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Abstract: Polymer membranes have been widely used in guided tissue regeneration (GTR) and
guided bone regeneration (GBR). In this review, various commercially available membranes are
described. Much attention is paid to the recent development of biodegradable polymers applied
in GTR and GBR, and the important issues of biodegradable polymeric membranes, including
their classification, latest experimental research and clinical applications, as well as their main
challenges are addressed. Herein, natural polymers, synthetic polymers and their blends are all
introduced. Pure polymer membranes are biodegradable and biocompatible, but they lack special
properties such as antibacterial properties, osteoconductivity, and thus polymer membranes loaded
with functional materials such as antibacterial agents and growth factors show many more advantages
and have also been introduced in this review. Despite there still being complaints about polymer
membranes, such as their low mechanical properties, uncontrollable degradation speed and some
other drawbacks, these problems will undoubtedly be conquered and biodegradable polymers will
have more applications in GTR and GBR.
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1. Introduction

Guided tissue regeneration (GTR) was first described in the 1950s by Hurley, who physically
separated soft tissues from areas of active bone formation in the spine with a barrier membrane [1].
In the 1980s, GTR was introduced to periodontal tissue regeneration to stop cell migration from
gingival connective tissue and epithelium to the periodontal defect, and has been adopted in treating
periodontal lesions to generate new attachments [2,3]. Subsequently, a membrane technique used
to generate new bone around implants based on the principle of GTR was defined as guided bone
regeneration (GBR) [4]. Currently, GBR is one of the most common and promising augmentation
techniques to regain sufficient width and height of the jawbone at oral implant sites, or to preserve
alveolar sockets after tooth extraction [5-8]. For GTR and GBR techniques, whether or not the graft
material is filled, a special barrier membrane plays a key role to prevent epithelial or undesirable tissues
migration into the defective area [9], and consequently it allows sufficient time for bone, cementum,
and periodontal ligament regeneration [10]. The ideal membrane for periodontal guided tissue
and bone regeneration should have the following properties: biocompatibility, space maintenance
ability, cell occlusiveness, integrated by the host tissues, and clinical manageability [11,12]. Generally,
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the membranes used in GTR and GBR are roughly divided into two types: bioabsorbable and
non-resorbable membrane. Each membrane has been extensively applied in clinic. Currently, much
attention is still paid to the development of the new types of ideal GBR and GTR membrane [9].
Non-resorbable membranes include expanded polytetrafluoraethylene (e-PTFE, Gore-Tex
high-density  polytetrafluoraethylene (d-PTFE), and titanium-reinforced high-density
polytetrafluoraethylene (Ti-d-PTFE) membranes [13]. The e-PTFE membranes have been accepted as
the gold standard materials with excellent biocompatibility, leading to significant bone regeneration in
numerous clinical studies. However, stiff e-PTFE membranes may result in soft tissue dehiscence,
and thus make themselves susceptible to exposure with subsequent progression of infection [14].

)

7

The following commercially dense PTFE membranes might be impervious to bacteria, since their
porosity is less than 0.3 microns. Besides, titanium frame made the Ti-d-PTFE membranes able to be
trimmed to desired shapes, and shaped for tenting and space maintenance (Table 1) [13]. However,
a second surgery is still necessary to remove them. Bioabsorbable membranes have the advantage
of not requiring surgical removal. The main challenge of bioabsorbable membranes is to match
its resorption time with the periods of tissue formation. The structural integrity of the membrane
should be maintained during the maturation of the newly formed tissue and it varies according
to the application, i.e., 4-6 weeks for GTR for bone and periodontal ligament cells to fill the space
but >6 months for GBR to support new bone formation and maturation [15]. Hence, an optimal
persistence and stability of membranes in vivo should be guaranteed in the range from four weeks to
several months. In this review, the recent progress of bioabsorbable membranes used in GTR and
GBR is reviewed. Depending on their origins, they can be sorted into natural polymers, such as
xenogeneic-derived collagen, and synthetic polymer materials, for example, poly(lactic acid), and
polymer composites, which refer to a combination of two or more different materials to obtain specific
mechanical, chemical, and physical properties [16].

Table 1. The most commonly used commercially available non-resorbable polymeric membranes.

Commercial Membrane Materials Properties Comments

Good space maintainer;

Gore-Tex Expanded PTFE Relatively stiff; Handling Longest clinical experience
Porosity of less than Most cost-effective;
High-density Gore-Tex High-density PTFE 0.3 microns creates A non-surgical removal

impervious barrier to bacteria ~ when in an open technique

Titanium frame may be
Titanium-reinforced  trimmed and shaped to create
PTFE additional space for
bone growth

Ideal for ridge augmentation
and grafting bony defects
missing one or more walls

Gore-Tex-Ti

2. Resorbable Membranes Based on Natural Polymer

Natural polymers exhibit good biocompatibility, safety, biodegradability, and therefore have
gained much attention as GTR and GBR materials. More importantly, their inherent bioactivity,
the ability to present receptor-binding ligands to cells, susceptibility to cell-triggered proteolytic
degradation and natural remodeling, are advantageous properties compared to synthetic polymers [17].
However, the inherent bioactivity of these natural polymers has its own downsides, including a strong
immunogenic response associated with most natural polymers, complexities associated with their
purification and the possibility of disease transmission [17]. Collagen and chitosan are the most
frequently studied natural polymers for GTR and GBR applications, especially collagen membrane.

2.1. Membrane Based on Collagen

Collagen membranes, mostly types I and III, have several superior properties such as good tissue
integration, fast vascularization, biodegradation without foreign-body reaction, chemotactic action
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for fibroblasts, hemostatic property, weak immunogenicity, osteoblastic adhesion and their proven
biocompatibility and capability of promoting wound healing. Therefore, collagen membranes attract
much interest in GTR and GBR research [15,18-23].

Different types of commercially collagen membranes, such as Bio-Gide®, Ossix®, Biomend®
and BiomendExtend®, varying from collagen types, physical or chemical structures, have been
designed (Table 2). These collagen membranes can be resorbed via enzymatic degradation by
collagenases/proteases, and macrophage/polymorphonuclear leukocyte-derived enzymes [14], and
bacterial proteases [24,25]. For example, Bio-Gide® (GeistlichPharma AG, Wolhusen, Switzerland),
one of the most important commercial collagen membrane, is composed of porcine type I and type
III collagen fibers. It comprises a bilayer structure with an outer compact smooth layer and an inner
porous layer. When used for GBR, the porous and compact layers can not only enable osteogenic
cell migration to make bone ingrowth possible, but also prevent the invasion of fibroblasts [26].
It was observed that Bio-Gide® collagen membranes rapidly adsorb the TGF- activity released from
autogenous bone chips, a molecular process that might contribute to guided bone regeneration [27].
Besides, the degradation of monolayer Bio-Gide® and bilayer Bio-Gide® had no difference [14].

Table 2. The most commonly used commercially available resorbable collagen membranes.

Commercial Name (Manufacturer) Collagen Type Collagen Source Resorption Rate

Non-cross-linked collagen membrane

CollaTape/CollaPlug/CollaCote (Integra
LifeSciences Corp., Plainsboro, NJ, USA)
Periogen (Collagen Corporation, Palo
Alto, CA, USA)
Bio-Gide (Geistlich, Wolhusen, Switzerland) Type I and III Porcine skin 2-4 weeks
Tutodent (Tutogen Medical GmbH,
Neunkirchen, Germany)

Typel Bovine tendon 10-14 days

Type I and Il Bovine dermis 4-8 weeks

Typel Bovine pericardium 8-16 weeks

Cross-linked collagen membrane

OsseoGuard (Zimmer Biomet, Inc.,
Carlsbad, CA, USA)
OsseoGuard Flex (Zimmer Biomet, Inc.,
Carlsbad, CA, USA)
Ossix Plus(Datum Dental Ltd., Lod, Israel) Typel Porcine tendon 4-6 months
BioMend (Zimmer Biomet, Inc.,

Type I Bovine tendon 6-9 months

Type I and III Bovine dermis 6-9 months

Carlsbad, CA, USA) Typel Bovine tendon 8 weeks
BioMendl(E;ﬁ;\];:la((jZ/i(rjns %‘Sli())met, Inc., Typel Bovine tendon 18 weeks
RCM6 (%Sfcigfjﬁfuggg Co. Inc,, Typel Bovine tendon 26-38 weeks

Memé%?;if;iljrifiéﬁgafg’ Inc., Type I Bovine tendon 26-38 weeks
Iﬁgﬁfglfggggggéf)" Typel Bovine tendon 26-38 weeks
OssGuide (Bioland, Cheongju, Korea) Typel Porcine pericardium 6 months

Although these native collagen membranes have excellent cell affinity and bio-compatibility [28],
and similar bone regeneration capacity to that of non-resorbable membrane [29], they have obvious
drawbacks for GTR and GBR applications, including the loss of space-maintaining ability in humid
conditions [14,30], risks of a disease transmission to human for animal-derived collagen [31], inferior
mechanical strength, and too rapid biodegradation [32]. It has also raised certain ethical and cultural
issues [33]. These limitations, such as poor mechanical properties and rapid degradation, are associated
with the shortened functional period, greater susceptibility to infection, and the regeneration of
new tissue [34,35]. Hence, in order to reinforce the mechanical and biodegradable stability to
comprise the biocompatibility for use as GBR and GTR membranes, various chemical, physical,
and biological cross-linking methods have been introduced to cross-link collagen. Among the
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chemical cross-linkers, glutaraldehyde (GTA), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC),
polyepoxy, diphenyl-phosphorylationazide, etc. are the most commonly used. For instance, BioMend®
(BioMend Extend®) (Zimmer Biomet, Inc., Carlsbad, CA, USA) and Rapi-Gide® (DalimTissen,
Seoul, Korea), commercially available membranes, are cross-linked by GTA and EDC, respectively.
Via cross-linking, the tensile strength of collagen was enhanced and their degradation time may be
prolonged [36]. However, the residual reagents or secondary products during collagen implant
degradation may have toxic effects, and thus limit their applications [32]. In addition, certain
polysaccharides have also shown a degree of success to cross-link collagen membrane [36,37], such as
Ossix Plus® (Datum Dental Ltd., Lod, Israel) membrane. Physical treatments such as dehydrothermal
treatment [38—40], heat treatment, ultraviolet irradiation, gamma irradiation and microwave irradiation,
and biological methods (e.g., transglutaminase) may be used as an alternative to introduce cross-link
efficiently [32,41]. Cross-linked collagen membrane can maintain block bone substitutes dimensionally
stable in comparison with the use of non-cross-linked collagen in the early healing period of lateral
onlay graft (Figure 1) [40].

Figure 1. Clinical photographs of the experimental sites: (a) A full-thickness flap was elevated, and the
bone bed was prepared by perforating the cortical bone; (b) Assigned bone substitutes and membranes
were applied. The left block is bovine hydroxyapatite incorporated into a non-cross-linked collagen
matrix, and the right block is porcine hydroxyapatite incorporated into a cross-linked collagen matrix;
(c) The bone substitutes were covered by the membranes (red arrow), which were stabilized using two
pins (yellow arrow). Both membranes are cross-linked collagen membrane; (d) An occlusal view of the
opposite side. The non-cross-linked collagen membrane is applied. Reprinted with permission from
John Wiley and Sons [40].

Although cross-linking of collagen endows it with more advantages, there still are some
problems with cross-linked collagen; for example, cross-linked membranes display prolonged
membrane integrity with surrounding tissues and blood vessels compared with the non-cross-linked
membranes [42]. These chemically and enzymatically cross-linked collagen membranes showed
delayed angiogenesis in rats and dogs [29,40]. Some research showed that chemically cross-linked
collagen membrane demonstrated more adverse events and insufficient bone regeneration compared
to the non-cross-linked collagen membrane [43]. All in all, how to balance the contrary sides of
cross-linking collagen membranes between stability and functional remodeling [41] through the
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considerable complexity and diversity in their structure, their linking degrees, their assembly and their
function remains a challenge.

2.2. Membrane Based on Chitosan

In the past 20 years, chitosan, 1,4-linked 2-amino-2-deoxy (3-D-glucan, an alkaline linear and
cationic polysaccharide obtained from the deacetylation of chitin, has been shown to be an attractive
candidate material for GTR and GBR membranes due to its low cost, superior biocompatibility,
non-antigenicity, appropriate degradation rate, flexibility in hydrated environments, hemostatic
activity, antimicrobial and wound healing potential [44—47]. Chitosan membranes were compatible
with cells in vitro and able to facilitate bone regeneration in rat calvarial defects [48]. Chemical
cross-linking is an effective method to increase its mechanical strength and reduce its degradation
speed [49]. Chitosan membranes cross-linked with genipin showed less inflammatory reaction and
resulted in faster healing times when compared with GTA [50]. Histological observations show that
most non-cross-linked and genipin-cross-linked chitosan membranes became infiltrated by fibrous
tissue by 16 and 20 weeks, respectively, whereas BioMend Extend® collagen membranes showed an
much earlier infiltration timing at the 12-week time point [49]. It was reported that genipin-cross-linked
chitosan electrospun mats exhibited only 22% degradation after 16 weeks in vitro test, which was much
slower compared to 34% degradation for non-cross-linked mats [51]. Besides, the ultimate tensile
strength of the cross-linked mats was 32 MPa, about 165% higher than that of the non-cross-linked
mats [51]. These results suggest that genipin-cross-linked chitosan membranes might have potential to
meet the clinical requirements for GBR applications.

Another attractive characteristic is its inherent antibacterial property; therefore, chitosan is also
widely used as an antibacterial agent, either alone or blended with other natural polymers [52].
However, research on its antibacterial application in GBR and GTR is scarce. Chitosan nanoparticles
could adhere to mucosal surfaces, and thus prolong the residence time and evaluate drug permeation
at drug absorption sites [53]. It was reported that chitosan nanoparticles acted synergistically with
chlorhexidine in collagen membranes for periapical guided tissue regeneration [53]. These results
suggested that antibacterial property of chitosan could be used to improve regenerative procedures in
periapical surgery.

2.3. Membrane Based on Gelatin

Gelatin, a soluble protein derived from partially denatured collagen, has received great attention
owing to its availability, easy handling and cost efficiency [54]. Attractive properties of gelatin, such as
good biocompatibility, low immunogenicity, plasticity, adhesiveness, promotion of cell adhesion and
growth, and low cost, make it ideally suitable as a biomaterial for tissue engineering, GBR and GTR [55].
However, gelatin exhibits poor mechanical properties and fast degradation. An efficient method to
improve its mechanical properties and stability is to cross-link gelatin with EDC and N-hydroxyl
succinimide (NHS) [56], heat treatment [57], and GTA [58]. Although the tensile properties of the
gelatin fibrous membrane can be greatly enhanced by cross-linking with EDC/NHS, the cross-linked
membranes in the moist state showed a high elastic characteristic but an extremely lower Young’s
modulus [56]. Therefore, gelatin is seldom used alone to function as a GBR and GTR membrane.

2.4. Membrane Based on Silk Fibroin (SF)

Silk fibroin (SF), a natural protein that can be extracted from silk worms (e.g., Bombyx mori)
or spiders [59], has many attractive properties, including good biocompatibility, good oxygen and
water vapor permeability, and biodegradability [60], and thus has been a candidate material for bone
and periodontal regenerative applications. A recent study reported that in the calvarial defect of
rabbits with SF nanofiber membrane, a complete bony union across the defects was observed after
eight weeks, while at 12 weeks, the defect can be completely healed with new bone [61]. In addition,
SF provides remarkable strength and toughness to provide enough stability, which benefits for space
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maintenance for bone ingrowth while preventing membrane collapse [61]. The tensile strength of the
wet SF membrane was higher than the tensile strength of the wet EDC-cross-linked collagen and PTFE
membranes. The bone formation of the SF membrane was also higher than those of the other two
membranes observed by p-CT and histological analysis [62]. All these results strongly suggest that the
SF membrane could be useful as a barrier membrane for GBR and GTR.

3. Resorbable Membranes Based on Synthetic Polymer

Most of current resorbable synthetic polymer membranes on the market are based on aliphatic
polyesters, such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(e-caprolactone) (PCL),
poly(hydroxyl valeric acid), and poly(hydroxyl butyric acid), as well as their copolymers. The use of
these membranes may be subject to drawbacks such as inflammatory foreign-body reactions associated
with their degradation products [63]. Some studies found a reduced defect fill when applying PLA
and PGA membranes as opposed to e-PTFE membranes [64,65]. More importantly, they are generally
not as biologically active as natural polymers [17]. However, due to their excellent biocompatibility,
controllable biodegradability, low rigidity, manageability, processability, and drug-encapsulating
ability [64,66-68], they have been widely considered for orthopedic applications both in theoretical
experiments and clinic, especially in GBR and GTR procedures.

3.1. Polylactic Acid (PLA) and Polylactic acid/Polyglycolic Acid Copolymer (PLGA)

Polylactic acid (PLA) is one of the most common and important polymers used in GTR and GBR
procedures because of its suitable mechanical properties and biocompatibility. In order to regulate
the degradation rate and hydrophilicity of PLA, copolymers of lactide and e-caprolactone, glycolide,
etc. have been synthesized. Polylactic acid/polyglycolic acid copolymer (PLGA) is a well-known
alternative for PLA in orthopedic applications. Both PLA and PLGA have been used commercially
as membranes, such as Resolut Adapt®, Vicry1®, Epi—Guide® and Vivosorb®, and every membrane
may have its own properties (Table 3). For example, Guidor® Matrix Barrier (Sunstar Americas, Inc.
near Chicago, IL, USA), the first and most widely studied alloplastic matrix and barrier technology
available, is bi-layered, and it is made from a homogenous blend of two polymers, poly-D,L-lactide
(PDLLA) and poly-L-lactide (PLLA), doped with acetyl tri-n-butyl citrate [69]. GUIDOR® Matrix
Barrier could maintain its barrier function for a minimum of six weeks, while it is gradually resorbed
in 13 months [69]. Resolut Adapt® and Resolut Adapt® LT (W.L. Gore and ASSOC, Flagstaff, AZ,
USA) membranes were made by PLGA, and they can remain substantially integrity for 8-10 weeks
and 16-24 weeks, respectively, in order to meet GBR and GTR different demands.

Table 3. The most commonly used commercially available resorbable synthetic polymeric membranes.

Commercial Name Materials Properties Function Resorption
(Manufacturer) P Time Rate

Poly-D,L-lactide and
Poly-L-lactide, blended with 2-layer >6 weeks 13 months
Acetyl tri-n-butyl Citrate

Guidor (Sunstar Americas, Inc.
near Chicago, IL, USA)

Resolut Adapt (W.L. Gore and
ASSOC, Flagstaff, AZ, USA)

Resolut Adapt LT (W.L. Gore
and ASSOC, Flagstaff, AZ, USA)

Poly-D,L-lactide/Co-glycolide ~ Good space maintainer ~ 8-10 weeks 5-6 months

Poly-D,L-lactide/Co-glycolide =~ Good space maintainer =~ 1624 weeks ~ 5-6 months

Epi-Guide (Curasan, Inc.,

Kleinostheim, Germany) Poly-D,L-lactic acid 3-layer Self-supporting 20 weeks 6-12 months

Vivosorb (Polyganics, . can also be used as a
Groningen, The Netherlands) Poly(D,L-lactide-e-caprolactone) nerve guide 10 weeks 24 months

PLGA membrane have shown similar result in extraction wound healing by GBR protocol
compared with collagen membrane [70]. Besides, some study reported that both Gore-Tex® and
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Resolut Adapt® membranes in combination with bioactive glass were equally effective in enhancing
the periodontal regeneration [71]. However, in a randomized controlled trial, PLGA membrane can
not maintain the horizontal thickness of regenerated bone as well as Ti-e-PTFE membrane, and the
latter membrane revealed less soft tissue complications [72].

PLA and PLGA membrane prepared by most fabrication techniques were stiff, which impeded
their medical applications [73], while this drawback can be solved by introduction of softeners, such
as N-methyl-2-pyrrolidone (NMP). Some studies recently have shown that NMP could soften PLGA
membranes and accelerate the maturation of preosteoblastic cells and bone regeneration [73-76]. When
the NMP released, the membrane would turn re-stiffness again. Besides, its contents have a positive
role on these PLGA membranes with regard to bone ingrowth [76]. When combined with deproteinized
bovine bone mineral, this PLGA can perform similarly to native collagen [73]. In addition, 3 wt %
lauric acid can provide a remarkable plasticizing effect on PLGA because of weak intermolecular
interactions in PLGA, and the elongation at break (16.1%) is much higher than that of pure PLGA
(9.1%) [771].

Although PLA- and PLGA-based membranes are non-cytotoxic and biodegradable, the releases
of oligomers and acid byproducts during degradation may trigger inflammation reactions and foreign
body response in vivo [73,78,79], and thus many studies have been carried out to tune its properties,
for example, blending with hydroxyapatite (as shown in Section 4.2.).

3.2. Polycaprolactone (PCL)

Due to its biocompatibility, low cost and high mechanical strength, polycaprolactone (PCL) is an
attractive biomedical polymer and has been extensively studied in bone tissue engineering [80-82].
Only a few studies have studied PCL-based GTR membranes [83,84]. PCL does not produce a local
acidic environment during the degradation procedure compared with PLA and PLGA. However, the
complete bioresorption in vivo of PCL membranes is approximately 2-3 years, which is too long for
application in GTR and GBR treatment [13]. Furthermore, its hydrophobicity reduces cell adhesion
and proliferation. Therefore, PCL is always blended or copolymerized with other polymers before
biomedical application (as shown in Section 4.1.).

3.3. Polyethylene Glycol (PEG)

Polyethylene glycol (PEG), as an important biodegradable, cell-occlusive, and biocompatible
polymer, has also been a candidate for GBR and GTR membranes [85-87]. PEG hydrogel showed
a high biocompatibility and tissue integration in rats, and degradation was dependent on PEG
composition [86]. In a randomized controlled trial, PEG hydrogel membrane was as successful
as collagen membrane in the treatment of peri-implant bony dehiscences with simplified clinical
handling [87]. In addition, recent studies found that PEG membranes exhibited perspective
potential for staged augmentation of challenging lateral ridge defects and preservation of the ridge
contours [23,88-90].

4. Resorbable Membranes Based on Polymer Composites

4.1. Polymer Blends

As polymer membranes have several essential criteria for GBR and GTR success, including
biocompatibility, proper degradation profiles, adequate mechanical and physical properties, and
sufficient strength to avoid membrane collapse and assure sufficient barrier function [12], single
polymer cannot meet all the criteria. For example, natural polymers always lack sufficient mechanical
strength and degradation profiles, while synthetic polymers are biologically inert. It has been
reported that some polyester-based membranes become stiffer and brittler after placement in PBS or
artificial saliva solution [91]. It is still a challenge to develop membranes with sufficient mechanical
properties, predictable degradation rate, and structure that mimics closely the native extra cellular
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matrix (ECM) [92]. It may be an efficient solution to blend two kinds or more of polymers to hinder
their respective limitations and show more positively synergistic effects.

4.1.1. Blends of Natural Polymers

Although chitosan is natural polymer, its bioactivity was not as well as protein polymers, and
its mechanical properties are poor. Many works have been carried out by blending chitosan with
other polymers to improve the mechanical properties and bioactivity of scaffolds composed of several
components. For example, gelatin contains free carboxyl groups on its backbone, and it is easy to
blend with chitosan to form a network by hydrogen bonding. It was shown that the ability to support
cell adhesion and proliferation of gelatin/chitosan membranes was better than gelatin or chitosan
alone [93]. Besides, after proanthocyanidin cross-linked, gelatin/chitosan became more stable and
possessed higher mechanical properties compared with gelatin and chitosan/gelatin membranes [93].
A tri-layered membrane with a central chitosan layer sandwiched by two collagen membranes
containing 20 wt % HA was fabricated [94]. The hydroxyapatite/chitosan/gelatin membranes not
only promote human bone marrow mesenchymal stem cells (hBMSCs) proliferation, but also enhance
progression of osteogenic differentiation [95]. These results suggest that such gelatin/chitosan or
collagen/chitosan membranes are promising candidate for guided tissue and bone regeneration
applications which possess sufficient mechanical and structural properties to function as a barrier
membrane, and that the proteins promoted osteogenic differentiation.

4.1.2. Blends of Synthetic Polymers

PLGA is well known for having a good influence on the reconstruction of various tissues because
of its superior cytocompatibility. However, because of its weak mechanical strength, it is hard
to maintain the shape of a PLGA scaffold during various in vitro and in vivo experiments. Thus,
PLGA have been blended with other polymers, for example, PCL/PLGA composite scaffolds were
manufactured by mixing PCL and PLGA in the same ratio, and their compressive strength and
modulus were much higher than that of pure PLGA scaffolds [96].

A series of PDLLA /PLGA electrospinning membrane system with appropriate degradation rate
and excellent cell-occlusiveness were prepared for GTR, and the in vitro cytologic research revealed
that PDLLA /PLGA composite membranes could efficiently inhibit the infiltration of human embryonic
kidney 293T cells. Besides, the subcutaneous implant test on Sprague-Dawley (SD) rat showed that
PDLLA/PLGA (70/30, 50/50) composite membranes could function well as a physical barrier to
prevent cellular infiltration within 13 weeks, implying that PDLLA /PLGA composite membranes
could serve as a promising barrier membrane for guided tissue regeneration [92]. Besides, PLA /PCL,
PLGA/PCL and many other synthetic polymer composites may also have bright future in GBR and
GTR [96-98].

4.1.3. Blends of Natural Polymer and Synthetic Polymer

Natural polymers always possess much better biocompatibility or bioactive properties,
for example gelatin, has many integrin-binding sites for cell adhesion and differentiation [99,100].
When blend the natural polymers with synthetic polymers, it may combine both the advantages of
natural and synthetic polymers. PCL-gelatin blend, a new biomaterial with good biocompatibility and
improved mechanical, physical, and chemical properties, has been successfully used in neural tissue
engineering [101], cartilage tissue engineering [102,103], GBR and GTR applications [99,100,104-106].
However, phase separation between PCL and gelatin is a headache to prepare composites with excellent
resultant performance. Acetic acid could effectively mediate the miscibility of PCL and gelatin, and
thus it was generally used to form homogeneous nanofibers with improved performance [106,107].
The biodegradation time of the membranes was also appropriate for tissue regeneration [106].

Many chitosan-based hybrid systems have been prepared to increase the cell adhesion,
proliferation, and differentiation ability of polyester membranes or scaffolds. When compared to
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pure PLLA electrospun membrane, PLLA /chitosan electrospun composite membranes showed more
potential for clinical application due to their faster degradation rate and non-fibroblast penetration
property. The degradation rate was up to 20% in six weeks, while PLLA electrospun membrane was
almost non-degradable [108]. Aligned PCL-PEG nanofibers were incorporated into porous chitosan
scaffolds to improve the orientation of collagen fibers in regenerated periodontium (Figure 2) [109].
Ku et al. [110] designed PLLA/chitosan multilayered membrane composed of the outer layers of
chitosan mesh for ease of cell adherence and the middle layer of nanoporous PLLA for sufficient
mechanical strength. The membrane maintained its integrity for up to eight weeks while allowing
gradual degradation. These results suggest that these chitosan/polyester membranes may be suitable
for use in GBR and GTR.

stacking immersing
A
A— —'i ultrasonication w
A—L y——
Electrospinning Electrospun mats 2 %(wi/v) Chitosan solution
o Q
g || &
v || 3
> =
=V3

freeze drying

]

=

Porous chitosan “glued” multilayers Continuous pressure

Figure 2. The schematic process of fabricating PCL-PEG nanofibers embedded 3D scaffold by
incorporating PCL-PEG nanofibrous mats (aligned or random) into porous chitosan scaffold. The
optical image displays a representative section view of the scaffold with width of 103.38 + 49.54 um
between layers. Reprinted with permission from Elsevier [109].

4.2. Bio-Ceramic/Polymer Composites

In order to develop attractive biomaterials for GBR and GTR, considerable attention has been
paid to biomimetic bone extracellular matrix (ECM) structure, composites of polymer and bio-ceramics
component [111]. The latter component refers to hydroxyapatite (HA) [112], carbonated hydroxyapatite
(CHA) [113], bioactive glass (BG) [114], 3-calcium phosphate (3-TCP) [115,116] and so on, which is
known for its good osteoinductive, osteoconductive properties and excellent biocompatibility [117].
Among the available bioactive ceramics, except for its superior osteogenic and angiogenic
effects [118,119], BG can regenerate not only hard tissues, but also soft tissues [120], and thus BG has
received increasing attention in periodontal regeneration, since the periodontal tissues consist of both
hard tissues (i.e., cementum and alveolar bone) and soft tissues (i.e., gingiva and PDL). It has been
shown that the incorporation of bioactive ceramics can significantly enhance mineralization and cell
activities on polymer membranes, indicating favorable osteoconductivity and/or osteoinductivity
for GTR and GBR applications [45,83,114,121,122]. Besides, these bioactive materials can improve the
mechanical properties [123]. The 10-30 wt % nanoapatite in the membrane demonstrated higher tensile
strength (0.61 MPa) compared with pure PLGA (0.49 MPa) [77]. Moreover, the addition of bio-ceramics
can neutralize the acidic degradation products from the polymers such as PLA and chitosan by the
alkali groups [45,47,124]. These composite membranes are assumed to have the ability to preserve the
structural and biological functions of the damaged hard tissues in a more efficient and biomimetic
way [125]. Zinc HA powders were introduced into a heat treated cross-linked gelatin membrane,
which exhibited greater bone formation than collagen membrane did. It was Zinc HA that stimulated
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bone formation through the actions of zinc ions accelerating the proliferation and differentiation of
osteogenic cell [57,126]. A biomimetic coating of apatite on a collagen template can be considered
an efficient alternative [127]. Biomimetic precipitation process has been used to form apatite coating
on collagen formulations [128-130]. This emphasizes the need for polymer/bio-ceramics composite
materials that can combine the advantage of both materials.

5. Resorbable Membranes Containing Functional Materials

5.1. Polymer Membranes Loaded with Antibacterial Agents

The development of periodontitis is mainly related to bacteria activities. Moreover, bacterial
infections are currently considered to be the major reason for the failure of GTR and GBR membranes
in clinical applications. Antibacterial properties attached to GTR and GBR membranes is one of
the greatest interests in the war against implant-related infections, representing the broadest group
of anti-infective biomaterials [131]. Membranes loaded with antibiotics have been designed for
local drug release to overcome the adverse effects of conventional systemic drug administration.
For example, metronidazole (MNA)-loaded polymeric membrane showed a significant improvement
on the periodontal and bone regeneration following GTR and GBT [100,106,107,132]. The PCL/gelatin
electrospun membrane loaded with 30% MNA had the best comprehensive properties including
superior biocompatibility and antibacterial ability [100]. Moreover, acetic acid was introduced to
effectively connect strong interaction between PCL, gelatin, and MNA [106,107]. The controlled and
sustained release of MNA from the membranes significantly prevented the colonization of anaerobic
bacteria [106].

In additional to antibiotics, non-antibiotic antibacterial agents also possess a superior antibacterial
ability and have been used in GTR and GBR. Lauric acid loaded PLGA-CaP hybrid membranes [77]
and ZnO-loaded PCL or PCL/gelatin electrospun membranes [133] have been designed for GTR and
GBR. Chitosan nanoparticles and chlorhexidine have also been added in collagen membranes to endow
antibacterial activity for periapical guided tissue regeneration [53].

Generally, antibiotics were directly blended with membranes, resulting in a high burst release
and short release period that could not effectively prevent bacterial infections. Hence, it is important to
develop novel GTR and GBR membranes with sustained and controlled release of antibacterial agents,
especially when used for patients with a predisposition to these kinds of complications: smokers,
patients with diabetes mellitus, and so on [134-136].

5.2. Polymer Membranes Loaded with Growth Factors

Growth factors are critical signaling molecules that instruct cells behavior through binding to
specific transmembrane receptors on the target cells, and one may achieve tissue regeneration by
enabling control over growth factor delivery [137]. GBR and GTR membrane can act as a localized
controlled release system for growth factors, hence to encourage the differentiation of osteogenic
progenitor cell types in the secluded space under the membrane [104]. In the past decades, controlled
drug delivery systems and biomaterial scaffolds with various osteogenic factors, especially bone
morphogenetic proteins (BMPs), are widely used clinically to promote bone regeneration [138].
BMPs have an unparalleled, dose-dependent potential to augment alveolar bone by triggering the
angiogenesis, migration, and proliferation of mesenchymal stem cells, and their differentiation to
osteoblasts and chondroblasts. Still, the appropriate methods and optimal doses to allow safe use of
recombinant human bone morphogenetic protein-2 (thBMP-2) is a challenge [139]. PCL/PLGA/-TCP
GBR membrane loaded with thBMP-2 was successfully prepared via 3-D printing method, realizing
sustained release of rhBMP-2 up to 28 days; meanwhile, after four and eight weeks in vivo test, the
implantation of thBMP-2 loaded membrane induced much more new bone formation and led to almost
entire healing of 8 mm calvarial defects within eight weeks [115]. When incorporating BMP-2 in the
core and silk fibroin/chitosan/HA as the shell layer of a nanofiber with two different shell thicknesses
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(SCHB2-thick and SCHB-thin), the release rate of BMP-2 and the concentration of BMP-2 in the release
medium were higher for SCHB2-thin membranes because of reduced shell thickness. Compared with
SF/CS and SF/CS/HA membranes, BMP-2 obviously promoted osteogenic differentiation of hBMSCs
(Figure 3) [140]. Stromal cell-derived factor-loe (SDF-1x) regulates the migration of hBMSCs in a
dose-dependent manner [141]. Compared to the bare membranes, SDF-1 loaded membranes yielded
a six-fold growth in the amount of bone formation [104]. These membranes with adequate mechanical
properties and the capacity to release growth factors with tailor-made kinetics have potential for
optimizing clinical application of GBR and GTR.

Low BMP2 loading
SF/CS/NHAP shell solution

Target

. SCHB2-thick
s \\ nanofiber
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Figure 3. Schematic Representation of the Preparation of SCHB2-Thick and SCHB2-Thin Nanofibrous
Membranes through Coaxial Electrospinning and Their Influence on human marrow mesenchymal
stem cells. Reprinted with permission from American Chemical Society 2015 [140].

6. Resorbable Membranes Based on Other Polymer

Although a minor application, platelet-rich fibrin (PRF) in a compressed membrane-like form has
also been used as a substitute for commercially available barrier membranes in GTR treatment [142].
PRF is composed of a biopolymer fibrin, and acts as a potent source of growth factors to facilitate
the tissue regeneration. However, its rapid degradability within two weeks or less at implantation
sites, attaches the disadvantages to application in GBT and GTR for sufficient periods of time [143].
Cross-linking treatments, regardless of methodology, can provide resistance against enzyme-dependent
degradation while simultaneously sacrificing the bioactivity of the PRF. Thus, appropriate cross-linking
treatment may be a solution to make PRF suitable for GBR and GTR, as long as balance its degradability
time and sufficient bioactivity. Freshly prepared human PRF was first compressed with dry gauze
and subsequently with a hot iron. Kawase et al. [143] employed the heat treatment to prepare PRF
membrane, which appeared plasmin-resistant and remained stable for longer than 10 days in vitro
compared to gauze-compressed PRE. This technique reduces the rate of biodegradation without
sacrificing its biocompatibility. Therefore, PRF membranes have promising potential applied as a
barrier membrane in the GTR treatment.

Salicylic acid-based poly(anhydride-esters) (SAPAE) has been a promising candidate under issue
to improve diabetes’ bone or periodontal tissues regeneration [144]. SAPAE have been synthesized
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by chemically incorporating salicylic acid, a nonsteroidal anti-inflammatory drug, that reduces the
production of pro-inflammatory cytokines within a polyanhydride [145]. Subramanian et al. [146]
tested SAPAE membrane as a physical barrier and localized salicylic acid delivery system to restrict
BMP-2 activity to a specified region. The data indicated that SAPAE polymer membranes have potential
application in GBR and GTR procedures and as a barrier to excessive bone formation for diabetes.

7. Conclusions and Perspectives

Different types of biodegradable membranes are commonly used in GTR and GBR, as barrier
devices to isolate the epithelium from bone tissue to favor bone regeneration. In this review,
the advantages and disadvantages of polymer membranes were introduced. The non-degradable
e-PTFE membranes have disadvantages such as non-resorbability and the need for a second surgical
operation, and thus biodegradable membranes including natural and synthetic polymers showed many
exciting advantages. Natural polymer membranes have excellent biological properties, such as cell
adhesiveness and biodegradability, however, they are characterized by low mechanical strength and
short degradation cycle. As a control, membranes based on biodegradable synthetic polymers possess
tuned biodegradation, sufficient mechanical strengths, low rigidity, manageability and processability,
while their biological activity is generally not as good as natural polymers. They may also be subject to
drawbacks including inflammatory foreign-body reactions associated with their degradation products.

Despite the various drawbacks of biodegradable polymers, they are irreplaceable in GTR and
GBR. More and more studies will be carried out on biodegradable polymers and their blends or
composites. For example, to some extent, polymer membranes often sacrifice their early angiogenesis
and osteogenesis. Thus, future works should address how to effectively promote the osteogenic
activities of these membranes when long barrier function time is needed, and hence reach the balance
among physiochemical, mechanical and biological properties. Bioactive ceramics that can significantly
enhance mineralization and cell activities, combined with biodegradable polymers will be researched
more and more. In addition, special membranes with various functional materials, such as antibacterial
agents and growth factors, and membranes with tunable degradation speed, mechanical properties
and controlled release behaviors will be designed accurately according to clinical demand.
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