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Abstract
Brain metastases (BM) are associated with significant morbidity and mortality in patients with advanced cancer. 
Despite significant advances in surgical, radiation, and systemic therapy in recent years, the median overall sur-
vival of patients with BM is less than 1 year. The acquisition of medical images, such as computed tomography 
(CT) and magnetic resonance imaging (MRI), is critical for the diagnosis and stratification of patients to appropriate 
treatments. Radiomic analyses have the potential to improve the standard of care for patients with BM by applying 
artificial intelligence (AI) with already acquired medical images to predict clinical outcomes and direct the person-
alized care of BM patients. Herein, we outline the existing literature applying radiomics for the clinical management 
of BM. This includes predicting patient response to radiotherapy and identifying radiation necrosis, performing 
virtual biopsies to predict tumor mutation status, and determining the cancer of origin in brain tumors identified 
via imaging. With further development, radiomics has the potential to aid in BM patient stratification while circum-
venting the need for invasive tissue sampling, particularly for patients not eligible for surgical resection. 
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Brain Metastases: Current Approaches

Brain metastases are the most common adult brain tumor 
in adults, occurring in 20–40% of patients with metastatic 
cancer.1,2 From the time of diagnosis, patients with BM expe-
rience a median survival of less than 12 months.1,2 BM most 
commonly originate from primary tumors of the lung, breast, 
skin, kidney, and gastrointestinal system.1,3 Prognosis and 
therapeutic approaches are guided by several prognostic fea-
tures, including performance status, the presence of extra-
cranial metastases, type of primary cancer, tumor-mutational 
status in the form of molecular markers, and number and 
extent of BM.1,4,5 Notably, the mutation status of a tumor will 
often predict patient outcome and aid in treatment stratifica-
tion.1 The invasion pattern of surgically resected BM and the 

presence of leptomeningeal lesions can also serve as relevant 
prognostic features.6,7

Current modalities for treating BM include surgical resec-
tion, stereotactic radiosurgery (SRS), whole-brain radiotherapy 
(WBRT), and systemic therapies, including chemotherapy, tar-
geted therapies, and immunotherapies.4,8-10 Surgical resection 
is the first-line management of large and symptomatic BM.11–13 
However, surgery is often not possible for patients with exten-
sive extracranial disease burden, multiple anatomically distant 
brain metastases, metastases in eloquent brain areas, and lep-
tomeningeal involvement.14

There is a growing impetus to stratify patients with BM to 
novel and personalized therapies, given the high rates of post-
operative recurrence,12,13,15–17 radioresistance,16 and chemo-
resistance18 associated with poor overall survival. Magnetic 

Radiomics as an emerging tool in the management of 
brain metastases
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resonance imaging (MRI) and computed tomography (CT) 
are the modalities frequently used to visualize and diag-
nose tumors within the central nervous system.19

Medical imaging provides valuable information for clin-
icians to diagnose and subsequently manage BM. Expert 
analyses of images can allow for identifying lesions, tumor 
size, and number of metastases. Radiologists can fre-
quently provide an informed opinion on whether a given 
lesion is metastatic or primary and can even predict the 
type of primary tumor.20 Improvements in medical image 
analysis technologies have begun to identify additional 
information within images, using novel imaging-based 
biomarkers that could be used to improve the accuracy 
of predicting clinical endpoints. It has become clear that 
medical images contain a plethora of quantitative, clini-
cally relevant data that is often missed using traditional in-
terpretation.21–24 This has led to the emergence of the field 
of radiomics that provides methodologies to extract addi-
tional quantitative information from images and identify 
features that may otherwise be too nuanced, small, or im-
practical to be detected by humans.25 The manner in which 
these quantitative analyses may help clinicians in the man-
agement of BM is thus an active area of research.

Radiomics as a Clinical Tool

Radiomic analyses involve quantifying the relationships 
between voxels or pixels within an image26–28 assuming 
that small variations in pixel/voxel intensity, position, and 
density can serve as prognostic and predictive biomarkers 
for patient stratification.29

A radiomic classification pipeline can be outlined in 4 
steps: (1) image acquisition, (2) image segmentation to 
isolate the region of interest, (3) image preprocessing, (4) 
feature extraction, and (5) prediction and classification of 
clinical outcomes by a classifier (Figure 1A and B).30,31

MRI is the standard imaging modality for diagnosis and 
monitoring of BM, with most of the existing BM radiomics 
literature utilizing MR images. In addition, CT and positron 
emission tomography (PET) images can also be used to 
image BM. For MRI, such analyses can be accomplished 
on standard MRI—using either T1- or T2-weighted (T1/2W) 
images—or using quantitative imaging techniques, such 
as fluid-attenuated inversion recovery (FLAIR), diffusion-
weighted imaging (DWI), and perfusion-weighted imaging 
(PWI), which allow for more data to be used by radiomic 
models for more accurate predictions.

Tumor segmentation can be achieved through manual 
contouring or automated segmentation to delineate 
areas of interest computationally. Despite its simplicity, 
manual contouring is tedious and time consuming. It 
also suffers from inter-observer and intra-observer var-
iability.32,33 As such, automated approaches to tumor 
segmentation have been developed.34,35 The increased 
use of deep learning (DL) in radiomic pipelines means 
that many models will skip tumor segmentation en-
tirely, opting for whole-image analysis instead.21 In fact, 
DL models can be integrated to complete tumor locali-
zation and image segmentation, feature extraction, and 
classification (Figure 1B).36–38 Deep convolutional neural 

network models have been widely used for tumor seg-
mentation.39 U-Net architecture and its variants are 
among the most commonly used models for tumor seg-
mentation.40 In fact, conventional machine learning (ML) 
and DL U-Net models proposed for glioma segmentation 
have been systematically reviewed.39 They reported that 
deep learning models such as U-Net have the potential 
for deployment in a clinical setting.

Image preprocessing is a critical step between segmen-
tation and feature extraction. It serves to create consist-
ency amongst images prior to radiomic analyses. There 
is limited research on which preprocessing steps result 
in the most reproducible radiomic analyses. However, 
studies commonly use preprocessing steps such as voxel 
resampling and denoising. Resampling makes voxel di-
mensions consistent across images from all patients in a 
dataset. Resampling increases the robustness of radiomic 
features and often aids in their generalizability across 
datasets.41,42 Denoising aims to remove noise, defined as 
randomly distributed intensities unrelated to biological fea-
tures. Denoising could improve the robustness of radiomic 
features.42 In studies where clinical images are compared 
across timepoints, image registration is essential, such 
that anatomical structures are lined up, permitting com-
parison of extracted radiomic features.43 However, the type 
of registration algorithm used could affect the repeatability 
of radiomic features.43

Processed images are subjected to feature extraction, 
whereby the intrinsic relationships between pixels/voxels 
are quantified and used to derive associations with clin-
ical outcomes. Traditionally, feature extraction relied on 
“handcrafted” analyses, where quantitative features are 
defined based on first-order statistics, shape, and tex-
ture.21 DL-based algorithms have been increasingly used 
for image analysis and feature extraction.21,44 During this 
process, several hundred to a few thousand features are 
extracted. Classifiers combine extracted features and oc-
casionally other clinically relevant data (eg, age, sex, and 
performance status). As such, classifiers can rely on either 
statistical methods or artificial intelligence (AI)-based ap-
proaches to predict clinical outcomes.21 Notably, ML ap-
proaches are particularly well suited for creating such 
prediction models since they can learn over time to im-
prove prediction accuracy and are more suited for hand-
ling high-dimensional features. The implementation of 
AI in radiomics has several distinct advantages for quan-
titative image analysis. The use of AI-based classification 
permits the analysis of numerous radiomic features on 
large-patient datasets. Thus, clinical decision-making is 
based on a radiomic-signature, rather than the isolated 
predictive power of a single radiomic feature. ML-based 
classifiers make clinical predictions based on training data 
sets. “Deep”-extracted features—ie features extracted by 
DL models—can often be much more nuanced than those 
found through handcrafted analysis.21

A particular challenge for classifiers in BM-specific 
radiomics is the inherent clustering of radiomics features 
due to their high correlations between these features. 
Notably, tumors may be segmented as sub-regions, or 
patients may present with several lesions, leading to mul-
tiple observations per patient. The clustering resulted from 
the high correlation of these features can bias estimates 
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of classifier performance, although no standard solution 
to this has been presented to date.45 When developing ma-
chine learning models, it is essential to avoid distributing 
data points for a patient across training and test sets as 
such scenarios violate the independent assumption, which 
states that data used for model training and evaluation 
should be independent. It has been empirically shown 
that violating the independent assumption could lead to a 
substantial but superficial and misleading boost in model 
performance.46 When analyzing multiple regions of in-
terest within the same patient, calculating patient-level 
performance measures could prevent the bias introduced 
by multiple predictions associated with these regions of in-
terest for some patients.47 However, this approach is not 
always applicable since the multiple predictions in multi-
region analysis, eg, analyzing several lesions within the 
same patient, do not always need to be consistent. For ex-
ample, some lesions within a patient might be malignant 
and some benign. Consequently, patient-level prediction 
is not always medically informative or relevant. Notably, 
variance adjustment, logistic random-effects models, and 
generalized estimating equations can be applied as other 
statistical methods to adjust for the high correlation in clus-
tered data when calculating sensitivity and specificity.47

Radiomic-identified biomarkers are not always fully ex-
plainable so that the quantitative values for each feature 
can be understood and interpreted by humans. This issue 
is more profound for DL models. However, the lack of inter-
pretability of these models does not mean that they are not 
generalizable or reproducible. There have been efforts to 
standardize radiomic-derived biomarkers identified across 
different groups, creating defined biomarkers that could be 
generalized across software from different institutions.41 
The Image Biomarker Standardization Initiative (IBSI) 
aimed at producing and validating reference values for 
radiomics features enabling the verification of radiomics 
software to increase the reproducibility of radiomics 
studies and facilitate model deployment in clinical set-
tings.41 Despite these initiatives, variation in image acquisi-
tion, reconstruction, and segmentation might still lead to a 
lack of generalizability in radiomics studies. In multicentric 
or multiscanner settings, features extracted by standard-
ized radiomics software might lack reproducibility due to 
sources of variations such as different scanner types, field 
strengths, or acquisition protocols. The role of biomarkers 
in radiomics is not limited to extracting features that may 
predict factors such as overall survival, as radiomic anal-
ysis may lead to the efficient and noninvasive identification 
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Figure 1. Radiomics pipelines utilizing a T2-weighted MRI image of a patient with BM, alongside the segmentation for the image. (A) A conven-
tional handcrafted radiomic workflow in which images acquired from patients are manually, automatically, or semi-automatically segmented/con-
toured to delineate regions of interest. After applying perprocessing steps, such as normalization and denoising, the outlined tumors will undergo 
feature extraction using mathematical features such as first-order statistics, shape-based, and gray level co-occurrence matrix. After feature 
extraction, a classification model could be developed to predict the outcome of interest. (B) In a DL-based radiomic workflow, features are learned 
by a DL model using the available data for model training. Most often, a DL model consists of two components: a deep feature extractor followed by 
a classifier. The deep feature extractor component most often is a convolutional neural network (CNN), and the classifier component of the model 
is a shallow fully connected neural network. DL-based classification models often conduct a whole-image analysis and bypass the need for tumor 
segmentation. However, manually, automatically, or semi-automatically acquired segmentations could also be used in a DL-based workflow. 
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of known biomarkers. For instance, prediction models can 
often accurately determine factors such as tumor mutation 
status and proliferative index (KI67 immunohistochemistry 
status).48 Radiomic and quantitative image analysis have 
become increasingly relevant tools in neuro-oncology. 
Imaging is continually a part of patient care, and radiomic 
analyses exploit this existing data to provide further nonin-
vasive predictions pertaining to patient survival, mutation 
status, and other factors that can help stratify patients into 
a novel and more personalized treatment plans (Figure 2).

Radiomics as a Tool to Predict Response to 
Stereotactic Radiosurgery

SRS is the standard of care for patients with 1–4 BM, less 
than 3 cm in diameter.49–53 For patients with more than 4, 
WBRT is the current standard of care with emerging data 
suggesting that up to 10 BM can be successfully treated 
with SRS.54–56 Unfortunately, not all patients are respon-
sive to radiation therapy, with large BM rarely experien-
cing prolonged clinical benefit.57–62 Predicting response 
to SRS is challenging, and disease progression may only 
be apparent through imaging several months after treat-
ment. Using serum-based biomarkers to predict sensi-
tivity is promising but an approach in the early phases of 
development.63 Radiomic tools may be able to effectively 
predict patient response to radiotherapy using medical 
images alone.

Several studies have used radiomics models to pre-
dict patient response to SRS (summarized in Table 1).64–67 
In one study, contrast-enhanced (CE) T1W and T2 FLAIR 
alongside a support vector machine was able to predict 
overall response, as well as response at 6- and 12-month 
time points based on early images of BM.66 The group ret-
roactively separated patients and tumors into 2 cohorts: 
those predicted to show local control and those predicted 

to show local failure following SRS treatments. Tumors 
and patients predicted to experience local failure dem-
onstrated significantly lower control rates and shortened 
overall survival. Other groups have focused on specific 
radiomic features as predictive biomarkers for response to 
SRS. Notably, both tumor enhancement volume and zone 
percentage were found to act as prognostic factors for BM 
local control in SRS-treated patients.68,69

One study predicting SRS-responsiveness incorporated 
a large number of clinical features, such as radiation dose, 
ratio of prescription dose to maximum dose for the lesion, 
tumor diameter, primary tumor site, number of metastases, 
and previous WBRT treatment with CE-T1W and T2-FLAIR 
images alongside a random forest-based classifier.64 
Although clinical features alone performed poorly with an 
area under curve (AUC) value of 0.669, performance was 
enhanced when combining radiomic features with clinical 
information generating an AUC of 0.793. Similarly, another 
study incorporated information relating to radiation dose 
in BM patients treated with SRS in CE-T1W images.70 The 
best-performing model using logistic regression analysis 
incorporated features relating to dose skewness, dose en-
tropy, and dose minimum alongside other handcrafted 
radiomic features.

One group compared radiomic features to CE patterns 
defined by three radiologists as either homogenous, het-
erogeneous, or necrotic ring-like from CE-T1W, T2W, and 
FLAIR images as predictors of patient response to SRS.67 
Their best-performing model integrated both radiomic 
and semantic features for classification by a random forest 
algorithm.

Multiparametric MRI also has the potential to predict pa-
tient response to SRS treatment. Numerous MRI modal-
ities (Table 1), coupled with features extracted from both 
the tumor core and peritumoral edema, were used to gen-
erate a radiomic model.71 A random forest algorithm incor-
porated features from several different imaging modalities, 
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Figure 2. Current applications of radiomics in brain metastases (BM) management. Radiomics has emerged as a powerful tool in the personalized 
management of brain metastases (BM). This includes discriminating BM from primary central nervous system (CNS) tumors, identifying the site of 
primary cancer of origin, discriminating radiation necrosis from recurrence, predicting tumor mutation status, and predicting patient response to 
stereotactic radiosurgery (SRS).
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including apparent diffusion coefficient (ADC) and cerebral 
blood volume (CBV) maps, were significant for predicting 
patient response.71

Notably, 2 studies have included DL in their radiomic 
pipeline for the prediction of response to SRS.72,73 One 
group classified patients based on predicted response to 
gamma-knife radiosurgery using a 10-layered neural net-
work from CE-T1W images.72 The model showed an accu-
racy of 78%; however, with a testing set of only 9 patients, 
the generalizability to larger data sets may be challenging. 
Conversely, the second group applied a DL for both fea-
ture extraction and classification on CT images of BM.73 
They created “ensemble” models that consisted of 10 dif-
ferently trained and validated convolutional neural net-
works (CNNs), resulting in their highest predictive power. 
Notably, CT images are used less frequently for the im-
aging of BM compared to MRI. Patients enrolled in the 
study were limited to a short 3-month follow-up. Thus treat-
ment response did not account for pseudoprogression.

The body of literature describing radiomics-based pre-
dictions of SRS response is still developing. Future studies 
may focus on incorporating larger and multi-institutional 
data sets as models begin to become more generalizable 
for clinical use. Previous research in the field has shown 
that semantic features from contrast-enhanced MRI can act 
as prognostic features for SRS responsiveness.74 However, 
it is evident that there is a need for more biomarkers aiding 
in the identification of these non-responsive patients. As 
the radiomics field develops within this context, it will 
likely prove to be a useful approach for more personalized 
management of BM.

With the increasing prevalence of SRS use, and particu-
larly with the addition of concomitant systemic therapies 
and longer patient survival, radiation necrosis has become 
an increasingly prevalent issue.75 Radiation necrosis is the 
death of parenchymal brain tissue following radiotherapy, 
with larger BM treated with a greater applied radiation 
dose being at higher risk.75 It is distinct from tumor recur-
rence or progression, in which radiation necrosis is not 
a malignant progress, despite exhibiting a high degree 
of overlap in symptoms and radiological appearance.75 
Establishing strategies to accurately differentiate radiation 
necrosis from recurrence and tumor progression has the 
potential to significantly improve the care and quality of 
life of patients treated aggressively for lesions of equivocal 
significance.75 Notably, this could enable clinicians to halt 
further radiotherapy and potentially alleviate symptoms 
using drugs such as bevacizumab or corticosteroids.76–78

Several publications have focused on discriminating 
cases of radiation necrosis from local recurrence (LR) or 
tumor progression in BM patients (summarized in Table 
2).65,79–85 This task remains very challenging for clinicians 
using traditional interpretations, and radiomic models will 
frequently outperform radiologists.65,84 Radiomics ana-
lyses can often discriminate radiation necrosis from true 
disease progression with AUC values generally above 0.80 
(Table 2).

A recent study employed an integrated multiparametric 
radiomics, extracting features from combined CE-T1W and 
T2-FLAIR images to be classified by a random forest algo-
rithm.82 Incorporating patients from two separate institu-
tions and using a dedicated testing set aided their model’s 

potential generalizability. As such, these multiparametric 
approaches may show merit in future studies, aiding in 
clinical predictions.

The use of PET—particularly dynamic amino acid PET—
has the potential to improve the ability to discriminate 
radiation necrosis from progression.86–89 For instance, a 
multivariate logistic regression-based classifier could accu-
rately discriminate between radiation injury and true pro-
gression using combined O-(2-[18F]-fluoroethyl)-l-tyrosine 
(FET)-PET and MRI.81 Interestingly, prediction using strictly 
FET-PET features performed better than one using MRI 
alone. However, combining information from the 2 modal-
ities resulted in their best-performing model with an accu-
racy of 89%. Additionally, 11C-methionine (MET)-PET scans 
have also been used to discriminate true progression from 
radiation necrosis.79 They did not limit their study to BM 
and included patients with gliomas. While the results using 
PET from both groups are promising, it is notable that FET 
and MET are not radiotracers currently used clinically for 
PET scans in lieu of [18F]-Fluoro-2-deoxy-d-glucose (FDG).90

In the context of treating radiation necrosis, some pa-
tients show no benefit with bevacizumab treatment and oc-
casionally even display worsening.91 To address this issue, 
one study used a multivariable logistic analysis classifier 
from FLAIR image features that could predict patients with 
responsiveness to bevacizumab as a treatment for radia-
tion necrosis.85 This work was not specific to only patients 
with BM but rather to patients with all primary and sec-
ondary central nervous system (CNS) tumors exhibiting 
radiation injury. Their prediction model considered abun-
dant clinical information such as the interval between radi-
otherapy and diagnosis of radiation necrosis, the interval 
between radiation necrosis onset and bevacizumab treat-
ment, and features extracted from FLAIR imaging. A com-
parison a radiomics-based multivariate logistic analysis 
classifier to biophysical modeling of tumor growth showed 
the latter to be favorable in predicting radiation injury 
from CE-T1W and FLAIR images.80 Biophysical modeling 
of lesion growth allows for patient-specific mathematical 
prediction of tumor growth based on clinical images.92 
The inclusion of mechanistic features extracted through 
biophysical modeling could be incorporated alongside 
radiomic features to improve prediction accuracy.

Overall, the studies describing radiomic models that dis-
criminate between radiation necrosis and true progression 
in patients with BM show the potential for future clinical 
applications.

Radiomics to Identify Brain Metastasis 
Mutational Status

With advances in systemic therapies often designed to target 
cancer-specific driver mutations, identifying genetic alter-
ations within a patient’s tumor is of utmost importance for 
personalized management of BM. However, a patient’s BM 
can diverge substantially from their primary tumor of origin 
with respect to mutation status and frequently acquire or 
lose targetable genetic lesions.93 Performing next-generation 
sequencing, immunohistochemistry, and PCR-based as-
says on biopsies and surgical specimens from primary tu-
mors or BM are used as the gold standards to identify tumor 
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mutation status. With further development, radiomics has 
the potential to circumvent the need for invasive brain tissue 
sampling by acting as a virtual biopsy, particularly for those 
patients not eligible for surgical resection.

Applying radiomics to identify underlying tumor mutation 
is an emerging application within this field. This phenom-
enon is particularly notable in the context of non-small cell 
lung carcinoma (NSCLC) BM where patients can exhibit sev-
eral different genetic mutations or rearrangements that are 
treatable with targeted agents. Frequently mutated genes in-
clude EGFR, ALK, KRAS, BRAF, HER2, ROS1, and RET.94

Several studies have emerged using radiomics as a 
“virtual biopsy” for EGFR mutation status in lung cancer 
patients, showing moderate performance in the predic-
tion of EGFR mutation status with AUC values ranging be-
tween 0.75 and 0.9595–97 (Table 3). However, small sample 
sizes may hurt the generalizability of certain models clini-
cally.95–97 A study attempted to use a random forest-based 
classifier to predict mutation status in lung cancer pa-
tients with BM using contrast-enhanced T1-weighted and 
T2-FLAIR MRIs evaluating, EGFR, ALK, and KRAS mutation 
status.97 These studies show promise for radiomics as a 
tool for managing NSCLC patients exhibiting BM.

BRAF mutation status is an important biomarker for per-
sonalized management of metastatic melanoma.98–100 In 
one study, tumor location, shape, first-order, and second-
order features from CE-T1W MRIs, alongside a support 
vector machine classifier were used to predict BRAF mu-
tation status in melanoma-derived BM.101 Akin to previous 
studies predicting BM mutation status, this model showed 
an accuracy of 78%, although the study contained a limited 
number of samples. Another group has also published a 
support vector machine based classifier that could specifi-
cally predict the presence of BRAF V600E mutation in mel-
anoma patients with BM with an accuracy of 86%.102 The 
classifier incorporated features from CE-T1W images, T2W 
images, and clinical information.

Radiomics as a tool for virtual biopsy of BM is still with 
very recent and emerging applications. Studies in the con-
text of both lung and melanoma BM have shown that there 
is potential for future clinical use. In the context of glio-
blastoma and other primary brain tumors, there is a large 
body of work demonstrating the applicability of radiomics 
for determining alterations in MGMT promoter methyla-
tion103–106 and mutations in IDH,107,108 ATRX,109 TP53,108 and 
EGFR.110 Future models could thus target predicting mul-
tiple genetic alterations within a single lesion.

There is impetus for future studies to focus on 
incorporating larger and multi-institutional data sets 
to further illustrate the potential and generalizability of 
radiomics in this context. Furthermore, it remains to be 
seen whether radiogenomics approaches can predict indi-
vidual mutations in single oncogenes with many different 
potential driver mutations beneficial to targeted therapies, 
such as BRAF.111,112

Applying Radiomics to Differentiate Between 
Primary Brain Tumors and BM

With MRI, solitary BM in the absence of a known primary 
tumor can be difficult to differentiate from primary tumors 

of the CNS origin,113 even though the increased use of quan-
titative MRI sequences has improved the accuracy of these 
diagnoses.114,115 Management of primary brain tumors dif-
fers substantially from that of BM, and misdiagnoses of 
either glioblastoma as BM or vice-versa do occur and are 
of significant consequence for affected patients.12,113 In this 
regard, multiple studies have applied radiomics to develop 
tools capable of differentiating patients with BM from 
those with primary CNS tumors (Table 4).116–122 The utility 
of radiomics to discern primary from metastatic brain le-
sions was underscored by demonstrating that two such 
models outperform neuroradiologists.119,123

Current literature primarily uses handcrafted features 
alongside classical ML approaches.116–122 Despite this focus 
on more “traditional” radiomic approaches in the field, 
DL-based approaches show promise, as one group demon-
strated increased predictive power in comparison to their 
ML-based classifier.123 Additionally, models discriminating 
between glioblastoma and BM is not limited to MRI, as 
other groups have used CT to similar effect.122

Several groups working on this application emphasized 
generalizability, through the use of PyRadiomics that is an 
open-source library allowing for standardized feature ex-
traction, thus creating consistency across extracted fea-
tures.118,119,123,124 Several groups also included external 
validation in their studies.119,123

Future radiomics models could thus serve as an impor-
tant tool for clinicians attempting to distinguish between 
BM from primary CNS tumors. In the context of primary 
CNS tumors, radiomics has been applied to aid in grading 
gliomas125,126 and distinguishing glioblastoma from other 
CNS malignancies, such as primary central nervous system 
lymphoma (PCNSL).127,128 These studies could soon evolve 
to distinguish lower-grade gliomas and PCNSL from BM.

Primary cancer site of origin is unknown in up to 15% of pa-
tients with BM, and nearly 5% of BM patients still have an un-
known primary tumor type after autopsy.129 This complicates 
management, as systemic therapies vary mainly depending 
upon the site of the primary cancer.1 Biopsies coupled with 
pathology work-up can provide critical information re-
garding the primary cancer origin of BM but are rarely used 
in this context, given their invasiveness.130 However, the ap-
plication of imaging-based approaches for diagnosing pri-
mary tumor of origin would avoid invasive tissue sampling. 
Radiomics has begun to be applied in this setting, with the 
goal of rapid and noninvasive assessment of BM origin.

Several radiomics models have been developed with the 
goal of distinguishing primary origin sites based on im-
ages of existing BM (Table 5).131,132 One study aimed to dis-
criminate between BM and glioblastoma primary lesions, 
alongside primary tumor origin; however, only focusing 
on tumors from breast and lung.117 The group extracted 
features from CE-T1W MRIs, classifying using a support 
vector machine algorithm. Another group used 3-dimen-
sional features from T1W MRIs and a random forest al-
gorithm for discriminating between BM from lung and 
breast cancer (accuracy of 86%) and BM from lung cancer 
and melanoma (accuracy of 86%).132 However, this model 
performed poorly in discriminating breast and melanoma-
derived BM from one another with an accuracy of 56%. 
This study was limited to only these three primary can-
cers, which may limit generalizability, particularly in cases 
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of patients with BM originating from colorectal, renal, or 
other primary sites of origin.

One study used T1W, CE-T1W, and FLAIR images along-
side a random forest classifier to discriminate primary 
tumor of origin from BM images.131 The model accurately 
predicted BM originating from breast, small cell lung 
cancer (SCLC), and malignant melanoma. Prediction ac-
curacy, however, was lower when for discerning patients 
with brain lesions originating from NSCLC and gastroin-
testinal cancers.

There have been efforts to use radiomics to distinguish 
subtypes within NSCLC BM. A  binary logistic regression 
classifier could accurately distinguish NSCLC-originating 
BM as being either adenocarcinomas or squamous cell 
carcinomas using contrast-enhanced CT images.133

Future studies in this area would benefit from 
incorporating data sets for patients with “other” primary 
cancer types. While breast, melanoma, and lung cancers 
represent the most BM cases, the ability of models to rec-
ognize BM from gastrointestinal and kidney cancers, for 
instance, is essential for clinical applications in a primary 
tumor-agnostic patient population, as is seen in the real 

world.1 Despite this, the existing literature demonstrates 
that radiomics has the potential to identify primary cancer 
origin in BM.

The Future of Radiomics for BM Management

Despite the progress made implicating radiomic models 
for the management of BM, there remains ample space 
for future development. A  large proportion of radiomics 
research using MRI and CNS tumors has focused on gli-
oblastoma, which thus hints at potential applications 
to BM. Such possibilities include the use of radiomic 
models to predict overall survival, progression-free sur-
vival, and local recurrence-free survival for patients with 
BM. Notably, both overall and progression-free survival 
have been the target of radiomics models for glioblas-
toma patients.134 Recently, several studies have emerged 
predicting overall survival in patients with BM, although 
these have remained specific to NSCLC and melanoma pri-
mary cancer types.135–137

Advances in the past years have shown that radiomics is 
capable of predicting mutation status subtyping, particularly 

  
Table 4. Differentiation Between Primary CNS Tumors and BM

Study Imaging 
modality 

Study size Classification type External 
testing/
vali-
dation 
dataset 

Non-
radiomic/
clinical in-
formation 
used? 

Model perfor-
mance 

Mărginean 
et al.122

CT 36 patients Univariate and mul-
tivariate statistical 
analyses

N/A No AUC = 0.992  
95% CI = 0.903-
1

Bae et al.123 T2W, 
CE-T1W

166 patients in 
training cohort, 82 
patients in valida-
tion cohort

Deep learning neural 
net

Yes No AUC = 0.956  
95% CI = 0.918-
0.990

Dong 
et al.118

T1W, T2W, 
CE-T1W

120 patients Five classifiers reach 
agreement: decision 
tree, neural net-
work, support vector 
machine, k-nearest 
neighbor, naïve bayes

Yes No Accu-
racy = 0.77  
Speci-
ficity = 1.00

Ortiz-
Ramon 
et al.116

CE-T1W 50 glioblastoma 
patients, 50 BrMs 
patients

Multilayer perceptron No No AUC = 0.912  
Standard devi-
ation = 0.060

Artzi et al.117 CE-T1W 439 patients Support vector ma-
chine

Yes Patient 
age, 
gender, 
and 
weight

AUC = 0.96

Chen 
et al.120

CE-T1W, 
T2W, 
T2-FLAIR

134 patients Distance correlation 
and logistic regression

Yes No AUC = 0.80

Qian et al.119 T1W, 
CE-T1W*, 
T2W

412 patients Support vector ma-
chine

Yes No AUC = 0.90

AUC: area under the curve, CE: contrast-enhanced, T1/2W: T1/2 weighted, FLAIR: fluid-attenuated inversion recovery, CT: computed tomography, 
CI: confidence interval. The information selected here illustrates the best-performing models. Model performance portrayed on testing data sets, if 
available.
*Tumor segmentation was only performed on CE-T1W images in the study by Qian et al.
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in the context of NSCLC BM. Future research could similarly 
focus on breast cancer BM subtyping, which can be an impor-
tant factor for patient outcomes upon diagnosis of metastatic 
spread.138 Additionally, factors such as KI67 expression, HIF-
1α status, and the presence of microvasculature are prog-
nostic factors for BM.139,140 In the context of glioblastoma, it 
has been shown that radiomics can predict KI67 status sug-
gesting that this is a possibility for BM as well.141,142

Tumor invasiveness has been shown to be an important 
prognostic factor for overall survival and local-recurrence 
free survival in the context of BM.7 Developing a radiomics-
based approach that could predict invasion patterns of brain 
metastases may be advantageous for clinicians with the fur-
ther development of this biomarker, as has been shown for 
histopathological growth patterns of colorectal cancer liver 
metastases.143 Radiomic prediction of brain invasiveness has 
similarly been pre-operatively demonstrated in meningioma, 
suggesting promise for future applications in BM.144,145

Another development pertinent to BM-specific radiomic 
models is the inclusion of peri-tumoral imaging. Notably, in 
the context of meningioma, peritumoral edema volume has 
shown to be an important biomarker for predicting inva-
siveness.145 In the context of BM management, peritumoral 
images have seldom been used for analysis. Notably, 
peritumoral regions, including both edema and tumor le-
sion borders, were shown to contain important information 
for a model predicting BM response to SRS.66 Additionally, 
a study in patients with single BM showed that textural 
analysis of apparent diffusion coefficient (ADC) images de-
rived from DWI could improve clinical risk models.146

Radiomics has proven to be a promising approach for 
the personalized management and stratification of pa-
tients with BM. However, as this tool moves toward the 
clinic, there are several important considerations and 
limitations to consider. It is evident that radiomic models 
will serve as an additional tool for clinicians rather than a 
standalone modality for diagnostics and prognostication. 
Moreover, despite the inherent advantages of high-order 
image analysis, it is not a complete replacement for tra-
ditional semantic analyses performed by radiologists, as 
evident by several publications outlined in this review.64,67 
Multi-dimensional data integration will be a key feature 
in future radiomics studies. This will expand past clini-
cally relevant data such as patient age, sex, and primary 
site of origin to also include pathologic and genetic in-
formation to improve model performance. Notably, any 
radiomic model used in practice needs to perform consist-
ently. Reproducibility and generalizability remain an issue 
within the field as current studies often focus on small, 
single-institution datasets. Future studies should aim to in-
corporate larger and cross-institutional data sets to dem-
onstrate the large-scale merit of radiomic models in BM 
management. Additionally, these studies may cultivate 
higher-performing models by using heterogeneous data 
sets that contain differences in patients and image acquisi-
tion. Notably, there have been efforts to standardize image 
acquisition across all radiomic studies in clinical trials to 
increase reliability with regard to tumor detection and 
measurement.147 These efforts have resulted in consensus 
recommendations for a standardized brain tumor imaging 
protocol that includes “minimum standard” and “ideal” 
imaging protocols which include the implementation of 

black-blood imaging.147 Furthermore, there should be 
an emphasis on using standardized, open-source image 
analysis packages, such as PyRadiomics, to ensure 
reproducibility.41

In summary, we outlined the emerging use of radiomics 
for the personalized management of BM. Radiomics has 
yet to reach the forefront of clinical management for pa-
tients with BM. However, as this field continues to evolve, 
particularly with large multi-institutional studies, such a 
possibility will become closer to reality.
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black-blood imaging.147 Furthermore, there should be 
an emphasis on using standardized, open-source image 
analysis packages, such as PyRadiomics, to ensure 
reproducibility.41

In summary, we outlined the emerging use of radiomics 
for the personalized management of BM. Radiomics has 
yet to reach the forefront of clinical management for pa-
tients with BM. However, as this field continues to evolve, 
particularly with large multi-institutional studies, such a 
possibility will become closer to reality.
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