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oxygen and 25% body’s glucose; Sokoloff et al., 1977); resting-state 
brain energy production is provided almost exclusively by glucose 
oxidation (approximately 90%; Siesjo, 1978); and, basal CBF and 
CMRO

2
 are tightly coupled across brain regions (A linear CBF-

CMRO
2
 relationship was observed with a slope of approximately 

0.97; Fox and Raichle, 1986).
Studies using emerging, pre-imaging radiotracer techniques 

convincingly demonstrated that brain blood flow is dramatically 
increased by increased partial pressure of carbon dioxide (PaCO

2
)

 

and by decreased partial pressure of oxygen (PaO
2
), a form of 

cerebrovascular autoregulation (Kety and Schmidt, 1948). These 
observations provided strong support for the Roy and Sherrington 
hypothesis, as CO

2 
is the primary “chemical product” of glucose 

oxidation, and extended the hypothesis to include substrate ([O
2
]) 

availability as a potent vascular regulator. With the advent of auto-
radiographic methods (Schmidt and Kety, 1947; Landau et al., 
1955; Sokoloff et al., 1977) and non-invasive radiotracer imaging 
methods (Reivich et al., 1979; Raichle et al., 1983), blood flow 
and glucose consumption could be measured regionally, allow-
ing the Roy and Sherrington hypothesis to be further explored. 
As expected, task performance reliably elicited large, highly 
focal increases in CBF (Fox et al., 1988) and CMR

Glc
 (Phelps and 

Mazziotta, 1985; Fox et al., 1988). The observed increases in CBF 
and CMR

Glc
 were similar in magnitude, typically in the range of 

30–50%, apparently supporting the Roy and Sherrington hypothe-
sis that neural activity focally increased metabolic rate and thereby 
increased blood flow.

The quest to understand the functional organization of the brain 
has occupied mankind for more than a century. The close relation-
ship between cerebral blood flow (CBF) and brain function was first 
observed in the late nineteenth century by the Italian physiologist, 
Mosso (1881). Mosso recorded pulsations from the forearm and the 
brain, showing stronger brain pulsations during cognitive events, 
such as hearing the bells from his church and performing mental 
arithmetic (Posner and Raichle, 1994). These studies suggested 
that measurement of CBF might be an important way to assess 
brain function during mental activity. Roy and Sherrington (1890), 
two distinguished British physiologists, further characterized the 
close relationship between brain function and CBF. They attrib-
uted task-induced vasodilation to an increased demand for cerebral 
metabolism in response to neuronal activity. The Roy–Sherrington 
principle has been interpreted to mean that CBF changes reflect a 
tight coupling between cellular energy requirements and vascular 
delivery of glucose and oxygen. Roy and Sherrington’s observation 
of focally increased blood flow during brain functional activation 
has been replicated thousands of times by a myriad of techniques, 
beginning early in the last century (Fulton, 1928).

Whole-brain measurements of CBF, oxygen metabolism (cer-
ebral metabolic rate of oxygen, CMRO

2
) and glucose metabolism 

(CMR
Glc

)
 
also began appearing in the early part of the twentieth 

century (Schmidt and Kety, 1947; Landau et al., 1955; Sokoloff 
et al., 1977). Collectively, these studies demonstrated that: the 
brain’s resting-state energy demand is high (although the human 
brain is only 2% of body’s weight, it consumes 20% of the body’s 
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The first imaging-based measurements of CMRO
2
 during 

task performance were reported in the early 1980s, using 15-O 
positron emission tomography (PET) (Frackowiak et al., 1980; 
Mintun et al., 1984). In two different brain systems (visual and 
somatosensory), Fox et al., observed that task-induced increases 
in CMRO

2
 were much lower than those in CBF or CMR

Glc 
(Fox 

and Raichle, 1986; Fox et al., 1988). The CMRO
2
 shortfall during 

focal neuronal activation, in fact, caused a local oxygen sur-
plus, with the oxygen extraction fraction (OEF) falling from 
a resting value of approximately 40% to a task-state value of 
approximately 20%. These findings clearly contradicted the Roy 
and Sherrington hypothesis. Since glucose can be metabolized 
by either oxidative or non-oxidative (i.e, lactate-producing) 
pathways and since the increase of CMRO

2
 was minimal, Fox 

and colleagues suggested that: (i) the glucose is predominately 
metabolized by anaerobic glycolysis; (ii) the energy demand 
associated with neuronal activation is small (as opposed to 
resting-state demand) and glycolysis alone may provide the 
energy needed for the transient changes in brain activity; and 
(iii) CBF response must be regulated by factors other than oxida-
tive metabolism and total energy demand. The observation that 
the stimulus-evoked increase in glucose consumption observed 
with PET is at least partially non-oxidative has been confirmed 
with 1H NMR spectroscopic (MRS) measurements of tissue 
lactate concentration [Lac] (Prichard et al., 1991; Frahm et al., 
1996). The increase in lactate production (i.e., non-oxidative 
metabolism) was found in later studies to be a modulator of 
CBF increase (Mintun et al., 2004). Such uncoupling of CBF and 
CMRO

2
 is the basis for the blood oxygenation level-dependent 

(BOLD) functional MRI (fMRI) contrast (Kwong et al., 1992; 
Ogawa et al., 1992). These PET and MRS observations raise a 
general question: does the evoked neuronal activity drive oxida-
tive or non-oxidative metabolism?

To further clarify this issue, we performed concurrent fMRI 
and 1H MRS measurements to identify the relationship between 
task-evoked increases in CBF, CMRO

2
, [Lac] and ATP production 

(J
ATP

) during graded visual stimulation (4, 8, and 16 Hz; 4 min 
for each condition) (Lin et al., 2010). Percent changes (%∆) in 
CBF, CMRO

2
 and [Lac] varied with frequency, with %∆CBF and 

%∆[Lac] peaking at 8 Hz, while %∆CMRO
2
 reached a maximum 

at 4 Hz (Vafaee and Gjedde, 2000; Lin et al., 2008). The magni-
tude of %∆CBF (57.1–65.1%) and %∆[Lac] (31.3–50.0%) were 
much larger than that of %∆CMRO

2
 (12.2–17.0%). As a result, 

%∆CBF was tightly coupled with lactate production rate (J
Lac

; 
[Lac] divided by stimulation period; r = 0.91, P < 0.001) (Gjedde, 
1997; Lin et al., 2010), but negatively correlated with %∆CMRO

2
 

(r = −0.64, P = 0.024). J
ATP

, determined with changes in CMRO
2
 

and J
Lac

 by a stoichiometric relationship, was found predominately 
contributed by oxidative metabolism (approximately 98%) at each 
stimulus condition. Consequently, %∆J

ATP
 was linearly correlated 

to %∆CMRO
2
 (r = 1.00, P < 0.001). Similar findings were also 

reported by PET studies (Gjedde, 1997). The fMRI-MRS observa-
tions confirm that (i) CBF response to neuronal activity is driven 
more by anaerobic glycolysis, rather than oxygen demand, and 
(ii) energy demand is predominately met through oxidative meta-
bolic pathway regardless the CMRO

2
 increases are much lower 

than those of [Lac].

The collective evidence from the functional imaging literature 
(PET, fMRI, and MRS) has forced the development of alternatives 
to the Roy–Sherrington hypothesis. Of these, the astrocyte-neuron 
lactate shuttle (ANLS) model is the most conceptually evolved and 
widely accepted (Pellerin and Magistretti, 1994). The ANLS model 
posits a cooperation between neurons and astrocytes in meeting the 
activation-induced needs both for energy production and for neu-
rotransmitter production. Upon neuronal firing, glucose is taken 
up by both neurons and astrocytes. The majority of the glucose is 
taken up by the astrocytes and the remainder by neurons. Glucose 
metabolism in neurons is small but entirely aerobic, to support 
neurotransmission (Brand, 2005; Hyder et al., 2006). Astrocytic 
glucose consumption, on the other hand, is large but much less 
energetically efficient by virtue of being predominately anaerobic. 
Astrocytic glycolysis (2 ATP) is used to support Na+/K+ ion pumping 
and glutamate(Glu)-glutamine(Gln) conversion. Lactate generated 
by astrocytic glycolysis is eventually transported to neurons as fuel, 
but with some loss into the circulation, which increases hyperemia 
(Mintun et al., 2004; Hyder et al., 2006).

The fMRI-MRS observations, described above (Lin et al., 2010), 
are in line with the ANLS model. First, CBF increases are not regu-
lated by oxidative metabolism. %∆CBF and %∆CMRO

2
 are nega-

tively correlated. In contrast, non-oxidative metabolism is a more 
likely candidate. %∆CBF and %∆J

Lac 
are positively correlated. But 

other factors (e.g., Ca2+, K+ and adenosine signaling pathway) may 
also play a role. Second, the increases in CMR

Glc
 are for purposes 

other than energy demand, e.g., for astrocyte-mediated neurotrans-
mitter recycling, with the evidence being that increases in [Lac] are 
far more than that of CMRO

2
. Third, the two metabolic pathways 

(oxidative and non-oxidative) are co-existent, dissociable, and serve 
different purposes in maintaining neuronal functions during visual 
stimulation. Oxidative metabolism is predominately neuronal and 
supports ATP production for the release of neurotransmitters; with 
the evidence being that the energy demand (J

ATP
) was predomi-

nately (approximately 98%) met through oxidative metabolism in 
all stimulus conditions. Non-oxidative metabolism, on the other 
hand, mainly occurs in astrocytes to support the Glu-Gln conver-
sion and lactogenesis-mediated hyperemia. Since astrocytic lactate 
is eventually taken up into the tricarboxylic acid cycle as a fuel sub-
strate by neurons, it has to be pointed out that oxidative metabolism 
is expected to increase as neuronal activation continues. In sup-
port of this formulation, prolonged visual stimulation (>20 min) 
has been reported to induce gradually rising levels of CMRO

2
 and 

gradually decreasing CMR
Glc

, J
Lac 

and CBF under a high-frequency 
stimulation (e.g., 8 Hz) (Prichard et al., 1991; Gjedde and Marrett, 
2001; Mintun et al., 2002; Vlassenko et al., 2006; Lin et al., 2009). 
Consequently, %∆CBF and %∆CMRO

2
 were re-coupled (the cou-

pling ratio, n = %∆CBF/%∆CMRO
2
, decreased from 8 to 2) as 

stimulation continued. However, inconsistent observations have 
also been reported in prior fMRI studies (Hoge et al., 1999) that the 
coupling ratio already reached to 2–3 during acute, transient visual 
stimulation (approximately 20–60 s). The discrepancy could be due 
to the stimulation frequency or to the modeling strategy used in 
the studies. For example, a low coupling ratio (2–3) was observed 
with low frequencies (e.g., 1–4 Hz), while a high ratio (6–10) was 
observed with high frequencies, during short-term visual stimula-
tion (20 s to 6 min) (Lin et al., 2008). As a result, ratio of 2–3 is 
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phosphorylation or due to other reasons is controversial. Brand 
proposed that ATP can be synthesized by means of deactivation 
of mitochondrial uncoupling protein (UCP) to elevate oxidative 
phosphorylation without raising oxygen consumption, which may 
provide an alternative explanation for relative low levels of CMRO

2
 

changes during brain activation (Brand, 2005).
The concurrent developments of neuroimaging methods and 

physiological theories will also pave the way for the investigation 
of cerebral hemodynamics and metabolism in disease states. For 
example, the most well-documented example of a mitochondrial-
failure-based neurodegenerative disorder is Huntington’s disease 
(HD) (Jenkins et al., 1993; Koroshetz et al., 1997). Nonetheless, 
Powers et al. (2007) recently reported PET evidence that the well-
documented regional decreases in CMR

Glc
 associated with HD are 

not accompanied by comparable decreases in CMRO
2
, which led 

them to conclude that HD is not a mitochondrial disorder. (We 
would argue, however, that this conclusion is not yet warranted, 
as Powers’ study did not include a challenge, in which neuronal 
activation was used to elevate MRO

2
 above resting levels). Similar 

neuroimaging approaches may apply to other neurodegenerative 
disorders, including Alzheimer’s disease (AD), Down’s Syndrome-
related AD and Parkinson’s disease (PD), to investigate possible 
underlying metabolic dysfunctions of those diseases. In addition 
to human studies, animal models also play an essential role since 
they allow more flexibility for neurovascular-metabolic coupling 
investigations of both normal and disease states. For example, treat-
ments of rapamycin (a drug developed as an immunosuppressant) 
and calorie restriction are currently only available for animals in 
aging and AD studies (Van Remmen et al., 2001; Richardson, 2009; 
Spilman et al., 2010). Neuroimaging methods can help clarify the 
pathophysiology of these diseases and identify the mechanism of 
action of these effective treatments (in aging and AD) by defin-
ing the correlation between changes in CBF, CMRO

2
, CMR

Glc
 

and ATP.
In summary, we addressed our perspective on the interplay of 

metabolic physiology and functional neuroimaging over the past 
century; the replacement of the Roy–Sherrington principle by 
the ANLS model; and, the future direction of the developments 
of neuroimaging techniques and physiological theories. These 
developments should provide the bases for predicting causes and 
consequences of deregulation in neurological diseases, including 
neurodegenerative disorders, in the near future.
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expected if low frequencies are used. Details of the discrepancy 
regarding modeling strategy can be found in our previous publica-
tion (Lin et al., 2009).

Metabolic physiology and functional neuroimaging are highly 
complementary fields of inquiry. An in-depth understanding of 
neuronal metabolic physiology will enhance the interpretation of 
functional neuroimaging research, and vice versa. The evidence 
above addressed the cooperation of functional neuroimaging and 
metabolic physiology in understanding the coordination between 
neurovasculature, neurons and astrocytes during steady-state. For 
future studies, more effort should be invested in exploring their 
coordination during transient state. For instance, the dynamic 
mechanism of the BOLD signal may be explained by the asynchrony 
of task-induced neuronal and glial responses, as follows. Because 
neuronal responses precede those of astrocytes (approximately 
4 s; Schummers et al., 2008), the increase in oxidative metabolism 
precedes that of non-oxidative metabolism (Kasischke et al., 2004) 
and, consequently, the CBF response. CMRO

2
 increases that precede 

CBF increases result in the “initial dip” of the BOLD signal (Menon 
et al., 1995; Malonek and Grinvald, 1996). Astrocytic activity, fol-
lowing the neuronal activity, results in a significant increase in 
CBF and, consequently, the increase in BOLD signal. On the other 
hand, the post-stimulus “undershoot” phenomenon (the negative 
signal following the cessation of stimulation; Buxton et al., 1998; 
Mandeville et al., 1999; Lu et al., 2004) observed in BOLD and 
CBF signals contradicts the notion of “watering the entire garden 
for the sake of one thirsty flower” (Malonek and Grinvald, 1996), 
but may pave a way for further understanding the temporal rela-
tionship between the neuronal and astrocytic activities after the 
stimulus termination.

Further developments in neuroimaging techniques and meta-
bolic theories are crucial for future research. As regards neuroimag-
ing techniques, it would be important to determine quantitative ATP 
production, CMRO

2
 and CMR

Glc
 using other MR methods, such as 

Phosphorous-31, Oxygen-17 and Carbon-13 MRS, respectively. In 
addition, direct observations of the differential roles of neurons and 
astrocytes associated with ATP-CMRO

2
 and CBF-lactate couples 

would be significant. Concurrent MRI, MRS and optical imaging 
measurements may help achieve this goal. As regards metabolic 
physiology, theories of neurovascular and neurometabolic mecha-
nisms are evolving. Some issues proposed by the ANLS model need 
further investigation. For example, whether the lactate transferred 
to neurons as a fuel substrate is from astrocytic or neuronal activ-
ity, and whether lactate is the preferential substrates of neurons 
for neurotransmission-related energy needs is still under debate. 
Further, whether the small increase in CMRO

2
 during neuronal acti-

vation is due to the small fraction of glucose undergoing  oxidative 
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