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ABSTRACT: Sulfur- and nitrogen-doped carbon quantum dots (S,N-
CQDs) were synthesized using feijoa leaves as a green precursor via a novel
route. Spectroscopic and microscopic methods such as X-ray photoelectron
spectroscopy, fluorescence spectroscopy, and high-resolution transmission
electron microscopy were used to analyze the synthesized materials. The
blue emissive S,N-CQDs were applied for qualitative and quantitative
determination of levodopa (L-DOPA) in aqueous environmental and real
samples. Human blood serum and urine were used as real samples with
good recovery of 98.4−104.6 and 97.3−104.3%, respectively. A smartphone-
based fluorimeter device was employed as a novel and user-friendly self-
product device for pictorial determination of L-DOPA. Bacterial cellulose
nanopaper (BC) was used as a substrate for S,N-CQDs to make an optical
nanopaper-based sensor for L-DOPA determination. The S,N-CQDs
demonstrated good selectivity and sensitivity. The interaction of L-DOPA with the functional groups of the S,N-CQDs via the
photo-induced electron transfer (PET) mechanism quenched the fluorescence of S,N-CQDs. The PET process was studied using
fluorescence lifetime decay, which confirmed the dynamic quenching of S,N-CQD fluorescence. The limit of detection (LOD) of
S,N-CQDs in aqueous solution and the nanopaper-based sensor was 0.45 μM in the concentration range of 1−50 μM and 31.05 μM
in the concentration range of 1−250 μM, respectively.

■ INTRODUCTION
Parkinson’s illness (PI) is a neurodegenerative untidiness, and
it is classified by three types of cardinal symptoms:
bradykinesia, rigidity, and tremor.1 PI is the second most
universal neurodegenerative untidiness, and millions of people
in the world are suffering from the effects of this disease. PI
occurs due to dopaminergic neuronal loss in the substantia
nigra. That will happen frequently to those over the age of 60.2

Typically, pharmaceutical dopamine replacement is needed
to treat PI. Levodopa (L-DOPA) is the most often used
medication for treating PI.3 The “gold standard’’ of current PI
medication therapy is L-DOPA. L-DOPA is captured by
lingering dopamine neurons and converted into dopamine,
which is kept and gently released into the synapse over time.
Unlike dopamine, which cannot pass over the blood−brain
barrier, the passage of L-DOPA into the brain is assisted by the
large impartial amino acid passage system.4,5

L-DOPA has so many benefits for the treatment of PI.
However, there are potential problems such as side effects with
L-DOPA treatment including nausea, vomiting, postural
hypotension, and cardiac rhythm disturbance. Sedation, vivid
dreams, nightmares, and hallucinations are other side effects,
mainly in aged patients. Additional psychological disorders
such as disorientation, paranoia, and manic states might also

occur.6 As a result, determining L-DOPA sensitively and
selectively is critical to avoiding treatment-related side effects.

Up to now, many attempts have been made for determining
L-DOPA, such as electrochemical methods,7,8 fluorescence
methods,9,10 capillary electrophoresis,11 high-performance
liquid chromatography (HPLC),12 and spectrophotometry.13

However, these methods which are not costly, have a low limit
of detection (LOD) and a quick measuring duration, and do
not require expert technicians.

Fluorescent nanoparticles have various advantages as
fluorescent sensors. Fluorescent materials, for example, have
high sensitivity and reasonable specificity.14 This sensitivity can
be 1000 times higher than spectrophotometric methods.15

Moreover, fluorescent materials can detect single molecules,
resulting in high detection sensitivity.16 Furthermore,
fluorescence spectroscopy is a suitable choice for sensing
applications due to its ease of use.17 On the other hand, regular
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organic dyes and other common fluorescent materials have
disadvantages, like high LOD or low quantum yields. But,
progress in nanotechnology caused the development of
fluorescent nanomaterials with unique optical properties and
narrow size distribution, which opened a new way to prepare
fluorescent sensors based on nanomaterials.18

Many materials can be used as fluorescent probes. Carbon
quantum dots (CQDs) are an excellent choice among them
due to their various advantages like non-toxicity, high quantum
yield,19 exceptional photostability, ease of preparation, and
good stability. As a result, they are ideal candidates for sensing
applications.20 Also, CQDs can determine non-fluorescent
drugs by fluorescence quenching, which is a great advantage
for sensing drugs.21 CQDs have been utilized in numerous
fields, such as nanosensing,22 bioimaging,23 catalysis,24 and
optoelectronic25 uses. Low-cost production of sensors is
considered an advantage. In this way, CQDs can be produced
from low-cost precursors, including citric acid as noncomplex
organic molecules or more heterogeneous precursors such as
orange juice, rice, leaves, ashes, or even waste.26,27 This means
they can be synthesized almost from every organic material
around us.
Feijoa sellowiana is a monotypic type of the Myrtaceae family

which is usually identified as the pineapple guava or guavasteen
and is nearly associated with guava, Psidium guajava L. The
feijoa is a perennial plant that emerges from the uplands of
north-eastern and eastern areas of South America. It has been
widely distributed due to its easy compatibility in subtropical
regions. Recently, it is widely cultured in many countries,
including Iran.28,29 It seems that feijoa leaves are a very suitable
material to synthesize CQDs because they are inexpensive,
easy to find, and biocompatible.

There are numerous ways for synthesizing CQDs, such as
supercritical or subcritical water method,30,31 arc-discharge,
laser ablation, electrooxidation, thermal oxidation, pyrolysis
with microwave,32 ultrasonic synthesis, thermal pyrolysis, and
hydrothermal synthesis.33 Microwave-assisted preparation of
CQDs offers several advantages over other bottom−up
methods. The microwave approach needs a shorter reaction
time in comparison with conventional methods like the
hydrothermal method. Furthermore, microwave heating
systems are more efficient and produce fewer side reactions,
as well as fewer by-products. Consequently, this method can
reduce the number of purification steps.34 In convection or
conduction methods, heat transfer is not uniform, which
results in the formation of by-products or incomplete
reactions. Also, these methods need a longer reaction time
to reach the desired temperature. Unlike conventional heating
methods, microwave radiation heats the sample molecules at
the moment and accelerates the reaction.35

The fluorescence intensity of CQDs is increased by nitrogen
and sulfur doping.36,37 S,N-CQDs are good candidates for the
determination of L-DOPA due to the presence of some
functional groups like −SCN, −OH, and −CONH2 on the
surface of S,N-CQDs.38 S,N-CQDs are among the most
distinguished doped CQDs because nitrogen has an atomic
radius comparable to carbon. Also, sulfur and carbon have
similar electronegativity.39 It is believed that S,N-CQDs can
interact with L-DOPA, leading to fluorescence quenching of
the S,N-CQDs.40 Up to now, researchers have reported the
interaction of dopamine, L-DOPA, and metal ions with
functional groups of the S,N-CQDs.41,42 These interactions

may result in static or dynamic quenching and improve target
analyte determination.

Smartphones have been used in various applications in
recent years, owing to the advent of high-resolution cameras
and the computing capability of smartphones, which made
them suitable for generating smartphone-based devices in
sensing applications.43 The analytical methods for sensing
applications have many difficulties, including expensive
apparatus, bulky systems, and devices with a high degree of
complexity.44 Moreover, smartphone-based devices are port-
able, affordable, easy to use, and sensitive.45 According to these
conditions, various devices have been developed, such as
smartphone-based devices that use fluorescence nanopapers to
detect biological and chemical materials. Bacterial cellulose
nanopaper (BC) is a suitable substrate for CQDs because they
can be supportive, biocompatible, biodegradable, optically
transparent, thermally stable, flexible, hydrophilic, and highly
porous materials, and are able to undergo wide ranges of
chemical modifications with an extraordinary surface area.46,47

Usually, BC originated from carbon sources like glucose by
nonpathogenic bacteria such as Gluconacetobacter xylinus. The
flexibility, cheap cost, and biocompatibility of these cellulosic
materials make them an ideal platform for sensing
technologies.48

Red, green, and blue (RGB) detection methods are useful
for evaluating data obtained from fluorimeter devices and
would be a suitable technique to determine target analytes.
RGB-based sensors can be monitored by bare eyes and
smartphone cameras, which is an advantage for producing
user-friendly devices.49 Fabrication of such a device can help to
determine L-DOPA using S,N-CQDs deposited on BC (S,N-
CQDs-BC). S,N-CQDs-BC shows strong blue fluorescence
under 365 nm UV light emitting diode (LED) light, and the
signals can be analyzed using a smartphone as a fast and
sensitive sensing system. RGB detector programs for
smartphones, such as the Color Detector app, can analyze
RGB data. In the current study, for the first time, CQDs with
−SCN functional groups were synthesized via a green and fast
method. A self-made smartphone-based fluorimeter device was
utilized to determine L-DOPA by the synthesized S,N-CQDs.
This platform is a new device that can be connected to any
smartphone, making it a user-friendly platform for determining
chemical and biological materials.

■ EXPERIMENTAL SECTION
Materials. The chemicals were not purified in any way,

which were analytical grade. Ethanol, L-glutamine, L-cysteine,
ascorbic acid, urea, citric acid, NaCl, CaCl2, thiourea, sodium
carbonate, sodium bicarbonate, disodium hydrogen phosphate,
and potassium dihydrogen phosphate were purchased from
Merck KG, Darmstadt, Germany. 3,4-Dihydroxyphenylalanine
(L-DOPA) and quinine sulfate were purchased from Sigma
Aldrich. F. sellowiana leaves were collected from the University
of Mazandaran campus. Before use, the leaves were washed
and dried for the elimination of impurities. For all experiments,
double distilled water was used.

Instruments. Molecular vibration data were collected with
a Fourier transform infrared (FT-IR) spectrometer (BRUKER
Tensor 27). The Raman spectrum was recorded on a Raman
spectrometer (Teksan Takram-532 nm laser excitation). The
elemental composition and contents were measured by X-ray
photoelectron spectroscopy (XPS) (SPECS UHV analysis
system). High-resolution transmission electron microscopy
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(HR-TEM) was accompanied by the use of an FEI Tecnai G2

F20 SuperTwin TEM (accelerating voltage: 200 kV). Micro-
structures and dispersion of S,N-CQDs were observed by field
emission scanning electron microscopy (FE-SEM), (MIRA 3-
XMU) equipped with energy-dispersive X-ray spectroscopy
(EDS), (TESCAN MIRA II). X-ray diffraction (XRD) analysis
was performed on an X-ray powder diffractometer (Philips
PW1730). The specific Brunauer−Emmet−Teller (BET)
surface area was evaluated by nitrogen adsorption at 77 K
(Bell Belsorb-mini II). UV−vis absorption and fluorescence
spectra were scanned using a UV−visible spectrophotometer
(Jasco V-750) and fluorescence spectrophotometer (Jasco FP-
8300), respectively. The fluorescence lifetime decay of samples
was studied on a steady state and a transient state fluorescence
spectrometer (Edinburgh Instruments ex-demo equipment
f900 spectrophotometer). MILESTONE MICROSYNTH was
utilized to synthesize S,N-CQDs via microwave-assisted
synthesis.

Synthesis of S,N-CQDs. Microwave-assisted pyrolysis was
used to synthesize the S,N-CQDs. As a green material, feijoa
leaves were employed as a precursor in the synthesis process.
Synthesis parameters were optimized as presented in Table S1.
In a typical optimized synthesis procedure, feijoa leaves were
washed with distilled water and dehydrated at 50 °C overnight.
S,N-CQDs were synthesized using dry powder of feijoa leaves.
To extract the feijoa leaves, 1 g of feijoa leaves powder was
added to 10 mL of double distilled water, and the mixture was
stirred for 1 h at room temperature. Afterward, the solution
was filtered to separate solid particles. To synthesize S,N-
CQDs, 0.5 g of thiourea was dissolved in 10 mL of double
distilled water and the solution was added to extract the
solution. The resulting solution was then microwaved for 5
min at a power of 650 W. The black solid was collected and
mixed with 15 mL of double distilled water and sonicated for
10 min. The obtained mixture was centrifuged at 8000 rpm for
10 min, and the yellowish solution was collected. A 0.22 μm
sterile syringe filter was used to filter the yellowish solution to
remove aggregated and bulky S,N-CQDs and dried at 50 °C
for 3 h and the solid S,N-CQDs were collected. The solid S,N-
CQDs were washed with ethanol and double distilled water to
remove unreacted organic materials. Finally, the pure brownish

S,N-CQDs powder was collected and used for the next step.
The synthesis process is summarized graphically in Scheme 1.

Calculation of the Quantum Yield (QY). The QY of the
synthesized S,N-CQDs was measured using quinine sulfate (in
0.1 M H2SO4 as a solvent, QY = 54%) as a reference
compound. The desired solution of the reference and S,N-
CQDs was prepared in 0.1 M H2SO4 and double distilled
water, respectively. The UV−vis absorption of both solutions
was measured. Then, the fluorescence spectra of both solutions
were evaluated at the excitation wavelength of 330 nm, and the
absorbance of both solutions was measured at the 330 nm
wavelength from the UV−vis absorption spectrum of solutions.
Afterward, the integrated fluorescence intensity (area under
the spectrum) of both solutions was measured, and the
collected data were used to calculate QY.

L-DOPA Determination by Fluorescence. The deter-
mination was done at room temperature and in a carbonate−
bicarbonate buffer (0.1 M, pH 10). A 1000 ppm S,N-CQD
stock solution in double distilled water was made. The stock
solution of S,N-CQDs was diluted to 200 ppm S,N-CQDs for
fluorescence analysis with carbonate−bicarbonate buffer.
Different concentrations of L-DOPA were prepared in double
distilled water. In this regard, 1.5 mL of the as-prepared
solution of S,N-CQDs was mixed with 1.5 mL of different
concentrations of L-DOPA solution (1−1000 μM). The
ultimate volume (3 mL) of the mixture was incubated for 5
min. Then, the fluorescence spectra of the solution were
recorded at an excitation wavelength of 330 nm and an
emission wavelength of 404 nm.

Selectivity Study and Real Sample Analysis. To
investigate the selectivity of S,N-CQDs, different samples,
such as L-glutamine, ascorbic acid, L-cysteine, urea, citric acid,
NaCl, and CaCl2, were used. 1.5 mL of the same concentration
of each sample was added to 1.5 mL of 200 ppm of S,N-CQDs
in carbonate−bicarbonate buffer (0.1 M, pH 10), and
incubated for 5 min, and fluorescence spectra were recorded
at an excitation wavelength of 330 nm and an emission
wavelength of 404 nm.

In addition, real sample analysis was conducted on human
blood serum and urine samples. The human blood serum and
urine samples were obtained from a healthy human. The

Scheme 1. Graphical Representation of the Current Study
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human blood serum and urine samples were filtered using a
0.22 μm sterile syringe filter and centrifuged at 8000 rpm for
10 minutes to rectify bulky particles. Afterward, a phosphate
buffer solution was added to the serum and urine samples to
dilute them 50 times.50,51 Briefly, three concentrations of L-
DOPA (5, 25, and 50 μM) were prepared by the human blood
serum and urine samples. 1.5 mL of these solutions were mixed
with 1.5 mL of 200 ppm of S,N-CQDs in carbonate−
bicarbonate buffer (0.1 M, pH 10) and incubated for 5 min
and fluorescence spectra were recorded at an excitation
wavelength of 330 nm and an emission wavelength of 404 nm.

Preparation of Smartphone-Based Fluorimeter De-
vice. The framework of the device was prepared by 3D
printing (Figure S1). This framework contains a 365 nm UV
LED light, UV pass filter, portable S,N-CQDs-BC holder, USB
cable, USB OTG, and a slot for smartphone. The LED is
powered by a smartphone battery. The S,N-CQDs-BC is made
by adding one drop of S,N-CQDs solution on the BC and
drying of S,N-CQDs-BC at room temperature. For the
determination of L-DOPA, one drop of different concen-
trations of L-DOPA was added to S,N-CQDs-BC, and the
fluorescence was pictured by the prepared smartphone-based
fluorimeter device.

■ RESULTS AND DISCUSSION
Material Characterization. The functional groups of the

S,N-CQDs were categorized by FT-IR spectroscopy (Figure
1a). At ∼3360 and ∼3170 cm−1, the bands with broad
vibration correspond to the O−H and N−H stretching

vibrations, respectively. The peak at ∼1660 cm−1 is endorsed
by the stretching vibration of the −CONH2 group. The
bending vibrations of C�C/N−H and O−H are ascribed to
∼1530 and ∼1395 cm−1, respectively. The C−O and C−N
stretching bands are observed at ∼1178 and ∼1155 cm−1,
respectively. The peaks at ∼2815 and ∼784 cm−1 correspond
to C−H stretching and bending vibrations, respectively. The
sharp peak at ∼2070 cm−1 is attributed to the −SCN group.
The S−H stretching vibration is seen at around 2500 cm−1

which is not a sharp peak due to the breaking of the S−H bond
and conversion to −SCN groups.38,52−54 The FT-IR analysis
results confirm the presence of the −CONH2, −OH, −NH2,
and −SCN groups on the S,N-CQDs, which may originate
from the composition of the feijoa leaves as the precursor of
S,N-CQDs.38

The composition of elements of the S,N-CQDs was
categorized by the XPS method, EDS, and elemental mapping
analysis (Figure S2). Figure 1b displays the XPS spectrum of
S,N-CQDs in complete-scan analysis, which confirms the
existence of C, N, O, and S elements in the synthesized S,N-
CQDs. The peaks of O 1s at 532, N 1s at 399, C 1s at 285, and
S 2p at 162 eV can be seen in Figure 1b. There are two main
peaks in C 1s XPS spectrum (Figure 1c) which are attributed
to the sp2 and sp3 hybridized carbon atoms. The peak at
∼284.31 eV corresponds to C−C/C�C, while the peak at
∼287.1 eV belongs to C�N. In the N 1s XPS spectrum
(Figure 1d), two main peaks are found. The peak at ∼398.2 eV
represents the −C�N groups existing in S,N-CQDs, while the
other peak at ∼399.6 eV originated from the pyrrolic and

Figure 1. (a) FT-IR spectra of S,N-CQDs and (b) full XPS survey spectrum, (c) C 1s, (d) N 1s, (e) O 1s, and (f) S 2p of S,N-CQDs.
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graphitic N atoms.52 The peaks at ∼531.2 and ∼532.0 eV
(Figure 1e) confirm the presence of C�O and C−OH/C−
O−C groups, respectively.55 The ∼161.1 and ∼162.7 eV peaks
in the XPS spectrum of S 2p (Figure 1f) correspond to S 2p3/2
and S 2p1/2, respectively. This observation can be attributed to
the C−S−C covalent bond in the structures like thiophene due
to the spin-orbit splitting. Also, the peak at ∼168.8 eV
represents the −C−SOx−C− sulfone bridges.52 Based on the
XPS results, the atomic ratio of S/C, O/C, and N/C are
estimated at 0.37, 1.97, and 1.66, respectively. The results
indicate that the S,N-CQDs are oxygen and nitrogen-rich on
the surface.56,57 The existence of hydrophilic groups on the
S,N-CQDs makes it more dispersible in an aqueous solution
which is suitable for sensing purposes.

The crystallinity and morphology of S,N-CQDs were
characterized by XRD, HR-TEM, FE-SEM, and SAED
patterns. X-ray diffraction (XRD) analysis of S,N-CQDs
(Figure 2a) was used for phase identification of S,N-CQDs.
The diffraction peak at 2θ = 26° corresponds to the graphitic-
like carbons. The peaks at 2θ = 42.5 and 49° correspond to the
(100) and (102) planes, respectively, which have arisen from
the in-plane diffraction of graphitic-like organized S,N-CQDs.
Also, Raman spectra (Figure S3) indicated the graphitization
of S,N-CQDs because the intensity of the G to D band is
greater than 1.58 The (004) plane at 2θ = 54° is the typical
peak for the graphitic-like structure materials. This XRD was
matched with JCDPS card No. 75-1621.59 Also, the lattice
spacings of the (002), (100), (102), and (004) planes are 0.33,
0.21, 0.18, and 0.169 nm, respectively. Due to the use of a
green method for synthesizing S,N-CQDs, some extra peaks
are observed in the XRD pattern, which can be attributed to
the incomplete reaction and residual compounds from the
extraction of feijoa leaves.60−62 Feijoa leaf is a source of

mineral elements such as calcium, potassium, sodium, and
sulfur.63 Therefore, some of these elements may remain in the
final product. In this regard, the peaks at around 29 and 32°
can be assigned to the calcium-based substances such as
Ca(OH)2.

64 Figure 2b shows the FE-SEM of S,N-CQDs,
indicating no aggregation and small size of the S,N-CQDs.

Figure 2c displays the HR-TEM image of the S,N-CQDs.
The average diameter of S,N-CQDs is 6 nm, which is an
acceptable size for CQDs. Also, HR-TEM image indicates that
S,N-CQDs have a spherical shape and narrow size distribution.
According to Figure 2d, the SAED pattern confirms the
polycrystalline nature of the S,N-CQDs due to the sporadic
rings. The lattice spacing of 0.33, 0.21, 0.18, and 0.169 nm for
S,N-CQDs obtained by the XRD, were in good agreement with
data calculated by the SAED pattern (Table S2).65

The lattice spacing of 0.21 nm is related to the (100) planes
in the direction of the [1010] planes (Figure 3a). Also, in most
of the CQDs, crystal lattice spacing is in the range of 0.18−
0.24 nm for graphitic in-plane and 0.32 nm for graphitic
interlayer spacing, which is indicated by the (002) facet of
graphite (Figure 3b). Also, the FFT pattern of the (100) planes
(Figure 3c) shows that they have a hexagonal structure in the
[0001] direction, and Figure 3d shows the FFT pattern of S,N-
CQDs for the (002) planes, demonstrating that S,N-CQDs
have a graphitic framework.66−71

Figure S4a shows the S,N-CQDs N2 physisorption analysis
in liquid nitrogen at 77 K. The resultant adsorption−
desorption isotherm of the S,N-CQDs is categorized as a
type-I/IV isotherm corresponding to S,N-CQDs with micro-
porous and mesoporous structures. The saturation vapor
pressure and adsorption temperature were adjusted to 110.88
kPa and 77 K respectively for the experiment. The surface area
of the S,N-CQDs was calculated to be 178.38 m2/g using the

Figure 2. (a) XRD pattern, (b) FE-SEM image, (c) HR-TEM image, histogram of size distribution shown as inset, and (d) SAED pattern of S,N-
CQDs.
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Brunauer−Emmett−Teller (BET) plot (Figure S4b). Fur-
thermore, the mean pore diameter was found to be in the 4.15
nm range by the linear fit curves. The pore size volume of the

S,N-CQDs was calculated to be 0.1851 cm3/g using the BET
plot. The results have proven the micro/mesoporous nature of
the S,N-CQDs, which may be used to detect analytes to a great
extent.72

Optical Properties of S,N-CQDs. Figure 4a shows the
fluorescence emission spectra of the S,N-CQDs at an
excitation wavelength from 250 to 450 nm. It turned out
that the intensity of fluorescence emission peaks of S,N-CQDs
shifted with changes in excitation wavelength due to the
presence of different functional groups on the S,N-CQDs.
These functional groups are considered the excitation energy
trappers, which lead to defects in the S,N-CQDs.55 However,
the differences in fluorescence emission are attributed to the
surface of S,N-CQDs and more functional groups on S,N-
CQDs. Also, other factors like size, surface passivation, the
existence of other emissive components, and the presence of
heteroatoms can affect this phenomenon.67,73 The maximum
intensity for the emission spectra was observed at 404 nm,
while the excitation wavelength was 330 nm.

Figure 4b displays the fluorescence emission, excitation and
UV−vis spectra of the aqueous solution of synthesized S,N-
CQDs. The peak at around 290 nm in the UV−vis spectrum is
attributed to the absorption of an aromatic π structure, which
is related to the polycyclic aromatic hydrocarbons.74 The
strong peak at 404 nm of the fluorescence emission, which is
excited at 330 nm, denoted that the synthesized S,N-CQDs
have a strong blue fluorescence emission. Also, the inset shows
that the synthesized S,N-CQDs have a strong blue fluorescence
(right) under UV light at an excitation of 365 nm.

Figure 3. d-Spacing of S,N-CQDs with lattice spacings of (a) 0.212
and (b) 0.323 nm. (c) FFT image of S,N-CQDs for (100) planes and
(d) FFT image of S,N-CQDs for the (002) planes.

Figure 4. (a) Fluorescence emission spectra of S,N-CQDs at different excitation wavelengths from 250 to 450 nm in 10 nm increments, (b) PL
emission spectra with excitation wavelengths and UV−vis absorption of the aqueous synthesized S,N-CQDs, (inset: S,N-CQD solution in daylight
and under 365 nm UV light), (c) stability of S,N-CQDs from 1 to 30 days, and (d) visual stability of S,N-CQD ink from 1 to 30 days.
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To assess the fluorescence and optical characteristics of S,N-
CQDs further, QY was calculated by eq 1
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Φs and Φr are the quantum yield of the sample (S,N-CQDs)
and reference (quinine sulfate), respectively. Ar and As are the
absorptions at the excitation wavelength for the reference and
sample, respectively. The absorption must be under 0.1 for the
1 cm × 1 cm cuvette to prevent the self-absorption of
solutions. According to the experiment, 10−5 M quinine sulfate
is suitable for this experiment. The excitation wavelength for
quinine sulfate can be 260−360 nm. Beyond this excitation,
the spectrum shifts to lower energy. ηr and ηs are the refractive
indexes of reference and sample, respectively, which are ≈1.33
for double distilled water and 0.1 M H2SO4. Is and Ir are the
integrated fluorescence intensity (area under the spectrum) of
the sample and reference, respectively.75,76 The QY of S,N-
CQDs was calculated (Table S3) at optimum conditions when
excited at 330 nm wavelength to be 5.9% with the quinine
sulfate reference (54%).

The synthesized S,N-CQDs were examined for photo-
stability (Figure 4c) at room temperature and in a dark place
from 1 to 30 days. The intensity of the fluorescence spectra of
the as-synthesized S,N-CQDs (fresh S,N-CQDs) was meas-
ured and compared with incubated S,N-CQDs after 10, 20,
and 30 days in the explained conditions. The results showed
that the fluorescence intensity of the S,N-CQDs did not
significantly change after 30 days and it just changed by less
than 0.7%. Also, the photostability of S,N-CQDs was

investigated by visual testing (Figure 4d) on the first day
and thirtieth day by taking pictures from S,N-CQDs on filter
paper, which visually confirmed the photostability of S,N-
CQDs even after 30 days. These findings reveal that the S,N-
CQDs have great potency in the actual sensing application and
commercial purpose.

Optimization of Conditions for Determination of L-
DOPA. Various parameters like pH, time, and concentration of
S,N-CQDs have a significant effect on the fluorescence
quenching of the S,N-CQDs. To reach a fast response for
the determination of analytes by a sensor, which is critical for
sensor fabrication, different parameters were optimized. Figure
5a displays the impact of time on the fluorescence quenching
of the S,N-CQDs. As can be seen, after 5 min, the fluorescence
quenching of the sensor was not changed significantly. So, the
optimized response time was set at 5 min. The impact of pH in
the range from 7 to 10 was studied. In the alkaline
environment, L-DOPA changes to dopaquinone, which can
interact with S,N-CQDs as a quencher.77 In the pH range of
7−9, no remarkable fluorescence quenching of S,N-CQDs was
observed. When the pH was 10, the fluorescence of S,N-CQDs
quenched considerably, which could be helpful in determining
L-DOPA (Figure 5b). Also, L-DOPA was incubated in
different concentrations of S,N-CQDs. The results showed
that at the concentration of 200 ppm of S,N-CQDs, maximum
fluorescence quenching was obtained, and the quenching was
not changed significantly (Figure 5c).

The relationships between the independent factors and
quenching of S,N-CQDs were evaluated using central
composite design (CCD) as a suitable experiment design
method. The experimental results were obtained via 17 runs of

Figure 5. Optimization of (a) time, (b) pH, and (c) S,N-CQD concentration for the determination of L-DOPA. Response surfaces plot obtained
based on the quenching of S,N-CQDs against the combined effect of (d) S,N-CQDs concentration and time, (e) pH and time, and (f) S,N-CQD
concentration and pH.
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the CCD design. The software selected the quadratic model as
the recommended model. ANOVA (Table S4) was applied for
the valuation of the quality and significance of the CCD design.
The values of p and f were <0.001 and 347.61, respectively.
These values indicated that the model was significant. Also, the
p-value of the lack-of-fit is 0.6186, demonstrating that it is not
significant and has good predictability.78 The value of
determination coefficient R2 = 0.9978 (Table S5) indicates
excellent fitting, and the value of adjusted R2 (0.9949), which is
a high value, indicates the significance of the CCD model. The
3D surface plot indicates the response of F0 − F/F0 (F0 is the
fluorescence intensity of S,N-CQDs before the addition of L-
DOPA and F is the fluorescence intensity of S,N-CQDs after
the addition of L-DOPA) on the Z-axis with every two other
factors. In each plot, one of the factors is constant at its center
point value (coded level: 0). The effect of both S,N-CQD
concentration and time factors on the quenching of S,N-CQDs
is presented in Figure 5d. The best response was found in the
range of 200−300 ppm of S,N-CQDs for 4−6 min of
incubation of the sample. Furthermore, the effect of pH and
time on the response is shown in Figure 5e. When the pH is set
in the range of 9.4−10 for 4−6 min of incubation of the
sample, the response is at the highest value, which is due to the
oxidation of L-DOPA under alkaline conditions. The effect of
S,N-CQD concentration and pH (Figure 5f) on the quenching
of S,N-CQDs indicates that in the concentration range of
200−300 ppm and pH range of 9.4−10, the best response is
observed. Finally, the 3D surfaces plot of the model shows that
all three factors have a significant effect on the quenching of
S,N-CQDs.

3D surface plot of the model confirmed that the acceptable
conditions for determining L-DOPA were achievable in 5 min
of incubation, pH of 10 and 200 ppm concentration of S,N-
CQDs.

Investigation of Fluorescence Quenching and Selec-
tivity of S,N-CQDs. To investigate the sensitivity of the S,N-
CQDs, various concentrations of L-DOPA (0−1000 μM) were
added to an appropriate volume of S,N-CQD solution, and the
fluorescence spectra of the S,N-CQDs were measured at an
excitation wavelength of 330 nm and optimized conditions
(Figure 6a). The results indicate that increasing the
concentration of L-DOPA leads to more quenching of the
S,N-CQDs fluorescence. Also, this fluorescence quenching
trend was observed with bare eyes under the 365 nm UV light
(Figure 6b). In various concentrations of L-DOPA, the
fluorescence intensity of the S,N-CQDs at an emission
wavelength of 404 nm was reduced by ca. 42% at the L-
DOPA concentration of 1000 μM. These results indicate that
the fluorescence intensity of S,N-CQDs is affected by the
concentration of L-DOPA. Also, the linear correlation curve (y
= 0.002x + 0.0025, R2 = 0.9931) of the S,N-CQDs in L-DOPA
concentrations range of 1−50 μM is presented in Figure 6c.
Quantitative determination of L-DOPA showed that the LOD
for the S,N-CQD sensor was 0.45 μM. Figure S5 shows the
absorption spectra of S,N-CQDs, S,N-CQDs + L-DOPA, and
L-DOPA. No absorption band was observed for L-DOPA, so
the quenching of S,N-CQDs with L-DOPA was not due to an
inner filter effect. Also, no blue-shift or red-shift was observed
in S,N-CQDs before and after the addition of L-DOPA. These
results indicated that the quenching of S,N-CQDs might be

Figure 6. (a) Quenching of the fluorescence spectra of S,N-CQDs upon the addition of L-DOPA, (b) fluorescence quenching photo of S,N-CQDs
under 365 nm UV light, (c) plotting the F0 − F/F0 ratio vs concentration of 1−50 μM L-DOPA, and (d) fluorescence quenching of S,N-CQDs
upon the addition of different analytes.
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due to the molecular interaction of L-DOPA and S,N-CQDs.79

The LOD and incubation time obtained for L-DOPA sensing
were compared with similar works as shown in Table S6. It
shows that current results are comparable to similar works.
But, the main advantages of this study are its ease of operation
and lower sensing time.

To investigate the selectivity of S,N-CQDs, different analytes
such as L-glutamine, L-cysteine, ascorbic acid, urea, citric acid,
NaCl, and CaCl2 were added to the S,N-CQD solution with
similar procedure for the addition of L-DOPA to the S,N-CQD
sample. The results (Figure 6d) confirmed that the other
analytes did not significantly affect the fluorescence of S,N-
CQDs and the prepared sensor has good selectivity for
determining L-DOPA.

Smartphone-Based Fluorimeter Device for Rapid
Determination of L-DOPA. BC was utilized as a substrate
for preparing fluorescent carbon dot tape (S,N-CQDs-BC).
The FE-SEM images of BC (Figure 7a) and S,N-CQDs-BC
(Figure 7b) show that S,N-CQDs are entirely imprinted on the
BC. Figure 7c shows the S,N-CQDs-BC under the 365 nm UV
light captured by a smartphone device (Figure 7d) at different
concentrations of L-DOPA. Under optimum conditions, PL
emissive of S,N-CQDs-BC in the span of 1−250 μM was
quenched by the interaction of L-DOPA and S,N-CQDs-BC.
The intensity of S,N-CQDs-BC was measured by the RGB
Color Detector app and the pictures were captured by the
iPhone 6 camera. The linear response of the S,N-CQDs-BC
(Figure 7e) was drawn (1−250 μM) and the LOD of 31.05
μM was calculated. Due to the changing of some conditions,

Figure 7. FE-SEM images of BC nanopaper, (a) before imprinting of S,N-CQDs, (b) after imprinting of S,N-CQDs, (c) S,N-CQDs-BC nanopaper
after the addition of different concentrations of L-DOPA, (d) the fabricated device for determination of L-DOPA and (e) linear response of the
S,N-CQDs-BC tape.

Scheme 2. Schematic Fluorescence Quenching Process of S,N-CQDs
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like the nature of substrates, it is predicted that the response of
solid and liquid-based S,N-CQD sensors can be different.46,80

Mechanism of L-DOPA Determination. L-DOPA is an
amino acid and dopamine, epinephrine, and norepinephrine
are members of the catecholamine family, which can oxidize
into quinone in alkaline environments. In alkaline solutions
and the presence of oxygen, L-DOPA is oxidized to
dopaquinone. Electron transfer interactions between CQDs
and quinone occur during the oxidation of these materials like
L-DOPA. S,N-CQDs and dopaquinone (electron acceptors)
can interact, and the fluorescence of S,N-CQDs is quenched
due to this reaction. This reaction changes the recombination
kinetics of the electron and hole of photoexcited S,N-CQDs.41

S,N-CQDs have some functional groups like hydroxyl and
carboxyl groups, which can react with diols, amine groups, and
phenyls in L-DOPA through electrostatic connections, π−π
stacking, and hydrogen bonding. Thiocyanate and other
functional groups are electron-rich, and dopaquinone lacks
electrons. Furthermore, nucleophilic functional groups can
form covalent bonds with electrophilic dopaquinone (Scheme
2).81 Also, the FT-IR spectra of S,N-CQDs (Figure 8a) and
S,N-CQDs + L-DOPA confirmed that some functional groups
like −SCN and −NH2 interacted with L-DOPA due to the full
disappearance of the −SCN and −NH2 peaks. Finally, L-
DOPA is oxidized to dopaquinone in alkaline solutions, which
accept electrons from the S,N-CQDs, resulting in the
quenching of fluorescence intensity.82,83

Fluorescence lifetime decay analysis was applied to
investigate the quenching mechanism of S,N-CQDs (Figure
8b). Average fluorescence lifetime decay was calculated by eq
S1 and the collected data are shown in Table S7. Due to the
difference between the average fluorescence lifetime decay of
the S,N-CQDs before and after the addition of L-DOPA, it can
be concluded that the quenching mechanism involves dynamic
quenching. This mechanism also results in photo-induced
electron transfer between S,N-CQDs and dopaquinone, which
causes fluorescence quenching of blue fluorescent S,N-
CQDs.41,84

Determination of L-DOPA in Real Samples. The use of
S,N-CQDs to determine L-DOPA in real samples such as
human blood serum and urine was studied. 5, 10, and 25 μM
of L-DOPA was added to human blood serum and urine
samples in optimum conditions. The linear calibration of the

prepared S,N-CQD sensor for the determination of L-DOPA
was utilized in real sample application. Also, the regression
equation was y = 0.002x + 0.0025 for real sample analysis.
Table 1 displays the added L-DOPA and recovery results of

the L-DOPA determination in human blood serum and urine
samples. From the calculation, the recoveries for human blood
serum and urine samples were in the range of 98.4−104.6 and
97.3−104.3%, respectively. Also, the RSD range was 3.2−5.9
and 2.1−7.6% for human blood serum and urine samples,
respectively. These outcomes show that the S,N-CQD sensor
can determine L-DOPA with worthy selectivity and reprodu-
cibility in real samples. The results show that L-DOPA can be
determined even in a complex environment with an acceptable
selectivity. Also, the maximum plasma concentration of L-
DOPA is in the range from 5 μM to 8 μM in the human
body.85 Therefore, the sensitivity of S,N-CQDs are suitable for
the determination of L-DOPA in the human body.

■ CONCLUSIONS
Briefly, S,N-CQDs were synthesized for the first time by a
green method using feijoa leaves as a precursor. S,N-CQDs
exhibited strong blue fluorescence emission and good photo-
stability for 30 days. The FT-IR of S,N-CQDs confirmed that
the −SCN groups were introduced on S,N-CQDs which
improved the interaction of L-DOPA with S,N-CQDs. Due to
the interaction of S,N-CQDs with L-DOPA, the fluorescence
emission of S,N-CQDs was quenched after the addition of
various concentrations of L-DOPA. LOD of the S,N-CQDs in
an aqueous solution was calculated at 0.45 μM. The

Figure 8. (a) FT-IR and (b) fluorescence lifetime decay of S,N-CQDs in the absence and presence of L-DOPA.

Table 1. Real Sample Recovery for L-DOPA Determination

sample
added L-DOPA

(μM)
measured L-DOPA

(μM)a
RSD
(%)b

recovery
(%)c

serum 5 5.23 ± 0.07 5.5 104.61
25 24.71 ± 0.30 5.9 98.84
50 49.21 ± 0.32 3.2 98.43

urine 5 4.86 ± 0.03 2.5 97.35
25 25.92 ± 0.11 2.1 103.70
50 52.15 ± 0.81 7.6 104.31

aValue = mean + standard deviation of three samples (n = 3).
bRelative standard deviation = SD/mean × 100. cRecovery =
measured value/added value × 100.
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mechanism of quenching of the intensity of S,N-CQDs was
investigated by FT-IR, and fluorescence lifetime decay
spectroscopy. The PET process of dynamic quenching was
confirmed as a sensing mechanism. Also, the smartphone-
based fluorimeter device was designed to determine L-DOPA
with S,N-CQDs-BC, which made it easier for analyte
determination using any smartphone. Furthermore, the
application of S,N-CQDs in real samples like human blood
serum and urine was investigated, leading to the good recovery
of 98.4−104.6 and 97.3−104.3% for human blood serum and
urine samples, respectively, indicating the applicability of S,N-
CQDs in complex environments.
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