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Purpose: In cases of optic disc swelling, segmentation of projected retinal blood vessels
from optical coherence tomography (OCT) volumes is challenging due to swelling-
based shadowing artifacts. Based on our hypothesis that simultaneously considering
vessel information from multiple projected retinal layers can substantially increase
vessel visibility, in this work, we propose a deep-learning-based approach to segment
vessels involving the simultaneous use of three OCT en-face images as input.

Methods: A human expert vessel tracing combining information from OCT en-face
images of the retinal pigment epithelium (RPE), inner retina, and total retina as well as
a registered fundus image served as the reference standard. The deep neural network
was trained from the imaging data from 18 patients with optic disc swelling to output a
vessel probability map from three OCT en-face input images. The vessels from the OCT
en-face images were also manually traced in three separate stages to compare with the
performance of the proposed approach.

Results: On an independent volume-matched test set of 18 patients, the proposed
deep-learning-based approach outperformed the three OCT-based manual tracing
stages. The manual tracing based on three OCT en-face images also outperformed the
manual tracing using only the traditional RPE en-face image.

Conclusions: In cases of optic disc swelling, use of multiple en-face images enables
better vessel segmentation when compared with the traditional use of a single en-face
image.

Translational Relevance: Improved vessel segmentation approaches in cases of optic
disc swelling can be used as features for an improved assessment of the severity and
cause of the swelling.

Introduction

Retinal blood vessel attributes, such as the width,
location, obscuration, integrity, and tortuosity, are
commonly considered important features in assess-
ments of optic disc swelling.1 For example, in the
modified Frisén grading system, the number of
obscured vessel segments leaving the optic disc, is
considered one of the key features to distinguish
papilledema from mild to severe levels using fundus

photographs.2–5 Echegaray et al.6 have also shown
that the measurement of vessel discontinuity can be
helpful for a machine-learned Frisén grading system
to achieve a substantial agreement between its output
and the human expert’s decision. Figure 1a shows three
example fundus photographs with mild, moderate, and
severe optic disc swelling (from the top to the bottom
row in the figure). As indicated with yellow arrows,
the vessel attributes change substantially on the swollen
optic disc among these cases.
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Figure 1. Comparisons of the fundus photograph and OCT pairs with mild optic disc swelling (top row: a1, b1, c1), moderate swelling
(middle row: a2, b2, c2), and severe swelling (bottom row: a3, b3, c3). Left column (a1, a2, a3) shows fundus photographs.Middle column (b1,
b2, b3) shows the OCT central B-scans with automated layer segmentation. Right column (c1, c2, c3) shows the OCT RPE en-face images.
Note: In case of swelling, the yellow arrows indicate vessel attributes changes in (a), the cyan lines in (c) represent the location of the central
B-scans, and the green arrows in (b) and (c) indicate the matched shadow regions.

Spectral-domain optical coherence tomography7–10
(OCT) is another imaging modality that is regularly
used for assessing optic disc swelling. To date, most
OCT-based measurements that have been used in
the clinic and in research studies in cases of optic
disc swelling (such as the retinal nerve fiber layer as
well as the total retinal layer thicknesses, the optic
nerve head [ONH] volume, and Bruch’s membrane
shapes)5,8,11–15 do not incorporate vessel informa-
tion. However, especially for purposes of developing

automated systems for assessing the severity and
causes of optic disc swelling, having robust automated
approaches for the OCT-based segmentation of retinal
vessels is needed not only for computation of vessel-
based features but also as one of the preprocessing
steps for computation of other features. For example,
removing retinal vessels is often involved as a part
of preprocessing for further retinal texture analyses,
such as retinal fold analysis.16,17 Having an accurate
vessel tree location map can substantially reduce the
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false-positive rate for an automated method to detect
retinal folds in OCT.17 Furthermore, vessels are often
an important structure used for the alignment of
images (e.g., color fundus to OCT or OCT images over
time), which can be used for multimodal analyses and
regional longitudinal analyses. Thus, themotivation for
an OCT-based vessel segmentation in cases of optic
disc swelling includes the need for the direct compu-
tation of vessel-related features in OCT (especially in
cases where fundus photography is not available) for
direct measures of severity or for differentiation, the
need for additional contextual information in the devel-
opment of techniques for the automated segmentation
and analysis of other structures (e.g., for fold/wrinkle
detection) thatmay help in differentiation, and the need
for an alignment technique for region-based longitudi-
nal analyses.

Although OCT has been widely used for captur-
ing cross-sectional information of the retina, observ-
ing the vessels in the common B-scan orientation is
not straightforward (as shown in Fig. 1b). A common
method to display the vessels in OCT is to create an
en-face view by projecting the pixel intensity values
within the retinal pigment epithelium (RPE) complex
along each A-scan.18–20 In cases without optic disc
swelling, projection at the level of the RPE works well
given the high contrast between the bright RPE and
inner-retinal vessel shadows. However, in cases of optic
disc swelling, the presence of swelling can cause image
shadows, making the task of vessel segmentation much
more challenging. Figure 1c continues to show the
RPE en-face images from the same three patients; it is
noticeable that the challenge of delineating the vessels
for both manual and automated approaches increases
when the image shadow (from the swollen disc) grows.

However, based on our prior preliminary experi-
ence with the segmentation of vessels in the OCT scans
of mice whereby using multiple en-face images was
advantageous over a single projection image21 as well
as our observation that the vessels could sometimes
be seen more prominently in layers other than the
RPE layer in cases of optic disc swelling in humans,
we hypothesized that simultaneously considering vessel
information from various projected retinal layers in
cases of optic disc swelling would substantially increase
the vessel visibility and enable a better segmenta-
tion. Thus, instead of relying on a single projection
image at the level of the RPE, we have developed
a deep-learning approach (using a modification of a
U-Net22 architecture) to simultaneously input three
OCT en-face images from the RPE complex, inner
retina, and total retina and to output an OCT vessel
probability map (Fig. 2). Although current deep neural
networks have shown prominent performance among

the frequent implementations of vessel segmentation
algorithms,23–28 there is no study specifically focusing
on the OCT cases with optic disc swelling. Both quanti-
tative and qualitative comparisons between manual
tracings in en-face images from various retinal layers
and the automated segmentation results are performed.

Methods

Training/Testing Data

From 122 patients with various causes of optic
disc swelling who had been recruited for research
use of their clinical imaging data from the Neuro-
Ophthalmology Clinic at the University of Iowa, we
had previously analyzed the volumetric OCT imaging
data of 22 of these patients for a preliminary fold detec-
tion image analysis approach.17 To best ensure a true
separation of training and testing sets (whereby evalu-
ation on the testing set is limited to untouched data),
our training set was selected from the 22 previously
analyzed images. More specifically, of the 22 patients
previously analyzed, we selected the 18 patients who
had (1) both volumetric ONH-centered OCT scans
(Zeiss Cirrus, Carl Zeiss Meditec, Inc., Dublin, CA,
USA) and the corresponding fundus photographs
(Topcon Medical Systems, Inc.) available at the same
visit and (2) an intact retinal structure in the OCT
scans to allow the automated retinal layer segmenta-
tion12 to process correctly. The training data set was
used for the purposes of designing the neural network
architecture, deciding the hyperparameters, and train-
ing the neuron weights. For the independent testing
data set, an additional 18 pairs of OCT scans and
fundus photographs of 18 patients with optic disc
swelling collected from the same set of 122 patients
having optic disc swelling were included by matching
the total retinal volume distribution with the training
data set. The reason for this volume-matching process
was to maintain a similar vessel visibility (which can
be substantially affected by the degree of optic disc
swelling, as shown in Fig. 1) in the OCT en-face
images within different patients between the training
and testing data sets.

Figure 3 shows the data distributions (by ONH
volume) of the training and testing data sets. For the
causes of optic disc swelling in the training data set,
among the 18 training patients, 13 had papilledema,
1 had nonarteritic anterior ischemic optic neuropa-
thy (NAION), and 4 had other causes of optic
disc swelling. For the 18 testing participants, 15 had
papilledema, 2 had NAION, and 1 had another cause
of optic disc swelling. The training data set consisted
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Figure 2. Architecture of the proposed deep-learning approach. Three image patches (32 × 32 pixels) are separately extracted from the
OCT en-face images of the RPE complex, the inner retina, and the total retina. Next, these three patches are concatenated to each other
at the first layer in the network. The numbers in black and in gray at each block represent the number of channels and dimensions at the
current network layer, and the colors of the arrows represent different network operations.

Figure 3. Data distribution (by ONH volume) of the training and
testing data sets (shown in pink and green bars, respectively). There
are 36 patients in total: 18 in the training data set and the other 18
in the testing data set. The severity of the disc swelling has been
matched between both data sets based on the ONH volumes.

of 16 women and 2 men with a mean ± standard
deviation (SD) age of 36.4 ± 11.4 years while the
volume-matched testing data set consisted of 17
women and 1 man with a mean ± SD age of 31.6 ±
12.9 years. In total, the 36 patients had a mean ± SD
age of 34 ± 12.4 years.

All the fundus photographs were obtained using a
retinal camera (TRC-50DX; Topcon Medical Systems,
Inc.) with 2392 × 2048 pixels. Each OCT scan (Cirrus;
Carl Zeiss Meditec, Dublin, CA, USA) was centered
at the ONH and had 200 × 200 × 1024 voxels cover-
ing (approximately) 6 × 6 × 2 mm3. Note that the
fundus photographs in this study were only used for
helping to create ground truth images (as discussed in
the section on the manual tracing process) and were
registered and cropped with respect to the OCT en-
face images. The study protocol was approved by the
University of Iowa’s Institutional Review Board and
adhered to the tenets of the Declaration of Helsinki.

En-Face Images fromMultiple Retinal Layers
(Inputs to Deep-Learning Approach)

A customized three-dimensional graph-based
algorithm12 was utilized to segment the swollen retinal
layers (Fig. 1b) as a part of the preprocessing. Then,
based on the segmentation results, en-face images were
generated of the RPE complex (between cyan and
green surfaces in Fig. 1b), the inner retina (between
red and yellow surfaces in Fig. 1b), and the total
retina (between red and green surfaces in Fig. 1b) by
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Figure 4. Demonstrations of vessel visibility of en-face images
from different retinal layers in mild (top row), moderate (middle row),
and severe (bottom row) optic disc swelling (continued from Fig. 1):
left column, the RPE en-face image; middle column, the inner retina
en-face image; and right column, the total retina en-face image. The
yellow arrows indicate the vessel visibility changes.

averaging the pixel intensities within the interested
layers along each A-scan in the OCT.

Figure 4 demonstrates the vessel visibility of the
en-face images from these three layers with mild,
moderate, and severe optic disc swelling. As shown
in Figure 4, retinal vessels away from the swollen optic
disc appear more distinct in the RPE en-face image
given the high contrast between the RPE and the
vessel shadow, whereas the retinal vessels in the swollen
regions appear more distinct in the en-face images of
the inner retina and total retina. All three of these
images were simultaneously used as inputs to the deep-
learning network, as discussed in the next section.
Furthermore, all three of these images (as well as the
registered fundus photograph) were used to create the
reference “ground truth” image used for training and
evaluation.

Architecture of the Proposed Deep-Learning
Neural Network

As was shown in Figure 2, our proposed deep-
learning network is designed to take (patches of) the
three en-face images described above as input and
output a pixel-based vessel probability map (with

values close to 1 indicating a high vesselness proba-
bility and values close to 0 indicating a low vessel-
ness probability). The high-level architecture of our
proposed deep-learning network is based on a well-
known U-shaped deep neural network (U-Net),22 with
modifications to allow for three inputs rather than one
andmodifications to the number of layers.More specif-
ically, the architecture of the proposed deep-learning
approach (Fig. 2) contains a total of 16 neural layers,
including 1 concatenation layer, 13 convolution layers,
and 2 max-pooling layers. The proposed approach is
designed to obtain image features in different resolu-
tions by passing the concatenated input image patches
through a contracting path (i.e., the first half; repeat-
edly uses a combination of convolutional layers, recti-
fied linear units [ReLU], and a max-pooling layer]
and then an “up-sampling” path (i.e., the second half;
repeatedly uses a combination of convolutional layers,
ReLU, and “up-convolutional” layers). Moreover, the
corresponding feature maps between both paths are
also concatenated in different resolutions. For the input
of the proposed approach, location-matched image
patches (size: 32 × 32 pixels) were first extracted from
the three input en-face images to reduce the computa-
tional time as well as computer memory. At the end of
the proposed approach, a soft-max layer, which is a 1×
1 convolution layer, was applied to compute the proba-
bility value of the retinal vessel at each corresponding
pixel location in the input image patch coordinates. For
each patient, these location-matched image patches slid
(one pixel each time) through the entire en-face image
dimensions, and the outputted small vessel probability
maps from all the image patches were stitched together
(by averaging all the overlapping regions) to form a
complete vessel probability map with the same coordi-
nates as the input en-face images. More details about
the deep neural network and its hyperparameters are
described in the Appendix.

Manual Tracings of Retinal Blood Vessels and
Ground Truth Images

In order to compare how a human expert would
segment the vessels with access to various combina-
tions of the input en-face images with the results
from the proposed deep-learning-based approach, all
the en-face images in both training and testing data
sets were independently traced in three separate stages
(by J-KW): stage I, referring only to the RPE en-
face image (Table 1, column 1); stage II, referring to
the combination of the RPE and inner-retina en-face
images (Table 1, columns 1–2); and stage III, refer-
ring to the combination of the RPE, inner-retinal, and
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Table1. Inputs andOutputs forManual Tracing (MT) Stages I, II, and III and theProposedDeep-LearningApproach

The green, yellow, pink, red, and cyan vessels overlaid images show the outputs of MT stages I, II, and III; the ground truth;
and the proposed approach. The black andwhite binary images are also shown at the next column to help visualization.

total-retinal en-face images (Table 1, columns 1–3).
Furthermore, to serve as the overall reference standard
(also known as the “ground truth’’) for training and
evaluation purposes, the images of the retinal vessels
were again separately created by the same expert not
only using all the RPE + inner-retinal + total-retinal
en-face images but also referring to the registered
ONH-centered fundus photographs to obtain the most
vessel information (Table 1, columns 1–4). Also note
that the proposed deep-learning approach output is
also shown (Table 1, row 5) for a comparison. More
specific details regarding this manual-tracing process
are provided in the Appendix.

Overview of Evaluation Approach

In the training process, leave-one-subject-out cross-
validation (for a total of 18 training participants, 17
participants were used for training, 1 patient for valida-
tion, and then rotating the selected patient until all the
patients had been tested) was used to help design and

decide the architecture (using area under the receiver
operating characteristic curve, AUC, as the evaluation
metric) and hyperparameters in the proposed method.
Next, based on the decided network, all the 18 patients
were trained together to result in the final proposed
deep neural network. The separate testing data set of
18 patients with matched ONH volumes was used with
the quantitative measurements (described below) to
compare the performances among the manual tracing
stages I, II, and III and the proposed deep-learning
approach.

Quantitative Evaluation Measurements

Pixel-based evaluation metrics were used to
compare each ground truth binary image (0 =
background and 1 = vessel object) to the binary
results from each of the three OCT-based manual
tracing stages, to the output probability map from the
proposed deep-learning method, and to a binarized
version (using Otsu’s thresholding algorithm29) of
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Table 2. QualitativeMeasurements among theManual Tracing Stages and Proposed Deep Neural Network in the
Testing Data Set (Including the Mean Processing Time per Patient)

Testing Data Set (18 Patients)

Methods Mean AUC

Average
Precision

(AP)

Mean
Square Error

(MSE)
Mean
R2Score

Mean
Accuracy
(ACC)

Mean
Processing

Time*

Manual tracing, stage I 0.79 ± 0.04 0.73 ± 0.04 0.071 ± 0.01 0.38 ± 0.08 0.93 ± 0.01 11 min 19 s
Manual tracing, stage II 0.83 ± 0.03 0.77 ± 0.03 0.061 ± 0.01 0.46 ± 0.06 0.94 ± 0.01 13 min 51 s
Manual tracing, stage III 0.85 ± 0.03 0.78 ± 0.04 0.061 ± 0.01 0.47 ± 0.08 0.94 ± 0.01 14 min 7 s

Proposed
deep-
learning
approach

Probability map†

Binarymap†
0.96 ± 0.02
0.83 ± 0.05

0.84 ± 0.07
0.77 ± 0.05

0.047 ± 0.01
0.061 ± 0.01

0.59 ± 0.09
0.46 ± 0.10

N/A
0.94 ± 0.01

1 min 5 s

*Hardware details: A Linux machine is used with single GPU (NVIDIA GeForce GTX 1080 Ti) and 128 GB RAM. The time to
train the proposed neural network, including all the 18 patients in the training data set, was 2 hours 2 minutes 12 seconds.

†The probabilitymap is the direct output from the proposeddeepneural network; the binarymap is automatically obtained
using the Otsu thresholding algorithm. (Note: The outputs frommanual tracings are inherently binary maps.)

the proposed deep-learning method. More specifically,
given a ground truth image and a corresponding binary
map from another approach (e.g., an OCT-based
manual tracing stage or a thresholded version of the
output probability map), the true positive (TP), false
positive (FP), true negative (TN), false negative (FN),
and the total number of pixels (K = TP + FP + TN +
FN) can be computed. We correspondingly computed
the area under the receiver operating characteristic
curves (AUC), for all approaches (manual tracings
from the three stages, the original probability map,
and the Otsu-thresholded binary map), to measure the
TP rate against the FP rate across all possible thresh-
old values. We also computed the average precision
(AP) (for all approaches) to quantify the relationship
between the precision (P) and recall (R) across all
possible threshold values; AP =∑

n(Rn − Rn−1)Pn,
where R = TP/(TP + FN), P = TP/(TP + FP), and n
is the nth threshold value. For the binary-only results
(manual tracings and Otsu-thresholded probability
map but not the original probability map), we also
computed the accuracy (ACC) to compute the ratio of
correctly classified pixels to the total number of pixels
in the OCT en-face image; ACC = (TP + TN)/K.
In addition, for all approaches, we computed the
mean squared error (MSE) as a measure of the label
distance between the approaches and the ground truth;
MSE = 1

K
∑K−1

l=0 (ŷl − yl)2, where ŷl and yl represent
the predicted label value at pixel location l from the
approach and the truth label, respectively; and the
coefficient of determination (R2 score) to estimate how
well the approach is with respect to the ground truth in

the sense of regression; R2 = 1 −
∑K−1

l=0 (ŷl−yl )2
∑K−1

l=0 (ȳ−yl )2
, where

ȳ = 1
K (

∑K−1
l=0 yl).

Results

The mean area under the ROC curves (AUC) of
probability maps from a leave-one-subject-out cross-
validation over the 18 patients in the training data set
was 0.93. Using the independent imaging data from
the test set, the mean AUCs for the manual tracing
stages I, II, and III were 0.79, 0.83, and 0.85, respec-
tively; for the proposed deep-learning approach, the
mean AUC was 0.96 for the direct output of the vessel
probability map, but the mean AUC was 0.83 when the
probability maps were converted to binary maps using
the Otsu algorithm.29 For the AP, the results of the
manual tracing stages I, II, and III were 0.73, 0.77, and
0.78, respectively; the results of the proposed method
were 0.84 and 0.77 for the probability map and binary
map, respectively. Other results among the manual
tracing stages I, II, and III and the probability map
as well as the binary map from the proposed method
were as follows: MSE, 0.071, 0.061, 0.061, 0.047, and
0.061; mean coefficient of determination (R2), 0.38,
0.46, 0.47, 0.59, and 0.46; and mean accuracy (ACC),
0.93, 0.94, 0.94,N/A (Not applicable), and 0.94, respec-
tively. Table 2 shows the summary of the quantitative
results.
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Figure 5. Data dot plots for the measurements of area under ROC curve (AUC), average precision (AP), mean square error (MSE), mean
coefficient of determination (R2), and mean accuracy (ACC) with 95% confidence intervals: green, manual tracing (MT) stage I; dark yellow,
MT stage II; purple, MT stage III; blue, the probability map from the proposed deep learning (DL) approach; and red, the binary map, which is
obtained using Ostu algorithm) from the DL approach.

Figure 5 displays all the data points from the 18
testing participants with a 95% confidence interval of
the mean for the quantitative results in the testing
data set. The direct output (i.e., the vessel probability
maps) of the proposed deep-learning approach shows
the best performance in all five quantitative measure-
ments. Furthermore, for all the testing participants,
the thresholded binary map of the proposed deep-
learning approach provides better vessel segmentation
results than manual tracing stage I (tracing on only the
RPE en-face image) for all five measurements of all 18
testing participants (additional details in Appendix).
The results from manual tracing stages II and III and
that of the thresholded binary map of the proposed
deep-learning approach were similar. More specific
details regarding the subject-wise comparison between
different approaches are provided in the Appendix.

The mean processing times per patient for each
method in the testing data set were also recorded
(Table 2). The three manual tracing stages using Adobe
Illustrator Draw (version 4.6.1; Adobe Systems, Inc.,
San Jose, CA, USA) on an iPad (Apple, Inc., Cuper-
tino, CA, USA) required at least 11 minutes for each
patient in the testing data set (precisely, 11 minutes
19 seconds, 13 minutes 51 seconds, and 14 minutes
7 seconds for stages I, II, and III, respectively). The
computation for the proposed deep neural network was
performed using a Linux machine with single GPU,
NVIDIA GeForce GTX 1080 Ti (NVIDIA Corpora-
tion, Santa Clara, CA, USA) and 128 GB RAM. The
mean processing time for each patient in the testing

data set for the proposed deep neural network was
1 minute 5 seconds. (Note: The total time of train-
ing the proposed neural network, including all the 18
patients in the training data set, was 2 hours 2 minutes
12 seconds.)

Six patients with various levels of optic disc swelling
(the ONH volume range is from 11.46 mm3 [the top
row] to 26.45 mm3 [the bottom row]) are shown as
qualitative results in Table 3. The en-face images of the
RPE complex, the inner retina, and the total retina are
listed in the table to show the shadow region growth in
different degrees of swelling. The manual tracing stage
III (highlighted in purple), the proposed deep-learning
approach binary maps (highlighted in cyan), and the
ground truth (highlighted in red) are displayed in the
next three columns, respectively. The corresponding
ONH-registered fundus photographs are also added at
the last column for reference.

Discussion

Although a preliminary OCT-based vessel segmen-
tation for swollen optic disc had been utilized in our
previous studies as a part of the preprocessing,17 this
is the first time that we directly focus on OCT to
reveal the obscured vessels from the image shadow by
using a modified deep neural network that simulta-
neously considers multiple OCT en-face images from
various retinal layers as its inputs. Furthermore, while
use of an RPE en-face image would traditionally
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Table 3. Examples of Vessel Segmentation in Six Patients with Various Levels of Optic Disc Swelling

The patients are arranged based on the ONH volumes from the top to the bottom rows.

be considered sufficient for visualization of projected
retinal vessels in OCT (especially in nonswollen cases),
our results also show that having access to multiple
en-face views is important for even a human expert
to properly visualize the vessels. Overall, our deep-
learning approach (even when using a nonoptimized
thresholding approach to generate the binary maps)
performs at least as well as one would expect from a
human expert having access to multiple en-face OCT
views and better than what one would expect from a
human expert having access to only the RPE en-face
image (the traditional approach). In fact, when using
the probability map itself (rather than the binary map),
perhaps surprisingly, our results suggest that the deep-
learning approach even outperforms the human expert
in segmenting the retinal vessels with access to only
OCT en-face images (discussed further below).

Effectively, having multiple simultaneous input
images enabled the proposed deep-learning network

to learn to extract the vessel information from the
region at the retinal layer with better signal response
to compensate the regions that are eclipsed. Figure 4
shows examples that the en-face images around the
optic disc of the inner retina contain substantially
more vessel information than the one from the RPE
complex in cases with optic disc swelling; however,
the vessel visibility at the peripheral region is still the
clearest in the RPE en-face image compared with the
others. Since the vessels shown in the en-face images
are the mean intensity values of the shadow from
the superficial vessels, it is not surprising that the
vessel visibility in the RPE en-face image is consider-
ably deteriorated around the optic disc in which the
OCT signal is greatly weakened by passing through the
swollen inner retinal layers. Overall, the total-retinal en-
face image displays in-between vessel clarity, which is
potentially helpful for the proposed deep-learning
approach having an extra reference when the vessel
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Figure 6. Scatterplots of 18 testing participants for displaying the
relationships between the AUC and ONH volume from the manual
tracing (MT) stage III (the best performance in all three manual
tracing stages; shown as magenta crosses) and proposed deep-
learning (DL) approach probability map (shown as cyan triangles).

patterns are inconsistent between the RPE and inner-
retinal en-face images.

When the optic disc swelling is severe, in addition to
the optic disc elevation, other pathogenic conditions,
such as hemorrhage and nerve fiber layer infarcts
(cotton-wool spots), may appear.1,30 Meanwhile, the
vessel appearance may also be affected: the retinal
vessels can be seen extremely blurred, discontinuous,
and/or covered by the cotton-wool spots. Under these
circumstances, it is sometimes tricky to clearly define
the boundary of the vessels in the OCT en-face images.
The bottom row in Table 3 illustrates the difficulty of
the process of tracing complete vessel trees even with
the extra information from the fundus photograph
(i.e., the ground truth). Figure 6 shows that the perfor-
mances of both manual tracing and proposed method
gradually decline when the ONH volume increases;
however, the proposedmethod still seems visually more
robust than the manual tracing stage III in the testing
data set.

Because the degree of optic swelling influences the
difficulty of the vessel segmentation, it is important
to keep in mind our overall reported results are, in
part, reflective of the distribution of swelling levels
tested. Our training set (and, correspondingly, our test
set because of the volume-matching process) likely
reflected a higher proportion of cases with moderate-
to-severe optic disc swelling than one might encounter
in clinical practice. If a larger percentage of cases
with milder swelling were evaluated, we would actually
expect to obtain better overall performance numbers.
However, while we evaluated the approach on a reason-
ably balanced data set of cases with optic disc swelling,
one limitation of our work is that we have not quanti-

tively evaluated the result of the proposed approach on
a separate normative data set. Nevertheless, based on
visually assessing the results from separately applying
our trained neural network on eyes with no apparent
swelling (having approximate optic nerve head volume
of 8–10 mm3), we found that the proposed approach
still successfully segments the major vessels in such
eyes. Thus, while not quantitatively evaluated on eyes
without optic disc swelling, we still expect the approach
to be robust in these cases as well (where traditional
approaches involving only use of anRPE en-face image
may already work). Also note that in computing the
ONH volumes used for estimating the degree of optic
disc swelling, we were unable to correct for ocular
magnification due to the lack of axial length informa-
tion, and thus the reported volumetric measures are
technically approximations. However, while we did use
the estimatedmeasures to provide a similar distribution
of swelling severity in the training and testing data sets
as well as to provide some insight into the dependence
of the performance on degree of optic disc swelling,
correcting for ocular magnification is not needed for
appropriately training the algorithm.

As previously mentioned, the quantitative results
in Table 2 and Figure 5 demonstrate that the proba-
bility map from the proposed deep neural network
has the best performance compared with all the other
methods. However, after thresholding the probability
map (by the Otsu algorithm) into a binary map, the
performance from the neural network declines to a
similar level of manual tracing stages II and III. This
is because of a part of vessel information gets lost in
the process of thresholding. For example, in the proba-
bility map, some thinner vessels may have a smaller
probability, which could be thresholded to become
background in the binary map. The performance gap
between the probability and binary maps can possibly
be shortened by developing more sophisticated thresh-
olding methods. Using regionally adaptive threshold
values based on vessel continuity rather than one global
threshold value is one of the options to improve.

Regarding the stages of manual tracing, it is worthy
to note that we strictly followed the order that we
described in the Appendix to avoid the extra informa-
tion from the higher stages, especially for the ground
truth images, to prejudice the tracing in the lower
stages. Table 2 and Figure 5c have shown that, for the
same human expert, only using the RPE en-face image
to trace the retinal vessels (i.e., the traditional method)
provides the worst performance among all three stages
for all the measurements. After adding consideration
of the inner-retinal and total-retinal en-face images, the
performance in stages II and III noticeably increased.
Also, our manual tracings are performed using Adobe
Illustrator Draw (Adobe Systems, Inc., version 4.6.1)
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on an iPad, which allows us to overlay all input en-
face images on each other so that the vessel informa-
tion can be intuitively accumulated from all the input
retinal layers. The image-overlay method is potentially
a more robust method than separately tracing these en-
face images and then adding the results together.

Also note that the time-consuming multistage
manual tracing stages were one factor that limited the
size of our training and test sets (18 cases each). While
18 cases in a training set would likely be considered
too small for an image-level classification task for a
deep-learning approach (e.g., determining the cause
of the swelling), since our work focused on a pixel-
level task in determining the probability of each pixel
being a vessel (in combination with our use of a U-
Net-based architecture), we were able to have suffi-
cient data to be able to train the approach to provide
a good performance overall on the independent test
set. However, confirming the performance on a larger
data set (perhaps using less time-consuming multistage
reference standard) would be useful in future work.

It is conceivable that our proposed deep-learning
approach can be extended to detect other tubular
objects in the OCT volumes. True three-dimensional
vessel segmentation (instead of on the projected en-
face planes) could be a subject of future study. Also,
analyses of retinal folds16,17,31 are believed to be one
of the key features to scrutinize the mechanisms of
stress/strain at the ONH region. Automatically detect-
ing the retinal folds and further quantifying them can
be another possible extension for our proposed neural
network.
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Appendix

Additional Details Regarding the Modified
U-Net Architecture

As displayed in Figure 2, the first layer of the neural
network first concatenates the three input location-
matched en-face image patches together to form an
image blob (dimensions: 32 × 32 × 3). Next, for the
contracting path, a combination of a convolutional
layer (with the filter size of 3 × 3 pixels, 32 feature
channels, and zero padding of 1 pixel for correcting the
boundary effect) plus a rectified linear unit (ReLU) is
used twice before a max-pooling layer (filter size: 2 ×
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2 pixels, stride: 2 pixels). It is worthy of note that the
feature map dimensions have been down-sampled to
16 × 16 pixels due to the max-pooling layer, but the
depth has increased to 64 channels. A similar process
is then repeated once, and the feature map dimensions
achieve 8 × 8 pixels with 128 channels at the end of the
contracting path.

In the up-sampling path, the “up-convolutional”
layers are applied to double the dimensions of the
feature map, and then the outputting feature maps are
concatenated with the ones in the contracting path
to “reconsider” past features (i.e., the gray arrows
in the Fig. 2). Following by similar convolutional
processes again but with different amounts of feature
channels, the feature map dimensions finally recover
back to 32 × 32 pixels and with 32 channels. The last
layer of the neural network is a soft-max layer, which
is a 1 × 1 × 32 convolutional operator, to estimate the
probability value (range from0 to 1) of the retinal vessel
at each pixel location.

As mentioned in the Methods, the architecture of
the proposed neural network is designed using a leave-
one-subject-out cross-validation in the training data set
(18 patients), and the hyperparameters include a first-
order gradient-based optimization algorithm (Adam32)
with momentum 1 (β1) of 0.9, momentum 2 (β2) of
0.999, delta (ε) of 10−8, learning rate (α) of 0.01, and
gamma (γ ) of 0.9. In addition, a simple technique
of dropping out half of the neurons after convolu-
tion layers is adopted to prevent data overfitting.33 The
proposed deep neural network is implemented using a
Caffe library (1.0.0)34 on a Linux machine with single
GPU (NVIDIA GeForce GTX 1080 Ti), Intel Core i7-
6800K Broadwell-E 6-Core 3.4G, and 128 GB RAM.

After the architecture of the proposed neural
network has been decided and all the hyperparameters
are fixed from the cross-validation step in the train-
ing data set, the proposed neural network is retrained
by using all the 18 patients from the training data set
and officially tested in the volume-matched testing data
set. The step of completely separating the training and
testing data sets helps reduce the overall bias of the
proposed method.

Additional Details Regarding the Manual
Tracings of Retinal Blood Vessels

Tools and more precise steps of manually tracing
the retinal blood vessels are described as follows. Three
stages of human tracing were designed to compete with
the proposed deep-learning approach. In stage I, for
each OCT image in the training set, its RPE en-face
image was first loaded into an iPad Pro tablet (Apple,

Inc.) using Adobe Illustrator Draw (Adobe Systems,
Inc., version 4.6.1) and saved as an independent profile.
Next, the visible vessels in this en-face image were
manually highlighted by the expert drawing on the
tablet using an Apple Pencil (Apple, Inc.) (Table 1,
row 1). Then, the same process was repeatedly applied
to the rest of the OCT images in the training set. In
stage II, to have an independent vessel tracing from
the previous stage, for each OCT image in the train-
ing set, its RPE en-face image was reloaded and then
saved as a clean, separate profile using Adobe Illustra-
tor Draw. Then, the corresponding inner-retina en-face
image was loaded as the second image layer so that the
expert could trace the retinal vessels on the RPE en-
face image meanwhile accessing the vessel information
from the inner-retina en-face image (Table 1, row 2).
Then, the same process was repeatedly applied to the
rest of the OCT images in the training set. In stage III,
similar processes from stage II were repeated again and
adding the third image layer from the total-retina en-
face image (Table 1, row 3). Finally, the ground truth
image was created by simultaneously accessing four
images (all the three en-face images + the registered
fundus photographs) (Table 1, row 4). The same proce-
dures were next utilized for the images in the testing
data set. Note that because the amount of vessel infor-
mation increases starting from stage I, stage II, and
stage III and maximizing at the ground truth images,
the order of our manual tracings helped ensure that
the manual tracings in lower-level stages had less of a
chance to be affected by the prior knowledge from the
higher-level stages. Also note that the proposed deep-
learning approach output is also shown (Table 1, row
5) for a comparison.

Additional Details Regarding the
Quantitative Comparison between Different
Approaches

Since the performances of manual tracing stages
II and III are similar (as shown in Fig. 5), only the
results from stage III are kept for further compar-
isons. Figures A1a–A1c show the comparison between
quantitative values of different evaluation metrics
for all the 18 testing participants when different
approaches are used. The lines are found by joining
the quantitative values of evaluation metrices from two
different approaches (e.g., manual tracing stage I and
deep learning binary map for Fig. A1a, manual tracing
stage I and manual tracing stage III for Fig. A1b,
manual tracing stage III versus deep-learning binary
map for Fig. A1c). An upward slope indicates a better
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Figure A1. Trajectory connection dot plots for the measurements of area under ROC curve (AUC), average precision (AP), mean square
error (MSE), mean coefficient of determination (R2), andmean accuracy (ACC) with 95% confidence intervals: Dark yellow and green, manual
tracing (MT) stage I (in Fig. A1(a) and (b) respectively); purple, MT stage III; and red, the binary map (which is obtained using Ostu algorithm)
from the DL approach. (a) Trajectory connection between the MT stage I and DL binary map results. (b) Trajectory connection between the
MT stage I and III results. (c) Trajectory connection between the MT stage III and DL binary map results.
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performance using the second approach in the figure
and a downward slope indicates the first approach
provides better performance. Based on all the quanti-
tative results, Figure A1a suggests that the proposed
deep-learning approach binary map provides better
vessel segmentation results than the manual tracing

stage I by showing that the majority of the slopes are
positive. Similarly, FigureA1b suggests that themanual
tracing stage III has better performance than stage
I does. Finally, Figure A1c suggests that the perfor-
mances between the deep-learning binary map and the
manual tracing stage III are similar.


