glial cells,
which span the entire retina to provide structural and nutritional support to the retina [82]. In normal
conditions, Müller glial cells convert lactate and aspartate to glutamine via the tricarboxylic acid
cycle [1]. Glutamine produced by Müller glial cells is essential to drain the bulk of extracellular
glutamate produced in the inner retina and to clear up glutamate around photoreceptor terminals,
thus preventing glutamate neurotoxicity (Figure 4). However, during hyperglycemia, Müller glial
cells seem to be particularly vulnerable to damage and are now recognized as potential players in
the progression of DR [83,84]. For example, Müller glial cells in DR overexpress glial fibrillary acidic
protein (GFAP) [84], showing decreased glutamine synthesis with subsequent accumulation of lactate
and glutamate within Müller glial cells and around neurons, with resultant retinal excitotoxicity and
photoreceptor damage [85] (Figure 5). Müller glial cells are also preferably positioned to mediate the
neurovascular coupling in the retina as they are interposed between the retinal vasculature and the
neurons and often enveloped in the vasculature [86]; thus, DR-induced Müller cell dysfunction further
contributes to reduced interaction between the neurons and retinal vasculature.
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Figure 4. Schematic diagram showing normal glucose metabolism in different cells of the neurovascular
unit in the retina. Different cell types in the neurovascular unit of the in retina form a metabolic ecosystem
to perform normal vision. Abbreviations: RPE, retinal pigmented epithelium; Glut-1, glucose transporter
1; AG, aerobic glycolysis; OxPhos, oxidative phosphorylation; iBRB, inner blood–retinal barrier; oBRB,
outer blood–retinal barrier; MCT1, monocarboxylate transporter.
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Figure 5. Schematic diagram showing the effect of hyperglycemia on metabolic dysfunction in the
diabetic retina. Hyperglycemia-induced dysfunction of the different cell types in the neurovascular unit
of the retina disrupts the entire metabolic ecosystem, leading to visual dysfunction in DR. Abbreviations:
RPE, retinal pigmented epithelium; Glut-1, glucose transporter 1; AG, aerobic glycolysis; OxPhos,
oxidative phosphorylation; iBRB, inner blood–retinal barrier; oBRB, outer blood–retinal barrier; MCT1,
monocarboxylate transporter; GFAP, glial fibrillary acidic protein; GABA, gamma-aminobutyric acid.

In a healthy state, most endothelial cells remain quiescent and take part in maintaining
barrier function and tissue homeostasis [87]. However, hyperglycemia induces oxidative stress
in retinal endothelial cells (RECs), which further activates and perturbs several metabolic pathways,
resulting in a self-perpetuating cycle of detrimental oxidative stress that advances the development of
DR [88,89]. Hyperglycemia-induced oxidative stress in RECs originates from initiating mitochondrial
dysfunction [90]. The overproduction of mitochondrial ROS under hyperglycemic conditions induces
mitochondrial fragmentation and dysfunction, shifting the REC metabolism to hyperglycolysis,
and reduces the ability of RECs to maintain both barrier function and tissue homeostasis in DR [91,92].

1.3. Other Biochemical and Molecular Changes Related to Dysregulation of Glycolysis in DR

In addition to the aforementioned involvement of glycolytic overload in DR, disrupting the balance
between glycolysis and OxPhos leads to other biochemical and molecular changes seen in DR, such as
synergistic crosstalk between hypoxia and hyperglycemia, endoplasmic reticulum (ER)-mitochondria
miscommunication, and mitophagy dysregulation. Each of these will be briefly described in the
following section.

1.3.1. Synergistic Relationship between Hypoxia and Hyperglycemia in DR

Previous studies have reported that retinal tissue hypoxia occurs in DR of zebrafish, rodents, cats,
dogs, and primates [93–97]. High glucose induces increased retinal vessel permeability, leakage of
harmful substances, and degeneration of capillaries in early-stage DR, resulting in retinal hypoxia in
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the late stage of DR [98,99]. Retinal tissue hypoxia is a key mediator in the pathogenesis of DR [100].
A recent study showed that hyperglycemia induces cellular hypoxia through the production of
mitochondrial ROS followed by the suppression of aquaporin’s (AQP) water transport function [101].
Among different APQs present in the retina, APQ4 is found mainly in Müller cell processes in
reverse polarity, where they are in contact with retinal capillaries; therefore, efflux of water into
the blood from the retina and the vitreous is reduced or prevented. Thus, dysregulation of
aquaporin expression and orientation under hyperglycemia and hypoxia leads to Müller cell swelling,
retinal edema and inflammation in DR. The cellular response to hypoxia is mediated via the activation
of hypoxia-inducible factors (HIFs), consisting of oxygen sensing HIFα subunits and HIFβ [101].
Under normoxic conditions, transcriptional activity of HIF is inactivated, as the HIF1α/HIFβ complex
is dissociated. However, during hypoxia, HIF1α dimerizes with HIFβ and then translocates to the
nucleus, leading to downstream activation of a number of different pro-inflammatory cytokines (IL-1β,
TNF-α, ICAM-1) [102–104] and many proangiogenic factors, such as fibroblast growth factors (FGFs),
vascular endothelial growth factors (VEGFs), and platelet-derived growth factor (PDGF) [105–107].
In a normoxic state, there is a balance of angiogenic factors and endogenous anti-angiogenic factors.
However, in a hypoxic state, there is breakdown in this balance of angiogenic factors and endogenous
anti-angiogenic factors, leading to the neovascularization found in proliferative DR [108].

A recent study showed that hyperglycemia and hypoxia interact and have additive effects
on the onset and progression of DR [109]. Retinal capillaries respond differently to acute and
chronic hypoxia. Retinal vascular endothelial cells rapidly respond to acute hypoxia with the
release of inflammatory cytokines [110], which recruits leukocytes and promotes their adherence
and activation [111], causing obstruction at the retinal capillaries that leads to further hypoxia in the
retina [64]. However, chronic hypoxia in the retina primarily induces expression of angiogenic growth
factors [112], inducing retinal neovascularization in the retina of DR. Retinal neovascularization occurs
adjacent to the nonperfused areas, supporting the hypothesis that hypoxic tissue releases angiogenic
factors [64]. A plethora of angiogenic growth factors involved in retinal neovascularization are activated
in a hypoxic state, but vascular endothelial growth factor (VEGF) has received considerable attention of
late due to its potential as a therapeutic target [64]. VEGF is a potent angiogenic factor that stimulates
endothelial cells to degrade the extracellular matrix, migrate, proliferate, and form tubes [113–115],
and VEGF then acts as a survival factor for newly formed vessels [116]. VEGF interacts with cellular
receptor tyrosine kinases, Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2), causing a cascade of events that
stimulates angiogenic activities in endothelial cells [117]. Prior studies have reported an increased
level of VEGF in the vitreous humor and retina of diabetic patients [118]). This increase is likely
related to hypoxic VEGF induction, as increased levels of VEGF mRNA and protein are also seen in the
retina of diabetic animals and human pathology specimens, especially in hypoxic regions near areas of
neovascularization. [119,120]. A study in vitro also showed increased expression of VEGF mRNA in
hypoxic retinal cells [121]. Under severe hypoxia, the expression of both hypoxic (HIF1α) and angiogenic
factors (VEGF) is elevated in rodent retinal tissue [122]. Moreover, apoptosis occurs in retinal cells,
including retinal RGCs and Müller glial cells, following severe hypoxia due to mitochondrial damage,
which leads to an increased release of cytochrome c from the mitochondrial pore to the cytosol and
subsequent activation of cytosolic caspase-3, resulting in the induction of apoptosis [123,124]. VEGF is
the main factor causing retinal neovascularization and breakdown of the blood–retinal barrier (BRB),
both of which contribute significantly to the DR disease process [125,126]. Targeted knock down of VEGF
receptor 2 (VEGFR2), or its downstream target STAT3, can inhibit VEGF-induced neovascularization in
the retinal endothelial cells of rats [127]. Hypoxia also upregulates glycolysis by increasing glucose
transport activity through retinal capillary endothelial cells via increased GLUT1 expression, which is
partially mediated by adenosine, A2R, and the cAMP-PKA pathway [128]. Knockdown of GLUT1
by siRNA inhibits GLUT1 expression and restricts glucose transport, thus decreasing retinal glucose
concentrations and ameliorating the pathogenesis of DR in the retina of mice [129].
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1.3.2. Endoplasmic Reticulum-Mitochondria Miscommunication in Diabetic Retinopathy

The endoplasmic reticulum (ER) is a double membrane-bound organelle primarily involved in
protein and lipid biosynthesis, protein folding and trafficking, and calcium homeostasis [130]. It is
also involved in sensing metabolic changes within the cell and relaying signals of these changes to the
nucleus for gene regulation [131]. This novel role of the ER is mediated by three major signal transducers:
PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating
transcription factor 6 (ATF6) [130]. These proteins are activated in response either to increased
accumulation of unfolded or misfolded proteins or to an upset in the Ca2+ ion homeostasis within the
ER lumen, a condition known as ER stress [130]. The cells combat ER stress by activating IRE1, PERK and
ATF6 signaling pathways, collectively known as the unfolded protein response [132,133], (erUPR),
in which global protein synthesis is inhibited while expression of ER-targeted chaperones is enhanced.
Unresolved ER stress activates pathological signaling pathways of oxidative stress and inflammation,
resulting to retinal inflammation, apoptosis, and angiogenesis [75,134–137]. Recent studies have also
demonstrated that dysfunction of ER is involved in the pathogenesis of DR [138,139].

Mitochondria are intracellular organelles involved in certain essential functions of the cell,
including nutrient metabolism, ATP production, reactive oxygen production, intracellular Ca2+

regulation, cell survival, and cell death [140,141]. Their principal function is to synthesize ATP
via OxPhos in concurrence with the oxidation of metabolites by Krebs’s cycle and β-oxidation of
fatty acids [141]. Chronic hyperglycemia is linked with impaired mitochondrial functions, such as
reduced OxPhos and subsequent reduced ATP production, overproduction of glycolytic intermediates,
and subsequent reduction antioxidants, and overproduction of ROS [142–144]. The overproduction of
ROS is associated with oxidative damage inflicted on lipids, DNA, and proteins [145]. Recent findings
have established how ROS, pro-inflammatory cytokines (e.g., TNF-α), altered mitochondrial biogenesis,
mtDNA damage, mitochondrial structural changes, or mitochondrial morphological changes all play
a role in the pathogenesis of DR [142–144,146,147]. Moreover, a growing body of work reports the
involvement of epigenetic modifications, alterations in methylation patterns of both mitochondrial
and nuclear DNA and of histones, in the pathogenesis of DR [143,148].

Recent studies have proven that ER stress and mitochondrial dysfunction are significantly involved
in the vascular and neuronal damage in DR [149]. The ER and mitochondria communicate directly
via mitochondria associated ER membrane (MAM) [150], which permits reciprocal regulation of both
organelles to allow coordinated regulation of various cellular activities, including energy metabolism,
Ca2+ homeostasis [151], lipid homeostasis, cell survival, and cell death [152–154]. A previous
study suggested that MAM dysfunction results in ROS overproduction and ATP underproduction,
which further exacerbates ER stress and eventually leads to apoptotic cell death [155]. Furthermore,
hyperglycemia reduces ER-mitochondria contact in retinal endothelial cells and perturbs MAM, which
further progresses the development of DR [156].

1.3.3. Mitophagy Dysregulation in Diabetic Retinopathy

As discussed above, mitochondria are the site of energy (ATP) production in cells via the electron
transport chain (ETC) in the inner mitochondrial membrane. However, electrons also leak out of the
ETC during ATP production, which are captured by molecular oxygen to generate highly reactive
oxygen radicals/species (ROS), which then damage mitochondrial membrane lipids, proteins and
mtDNA [144,157,158]. Although there are anti-oxidant systems in mitochondria to neutralize the ROS,
including manganese superoxide dismutase (MnSOD), glutathione (GSH), and thioredoxin 2 (Trx2),
these systems are overwhelmed by substantial amounts of ROS generated under sustained excess
glucose in diabetes and DR [146,159]. The damaged or depolarized mitochondria are ineffective
in producing ATP while they generate ROS. Therefore, removal of the damaged/dysfunctional
mitochondria by lysosomal degradation via a specific autophagic process called mitophagy is
critical [142,160,161]. For this, the damaged part of the mitochondrion is separated from the intact
mitochondrion by fission involving dynamin-related protein 1 (DRP1) and fission protein fis1 [142].



Antioxidants 2020, 9, 1244 13 of 22

The damaged mitochondria are then marked by ubiquitin via the PINK1-PARKIN pathway [162,163].
PINK1 is a kinase in the inner membrane of mitochondria; however, when the mitochondria are
damaged/depolarized, PINK1 accumulates in the outer membrane and phosphorylates mitochondrial
membrane proteins including the voltage dependent anion channel 1 (VDAC1) and mitofusin
2 (Mfn2) [164]. Thereafter, PARKIN, an E3 ubiquitin ligase, ubiquitinates mitochondrial membrane
proteins to designate them for engulfment by a double membrane autophagophore containing ATG8
or microtubule-associated protein 1 light chain 3B (MAP1LC3B or LC3B). Mitochondrial adaptors
such as optineurin and p62/sequestosome 1 recognize the ubiquitinated damaged mitochondria and
LC3B for forming a double membrane autophagosome, within which the damaged mitochondria are
entrapped. Subsequently, the autophagosome fuses with lysosomes to degrade the cargo and recycle it
as nutrients. In addition, to maintain the optimal number of mitochondria and bioenergetics within
a cell, the synthesis of new mitochondria (mitogenesis) and their fusion with existing mitochondria is
critically important [165].

Mitogenesis involves transcription activation of nuclear DNA encoding mitochondria-targeted
genes. A mitochondrion itself produces 13 of the ETC genes, while more than 1300 genes come
from the nucleus [166]. The transcription coactivator peroxisome proliferator-activated receptor
gamma coactivator 1 alpha (PGC1α) is an important factor for nuclear gene expression related to
mitochondrial biogenesis, while transcription factor A, mitochondrial (TFAM) is involved in the
synthesis of mitochondrial ETC genes. Therefore, a balance between mitophagy (removal of damaged
mitochondria) and mitogenesis (synthesis of new mitochondria) is important. However, in DR,
both mitophagy and mitogenesis are known to be dysregulated, and mitochondrial ATP production
is reduced, leading to deficiencies in cellular biogenetics [142,157,160,167,168]. Similar to the energy
demands of neurons of the central nervous system, the cells of the retina need a large amount of
glucose and oxygen to generate ATP required for execution of visual function. On the other hand,
under DR and mitochondrial dysfunction, ATP production slows down while ROS level increases.
The accumulation of damaged mitochondria due to mitophagy defects results in the release of excess
mtROS and oxidized mtDNA, which evoke an innate immune response involving NOD-like receptor
family pyrin domain-containing 3 (NLRP3), caspase 1 activation, and release of active pro-inflammatory
cytokines, interleukin IL-1α and IL-18 [158,160,161]. Therefore, under chronic hyperglycemia and DR,
cellular redox stress and sterile inflammation play critical roles in the pathogenesis of DR [157,161].

We have further demonstrated that a protein called thioredoxin-interacting protein (TXNIP) is
strongly induced by high glucose and DR in retinal cells [142,143,157,160,169,170]. TXNIP expression
is maintained as long as hyperglycemia exists and causes cellular oxidative stress, inflammation
and pre-mature cell death [171]. TXNIP’s actions include binding to the antioxidant and thiol
reducing protein thioredoxin (Trx) and inhibition of its functions. Therefore, TXNIP causes cellular
oxidative/nitrosative stress, organelle damage, and premature cell death under hyperglycemia and DR.
We also published that TXNIP knockdown by siRNA in diabetic rat retinas prevents early molecular
abnormalities of DR, which include retinal capillary basement membrane thickening, Müller cell
activation (gliosis), and neuronal injury [169]. Furthermore, we have recently demonstrated that
TXNIP upregulation and cellular redox stress cause mitochondrial dysfunction and mitophagic flux
to lysosomes in retinal Müller glial cells and RPE [157,160,161]. However, excess mitophagic flux
results in lysosomal enlargement and lysosomal membrane permeabilization, which releases lysosomal
hydrolytic enzymes such as cathepsin B and L [160]. Cathepsin B may further act on mitochondrial
membrane proteins and mediate mitochondrial damage and apoptosis [172]. TXNIP knockout by
CRISPR and TXNIP gRNA or by siTXNIP prevents hyperglycemia-induced mitochondrial damage, ATP
reduction, and excess mitophagic flux in Müller glial cells and RPE [142,160]. Therefore, we propose
that TXNIP is a potential target for gene and drug therapy to prevent or slow down the progression
of DR.
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2. Conclusions

Chronic hyperglycemia affects the morphological and physiological function of different cell
types of the eye, which ultimately leads to neurovascular dysfunction in DR. The incidence of DR
continues to increase in both developing and developed countries as rates of obesity and diabetes
also increase. Although there are some drugs which target VEGF for the treatment and management
of DR, there is not yet an effective drug which can completely cure DR. The cellular and molecular
mechanisms driving the pathogenesis of DR are very complex, and an interaction of many factors
determines the onset of neurovascular dysfunction in DR. In recent years, metabolic dysfunction
has been found to significantly contribute to the development of DR. Tightly regulated metabolic
pathways are required to maintain a steady-state concentration of the various metabolic intermediates
needed for normal physiological functioning of the eye. However, hyperglycemia disturbs the tight
regulation of the different metabolic pathways, resulting in the intracellular accumulation of various
metabolic intermediates. These intermediates further disrupt the metabolism and function of multiple
cells types in neuro-vascular unit of the retina, eventually leading to DR. New ideas emerging from a
metabolomics approach in the study of DR will drive the discovery of future therapeutic targets for the
prevention and treatment of DR.
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