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Abstract

The concept of kinship permeates many domains of fundamental and applied biol-

ogy ranging from social evolution to conservation science to quantitative and human

genetics. Until recently, pedigrees were the gold standard to infer kinship, but the

advent of next‐generation sequencing and the availability of dense genetic markers

in many species make it a good time to (re)evaluate the usefulness of genetic mark-

ers in this context. Using three published data sets where both pedigrees and mark-

ers are available, we evaluate two common and a new genetic estimator of kinship.

We show discrepancies between pedigree values and marker estimates of kinship

and explore via simulations the possible reasons for these. We find these discrepan-

cies are attributable to two main sources: pedigree errors and heterogeneity in the

origin of founders. We also show that our new marker‐based kinship estimator has

very good statistical properties and behaviour and is particularly well suited for situ-

ations where the source population is of small size, as will often be the case in con-

servation biology, and where high levels of kinship are expected, as is typical in

social evolution studies.

K E YWORD S

animal mating/breeding systems, behavior/social evolution, conservation genetics, quantitative

genetics, wildlife management

1 | INTRODUCTION

Kinship, also known as coancestry or half‐relatedness, is important

to many fields of biology (Csilléry et al., 2006; Speed & Balding,

2015). It is central to Hamilton's rule which explains how social

behaviours evolve and how life went through major transitions in

evolution (Fisher, Cornwallis, & West, 2013; Hamilton, 1963).

In conservation science, kinship between individuals is carefully

documented for successful captive breeding programmes, and

inbreeding (a function of self‐kinship) is measured to establish the

extinction risk of threatened populations (Kleiman et al., 1986; Mad-

sen, Stille, & Shine, 1996). Human geneticists control for kinship

when conducting large‐scale GWASs to identify candidate genes

involved in particular disorders (Campos, Gianola, & Allison, 2010;

Harold et al., 2009; Hindorff et al., 2009; Rivas et al., 2011).

Following the advent of the genomic revolution, increasingly

large genetic data sets have become available. Various ways these

data can be used to estimate kinship have been proposed and are

used currently (Li, Weeks, & Chakravarti, 1993; Lynch, 1988; Lynch

& Ritland, 1999; Queller & Goodnight, 1989; Ritland, 1996; VanRa-

den, 2008; Wang, 2011; Yang et al., 2010). The most frequently

used estimator varies from field to field: GCTA (Genome‐wide Com-

plex Trait Analysis) (Yang et al., 2010) and Ritland (1996) estimators

are commonly used by human geneticists, while Queller‐Goodnight's
(Queller & Goodnight, 1989) is common in conservation biology and

social evolution (Weir & Goudet, 2017). The growing availability of

large numbers of single nucleotide variant data has brought a need

for reexamination of these standard estimators (Druet and Gautier,Abbreviations: Ibd, identity by descent; MAF, minor allele frequency; SNP, single

nucleotide polymorphism.
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2017; Griesser, Halvarsson, Drobniak, & Vilà, 2015; Kardos, Luikart,

& Allendorf, 2015; Kardos, Taylor, Ellegren, Luikart, & Allendorf,

2016; Robinson, Santure, DeCauwer, Sheldon, & Slate, 2013a;

Robinson, Simmons, & Kennington, 2013b; Santure et al., 2010). We

(Weir & Goudet, 2017) recently offered a new set of estimators that

were constructed to be relative to the population from which the

study individuals were sampled. Here, we give a further examination

of these new estimators, using simulated data and data from natural

and domestic animal populations. On the basis of this examination,

we recommend their use in several situations.

Identity by descent (ibd) is defined relative to a reference popula-

tion, where different alleles are considered to be not ibd (Wang,

2016). Estimation rests on translating observed genotypes, reflecting

allelic identity in state, into statements about allelic identity by des-

cent. These translations generally require allele frequencies, meaning

that both inbreeding and kinship estimation imply reference popula-

tions for allele frequencies. A common estimation approach (Milligan,

2003; Thompson, 1975) is to use allele frequencies in the current pop-

ulation as surrogates for reference population values, with the justifi-

cation that “realistic samples will often involve enough individuals that

errors in the allele‐frequency distribution will be quite small” (Milligan,

2003). However, this assumes no inbreeding and low mean relation-

ship in the sample Ritland (1996), and in areas where it can be

obtained, it is recommended to use the frequencies determined from

the founders only (VanRaden, Olson, Wiggans, Cole, & Tooker, 2011).

Hall, Mercer, Phillips, Shaw, and Anderson (2012) provided iterative

EM‐algorithm estimates for both reference allele frequencies and

inbreeding coefficients. Other authors (Vogl, Karhu, Moran, & Savolai-

nen, 2002) adopt a Bayesian approach with a prior distribution for

allele frequencies and inbreeding coefficients and derivation of a mar-

ginal posterior distribution for the inbreeding coefficients.

We recognize the many advantages of likelihood‐based (including

Bayesian) methods, but simplicity and computational issues lead us to

concentrate on the method of moments for estimation. A feature of

our approach (Weir & Goudet, 2017) is that independence of alleles at

a single locus in the reference population need not be assumed,

although we have not considered dependencies among loci.

Our approach thus allows the target individuals to be inbred and

is in line with Powell, Visscher, and Goddard (2010) in taking the

current population as the reference. Doing so makes estimation of

allele frequencies straightforward. The resulting estimates of

inbreeding and kinship coefficients, now relative to the current pop-

ulation, are no longer of ibd probabilities but are of differences of

ibd probabilities. These differences can be negative. An analogy at

the population level for inbreeding would be changing the focus

from the total inbreeding coefficient FIT to the within‐population
coefficient FIS. There is an analogous change from total kinship to

within‐population kinship for both populations and individuals. It is

this within‐population kinship that we can estimate. We make expli-

cit that the kinship of a pair of individuals is compared to the aver-

age for all pairs of individuals in the sample, so the average

estimated kinship is zero. Similarly, the inbreeding coefficient of an

individual is the within‐individual ibd probability relative to the

average between‐individual‐pair ibd probability and the resulting val-

ues can also be negative. This is consistent with Yu et al. (2006)

who spoke of “adjusting the probability of identity by state between

two individuals with the average probability of identity by state

between random individuals” in order to address identity by descent.

Other kinship estimation methods that do not use allele frequencies

(e.g., KING‐robust; Manichaikul et al. [2010]) are estimating ibd

between individuals relative to that within individuals.

Frentiu et al. (2008) compared the use of pedigree‐ and marker‐
based kinship values to estimate quantitative genetic variances and

covariances for a set of traits in a wild bird population. They

describe the advantage of marker‐based methods as avoiding the dif-

ficulties of reconstructing pedigrees of wild populations, but they

claimed only mixed success with those methods. This may have

reflected the small number of markers or the low level of variance in

relatedness in their study population. Santure et al. (2010) concluded

that the best estimates of relatedness are likelihood‐based, although
they reached this conclusion based on a very small set of markers

and a pedigree of few individuals. Their work was before we pre-

sented our estimator of kinship (Weir & Goudet, 2017) which we

found has the smallest bias and standard deviation for data from a

small pedigree of 135 individuals.

Pedigrees (records of which parents sired which offspring) have

been important historically and foundational in many of the afore-

mentioned fields; however, they have significant limitations. First, for

many study populations pedigree data are unavailable and would be

impossible to acquire. Second, pedigrees are susceptible to human

error such as unnoticed extra‐pair copulations and misidentified

paternity (Goossens et al., 1998). While pedigree reconstruction

from genetic markers is possible (Ramstetter et al., 2017), it remains

a daunting and difficult task for nonmodel organisms (Städele & Vigi-

lant, 2016).

A third limitation is that pedigree relatedness is the expected

value of kinship between two individuals. The randomness with

which a diploid individual transmits alleles to offspring results in

actual kinship and inbreeding coefficients varying around the pedi-

gree‐based expected values (Wang, 2016). For example, half‐siblings
have a kinship coefficient of 0.125. Half‐siblings either do or do not

receive copies of the same allele from their common parent, so their

actual kinship coefficients are one or zero at any locus and the aver-

age over the genome of these 1's and 0's will be close to 0.125.

Wang (2016) proposes using “gene dropping” (assigning unique iden-

tifiers to each allele present in the founders and following their fate

through the pedigree) along the pedigree to obtain the actual kinship

values. He showed that when genome size is small, these can differ

substantially from the relatedness calculated from a pedigree. For

large genomes, estimates of kinship obtained by gene dropping or

from pedigrees are almost identical.

The final, and most fundamental, limitation of pedigrees is the

assumption of equally related “founding” individuals. In most popula-

tions, this assumption is highly inaccurate. At first, this problem

seems surmountable by extending the pedigree further back. How-

ever, this can be done ad infinitum; all pairs of individuals (even
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across species) share a common ancestor somewhere along the tree

of life (Speed & Balding, 2015). As pedigrees stretch further back,

kinship values tend towards 1 and become useless (Speed & Balding,

2015). We therefore need to truncate pedigrees at some point and

create artificial ‘founders’. Where we chose to truncate the pedigree

is arbitrary, and since this decision dictates pedigree‐based kinship

values, these values are also arbitrary. For these reasons, Speed and

Balding (2015) argue that pedigree‐based kinship should not be the

gold standard of kinship estimation.

SNP array data for many species are readily available, and as the

cost of sequencing is plummeting, large‐scale genotyping of popula-

tions of several thousand individuals will soon be possible, as is

already the case for human populations and a few other domesti-

cated species (e.g., cattle). The number of single nucleotide variants

required to provide satisfactory estimates of the kinships among

these individuals remains unknown. The aim of this study was three-

fold: (a) to examine the properties of kinship estimators for real pedi-

grees of varying size, structure and completeness; (b) to explore,

using simulations, the causes underlying different estimator proper-

ties; and (c) to evaluate the usefulness of pedigree‐based estimates

of kinship.

2 | METHODS

2.1 | Allele‐pair matching estimates

2.1.1 | Pedigree values

For individual j, the inbreeding coefficient Fj is the probability that

its two alleles at a given locus are ibd. The kinship, or coancestry,

coefficient θjj′ for individuals j and j′ is defined here as the average

of the four ibd probabilities for one allele from each individual. It fol-

lows that the kinship of individual j with itself is (1 + Fj)/2. Generally,

however, we reserve the term kinship for distinct individuals. θS

denotes the average of the kinships over pairs of individuals for

(samples from) a population.

If individual J is ancestral to individuals j and j′, and if there are n

individuals in the pedigree path joining j to j′ through J, including j

and j′, then θjj′ = ∑(0.5)n(1 + FJ), where FJ is the pedigree inbreeding

coefficient of J and the sum is over all ancestors J and all paths join-

ing j to j′ through J (Wright, 1922). The pedigree kinship θjj′ is also

the inbreeding coefficient of an individual with parents j and j′. If
ancestor J is further back in time than the time of the reference

population, then it is assumed that it does not contribute to the

relatedness of individuals j and j′. These kinships are predicted values

from pedigrees. The (often unstated) reference for predicted kinship

values from pedigrees is the set of founders, who are assumed to

have a kinship of 0 with other founders.

2.1.2 | Marker‐based estimates

We (Weir & Goudet, 2017) adopted a method‐of‐moments estimate

for the kinship coefficient θjj′ for individuals j and j′ in a sample of

individuals relative to the average kinship θS of all pairs of individuals

in the sample. Making estimates “relative to” meant that the refer-

ence allele frequencies did not need to be estimated. It also meant

that kinship estimates for pairs of individuals who share less alleles

than the population average are negative. Instead of estimating the

total kinship coefficient θjj′, we focus on the within‐population
parameter βjj′ = (θjj′ − θS)/(1 − θS). This comes from the following rela-

tionship for individual‐level kinship coefficients: (1 − θjj′) = (1 − βjj′)

(1 − θS), analogous to the well‐known relation for population‐level
inbreeding coefficients (Wright, 1922): (1 − FIT) = (1 − FIS)(1 − FST).

This leads to a discrepancy between marker‐based estimates (which

can be negative) and pedigree‐based expectations (which range from

0 to 1).

In Weir and Goudet (2017), we wrote the new estimator as β̂jj0 ,

but now we write rβjj0 for consistency with the ecological literature

(Wang, 2016). rβjj0 can be calculated with the R package HIERFSTAT

(Goudet, 2005) and is defined as follows:

rβjj0 ¼
Mjj0 �MS

1�MS
(1)

where Mjj′ is the proportion of alleles carried by individuals j and j′
that are identical in state, that is, match. Mjj′ can be conveniently

computed as f∑L
l¼1½1þ ðXjl � 1ÞðXj0

l
� 1Þ�=2g, where Xjl is the dosage

of a particular allele, for example, reference allele, at marker l for

individual j. For a sample of n individuals, MS is the average matching

for all pairs of distinct individuals:

MS ¼ 1
nðn� 1Þ ∑

n

j¼1
∑
n

j0¼1
Mjj0

j 6¼j0

It is difficult to derive the sampling distribution of ratios of sec-

ond‐order statistics, but we note that the ratio of the expected val-

ues of the numerator and denominator of rβjj0 is the target parameter

(θjj′ − θS)/(1 − θS), and we showed Weir and Goudet (2017) that the

estimator has low mean square error for the target parameter. We

have also found (data not shown) that the estimator behaves better

with larger numbers of SNPs.

For a single individual, j = j′, our estimate is for [(1 + Fj)/2 − θS]/

(1 − θS), and an estimator of Fj relative to the average kinship is

ð2rβj � 1Þ. We note that Mjj′ is the central quantity in the third esti-

mator of VanRaden (2008), and thus, this third estimator and rβjj0 are

colinear.

Other moment estimators, such as that of Ritland (1996), in

effect assume sample allele frequencies (~p) for the reference

allele at a locus can be used in place of the reference population

allele frequencies. Details for two such estimators that differ in

how they combine information over loci now follow (Speed and

Balding [2015] suggest other ways of combining information

across loci, but all these weightings assume sample allele frequen-

cies can be used in place of the reference population allele

frequencies).

When information is combined over loci by weighting with

sample heterozygosities, we write a common kinship estimator

as rwjj0 :
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rwjj0 ¼
∑L

l¼1ðXjl � 2~plÞðXj0
l
� 2~plÞ

2∑L
l¼1~plð1� ~plÞ

(2)

The weighted estimator in Equation 2 is the first estimator dis-

cussed by VanRaden (2008). It estimates (1 + Fj)/2 when j = j′ and θjj′

when j ≠ j′. There is no simple translation from these estimates to

those we propose in Equation 1.

It is common to refer to ðXjl � 2~plÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2~plð1� ~plÞ�

p
as a standardized

genotype measure on the basis that the expected value of Xjl is twice

the allele frequency (2pl) in the reference population. However, the vari-

ance of Xjl is 2plð1� plÞð1þ Fj) rather than 2plð1� plÞ.
We have focused on the kinship for individuals j, j′ relative to

that for all pairs of individuals in a sample. Another perspective is

implicit in the use of the estimators rwjj0 and rujj0 . There the kinship for

the target pair of individuals measures the additional probability of

ibd of each individual with every other sample member over that

between all sample pairs. This takes account of the different pedi-

grees of each of the target pairs: If ψj is the average kinship of j with

every other individual in the sample, ψj = ∑j″≠jθjj″/(n − 1), then the

target parameter with this perspective is:

γjj0 ¼
θjj0 � ψ j � ψ j0 þ θS

1� θS
(3)

We showed in simulations (Weir & Goudet, 2017) that, in fact,

rwjj0 is a good estimator for this new parameter and rujj0 less so.

For large sample sizes, we note that the ratio of the expected

values of the numerator and denominator of rwjj0 is indeed the new

parameter. It is not clear when γjj′ (Equation 3) will be preferable to

βjj′ = (θjj′ − θS)/(1 − θS), but clearly neither is the same as the pedi-

gree‐based value of θjj′.

When information over loci is combined as an unweighted aver-

age, we write a common kinship estimator as rujj0 :

rujj0 ¼
1
L

∑
L

l¼1

ðXjl � 2~plÞðXj0
l
� 2~plÞ

2~plð1� ~plÞ
(4)

These terms correspond to the second estimator of VanRaden

(2008), and they form the off‐diagonal elements of the genetic relat-

edness matrix in GCTA (Yang, Lee, Goddard, & Visscher, 2011). We

note that VanRaden (2008) called this estimator “weighted,” because

in his matrix notation, the diagonal matrix D of locus variances

comes between the dosage matrices X and X0 (M and M0 in the

notation of VanRaden [2008], respectively).

2.2 | Real data sets

We illustrate the properties of the three estimators rβ, rw and ru with pub-

lished data sets from great tits (Robinson et al., 2013a), sheep (Bérénos,

Ellis, Pilkington, & Pemberton, 2014) and domestic pigs (Cleveland, Hickey,

& Forni, 2012) for which both pedigree and genetic data are available.

2.2.1 | Great tit data set

Published in Robinson et al. (2013a), the data consist of a pedigree

of 2,497 individuals and their genotypes at 5,591 SNPs. Of the

2,947 individuals, 1,177 are founders. Of the remaining 1,240 indi-

viduals, 53 have unknown sires and two have unknown dams. The

number of SNPs is fairly limited, and the pedigree is quite shallow;

the longest loop is five ancestors (three generations) long.

2.2.2 | Soay sheep data set

Described in Bérénos et al. (2014), the data consist of two pedigrees

obtained by different means, and the genotypes of about half the

pedigreed animals. We use only the second and more complete pedi-

gree. It was built using SNP assignment for both paternity and

maternity whenever possible and complemented with microsatellite‐
assigned parentage; otherwise, see Morrissey et al. (2012). The pedi-

gree consists of 6,740 individuals, of which 404 are founders. Of the

remaining individuals, 355 have missing dams and 1,743 have miss-

ing sires, making 33% missing individuals. A total of 3,973 individuals

have been genotyped at 34,538 SNPs. The distribution of the num-

ber of offspring for dams and sires is noteworthy. Numbers range

from 1 to 20 lambs per dam and from 1 to 107 lambs per sire, with

a very skewed distribution. This pedigree is quite deep; the longest

loop is 18 ancestors (nine generations) long.

2.2.3 | Pig data set

Described in Cleveland et al. (2012), the data consist of a pedigree

of 6,473 individuals with 1,247 founders and 1,011 sire and 3,102

dam parents. Of these 6,473 individuals, 55% (3,534 pigs, including

81 founders) have been genotyped at 52,843 SNPs. The mean num-

ber of piglets per sire is 5.17 (SD = 7.06) and per dam is 1.68 (SD =

1.19). What makes this data set particularly useful is its complete-

ness: Apart from the founders, all individuals have known parents.

The longest loop in the pedigree is 17 ancestors long, and thus, the

pedigree spans at least eight generations.

2.2.4 | Real data analyses

Figure 1 shows the relation between the three marker‐based estima-

tors and pedigree kinship. The top row corresponds to the tit data

set, the middle row to the sheep data set and the bottom row to

the pig data set.

Across all three data sets, and for all three marker‐based estima-

tors, the correlation between the three marker‐ and pedigree‐based
kinship is noisy, the more so the smaller the proportion of individuals

genotyped (from bottom to top). Assuming there is some ‘correct’
value of kinship, this noise could be due to inaccuracies in the pedi-

gree‐based expectations, in the marker‐based estimates, or in both.

Note that in the tit and sheep data sets, some genotypes are miss-

ing, while they have been imputed in the pig data set. We described

in supplementary materials how to handle missing data when esti-

mating rβ. For rw and ru, we used the solution implemented in GCTA

(Yang et al., 2010).

For the sheep and pig data sets, we have also simulated genetic

data along the observed pedigrees and we contrast the results
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obtained from real genotypes to those obtained from simulated

ones. Genotypes were simulated at 88k SNPs for founders and

unknown parents using the program MS (Hudson, 2002), and assum-

ing they all came from a large random‐mating population. More

details on the simulations can be found in the supplementary mate-

rial. The alleles at each of these loci were then dropped along the

observed pedigree (assuming each locus was independent) to obtain

simulated genotypes for individuals with known parents.

2.3 | Simulated pedigrees

To understand the results in Figure 1, we used simulations to explain

the behaviour of the three estimators. We generated pedigrees

according to two mating systems: random mating and monogamy. The

pedigrees extended over five generations, and we varied the number

of founders. The number of offspring for each generation was drawn

from a Poisson distribution, so the exact number of individuals in a

pedigree will vary, but is expected to be six times the number of foun-

ders. Genotypes for 2,000 founders at 88k SNPs were generated using

MS, assuming a single random‐mating population at equilibrium

between mutation and drift. MS generates haplotypes, and we com-

bined two randomly chosen haplotypes to create diploid genotypes.

2.3.1 | Mating systems

Under random mating, the total number of offspring for a given gener-

ation was obtained by drawing nf/2 times (where nf is the number of

founders) from a Poisson distribution with parameter λ = 2. For each

offspring, the two parents were drawn at random and without replace-

ment. Contrastingly, under monogamy, two parents were drawn at

random and had their number of offspring drawn from a Poisson dis-

tribution with λ = 2. Thus, more individuals will be full‐sibs in a

monogamous population than in a random‐mating population.

2.3.2 | Number of founders

For each mating system, we simulated pedigrees with between 20

and 1,000 founders. We varied founder number incrementally: in

b u w

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
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0.3
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r p
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0.4
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F IGURE 1 Density plot (hexagons) of marker‐based kinship estimates as a function of pedigree‐based predictions (the darker the hexagon,
the more points, and density is on a log 10 scale). Top row: great tit data; middle row: Soay sheep data; and bottom row: pig data. Left
column: rβ; middle column: ru; and right column: rw. For all panels, the black line is the one‐to‐one relationship
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steps of 10 between 20 and 100, in steps of 50 between 100 and

250 and in steps of 250 between 250 and 1,000. For each mating

system and number of founders, we simulated 10 pedigrees.

2.4 | Simulated data analyses

For each of the pedigrees and associated genetic data sets, we

report the correlation between the kinships estimated with markers

(rβ, rw and ru) and those expected from pedigrees (rp). We show the

correlations as a function of the standard deviation in pedigree kin-

ship SD(rp) among all individuals in the pedigree: If there were no

variation in pedigree kinship, as would be the case in an infinite ran-

dom‐mating population, pedigree‐based kinship values should not

correlate with marker‐based estimates. As the standard deviation in

pedigree kinship increases (when the population gets smaller and/or

the mating system creates more related individuals), correlation

between marker‐based estimates and pedigree values should

increase. We therefore expect an increase in the correlation

between pedigree values and marker‐based estimates as the stan-

dard deviation in pedigree kinship increases (for smaller populations

and populations with mating systems that produce more relatives).

We show in Supporting Information Figure S1 that SD(rp) is a

decreasing function of the number of individuals in the pedigree.

2.4.1 | Number of markers

A total of 88k loci were polymorphic among the 2k potential foun-

ders, but only 42k were polymorphic among the 20 founders of the

smaller pedigree. With more markers, the precision of the marker‐
based kinship estimates should increase. We investigated this effect

by taking subsamples of 100, 500, 1k, 5k, 10k, 20k and 40k markers.

To compare the effect of founder number, we used 42k markers.

2.4.2 | Origin of the founders

When calculating the pedigree kinship rp, all founders are assumed

to be unrelated. Marker‐based kinship estimate rβ makes no such

assumption, while ru and rw assume the genotyped individuals come

from a random‐mating population. To investigate the effect of

related founders, we simulated founders coming in equal proportion

from two source populations (rather than from a single random‐mat-

ing population as above) using MS. These two populations were at

equilibrium between mutation, migration and drift and exchanged

one migrant per generation, and thus, FST between these two popu-

lations is 0.2. There is a large discrepancy between rp and rβ, rw and

ru in this situation (see below).

A possible solution to this problem, if founder genotypes are

available}, is to plug in the marker‐based kinship estimates of the

founders, rather than assuming they are unrelated (see, for instance,

Legarra, Aguilar, and Misztal (2009) and Misztal, Legarra, and Aguilar

(2009)). We investigated whether doing so reduced the discrepancy

between pedigree‐based predictions and marker‐based estimates of

kinship.

3 | RESULTS

3.1 | Behaviour of marker‐based estimators in
simulated pedigrees

Figure 2 illustrates the relationship between marker‐based estimates

and pedigree‐based kinship predictions for simulated data. The top

row shows results for one of the 10 pedigrees generated with 20

founders and monogamous mating. The bottom row shows results

for one of the 10 pedigrees generated with 750 founders and ran-

dom mating. The density of points is represented as hexagons of

varying darkness: the darker, the more numerous.

A cursory inspection of Figure 2 shows that all marker‐based
estimates tend to underestimate the pedigree kinships when the

number of founders is small (top row of Figure 2), and the three

marker‐based estimates have different properties.

rβ (left column of Figure 2) is an estimate of β and closely follows

the pedigree values rp = θ, with a constant downward discrepancy

for the pedigree with 20 founders (top left panel) and almost per-

fectly for the pedigree with 750 founders (bottom left). The down-

ward discrepancy for rβ is due to the constraint that the average of

all rβ is 0; this can easily be corrected (by imposing the same con-

straint on rp and replacing it with ðrp � �rpÞ=ð1� �rpÞ, where �rp is the

mean kinship of all individuals in the pedigree), as shown in Weir

and Goudet (2017). There is some scatter around the most common

pedigree values of kinship (left column) corresponding to unrelated,

half‐ and full‐sibs, and this more pronounced in the larger pedigree

(bottom left panel).

ru estimates γ and underestimates the pedigree kinship θ (middle

column of Figure 2), and this is more pronounced for large values of

pedigree kinship, and for pedigrees with few founders (top) than

those with many (bottom). For the full‐sib category (rp = 0.25), ru

shows extreme scatter, and a similar effect, although less pro-

nounced, is seen for half‐sibs (rp = 0.125). For the large pedigree, the

relation between ru and rp for low kinship values is very tight (bot-

tom middle panel), more so than for rβ.

The relation between rw, another estimate of γ, and rp (right col-

umn of Figure 2) is noisy for the small pedigree (top right), with

common pedigree kinship classes very spread out. rw also tends to

underestimate rp, the more so the larger the pedigree kinship. For

the large pedigree (bottom right), the relation is much tighter; the

regression slope is close to 1 and the scatter is less than for rβ. The

extreme scatter for rp = 0.25 seen in ru for both the small and large

pedigrees (middle column) is also seen in rw for small pedigrees (top

right) but disappears when the pedigree is large (bottom right).

Figure 3 shows the correlations of rβ, rw and ru with rp (in blue,

red and black, respectively) as a function of variation in kinship. Pairs

of individuals from pedigrees with few founders will have more

chance of being related than pairs from larger pedigrees. The pedi-

grees with few founders will thus have more variation in kinship and

will be located to the right‐hand side of the graph, while pedigrees

with many founders will be to the left. For a given number of foun-

ders, monogamous pedigrees (filled circles) will show more variation
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in kinship than random‐mating pedigrees (+ symbols) and will thus

be located to their right.

The correlation between rβ and rp shows a very different pattern

from that of the other two marker‐based estimates: It increases as

the variance in rp increases, while the correlations of rw and ru

decrease as the standard deviation in rp increases above ≈ 0.02. The

relation for the correlation between marker‐ and pedigree‐based kin-

ship is very tight for rβ, with all the points falling on the same trajec-

tory. This correlation is around 0.6 when the standard deviation in

pedigree kinship is ≈ 0.009, and asymptotes at one as the standard

deviation of pedigree kinship increases.

The pattern for rw and ru is almost the reverse. Correlation

increases at first, when there is very little variance in pedigree kin-

ship; reaches a maximum at around 0.93 for rw and 0.96 for ru, when

the standard deviation in pedigree kinship is between 0.02 and 0.03;

and decreases linearly thereafter, although with greater scatter, as

the standard deviation in rp increases above 0.03.

From this, it would seem that when the standard deviation in

pedigree kinship is larger than ≈ 0.02 − 0.04, rβ is a better estimator

of pedigree kinship, while when the standard deviation in pedigree

kinship is less than 0.03, ru is preferable (ru outperforms rw over the

whole range). However, this is partly misleading as we saw in Fig-

ure 2 that rβ is actually very close to rp over its whole range; ru,

while giving precise estimation for low values of rp, is not very good

in estimating the kinships of full‐ and half‐sibs.
The pattern observed for the correlation between marker and

pedigree kinship for rw and ru is puzzling. The pattern observed with

rβ makes intuitive sense: If there is no variation in pedigree kinship,

then it cannot be correlated with anything (correlation with a con-

stant is 0 by definition). The larger the variation in pedigree kinship,
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the more there is to explain; thus, marker‐based estimates of kinship

should be more correlated with pedigree values. We will return to

this point later.

3.2 | Number of loci

In Figure 3, we fixed the number of (variable) SNPs to 42k. This is a

fairly large number, though by no means exceptional nowadays. In

Figure 4, we look at the effect of the number of markers, decreasing

it to 20k, 10k, 5k, 1k, 500 and finally 100.

As the number of markers decreases, we see both quantitative

and qualitative changes. The top row of Figure 4 (20k, 10k and 5k

SNPs) shows slightly noisier versions of Figure 3, but otherwise no

qualitative differences: For high variation in pedigree kinship, rβ has

a higher correlation with rp than rw or ru, while for low variation, rw

and ru are more correlated with rp. Note that rw in particular reaches

a plateau and starts decreasing when the variation in rp gets very

low (for 10k and 5k SNPs).

The bottom row of Figure 4 (1k, 500 and 100 SNPs) looks differ-

ent. First, the correlations between marker‐based estimates and

pedigree‐based predictions are much lower, below 0.8 for 1k, 0.6 for

500 and 0.4 for 100 SNPs. Second, for the three marker‐based

kinship estimators, correlation with pedigree‐based kinship increases

as variation in pedigree kinship increases. In all three panels of the

bottom row, the correlation between rβ and rp is less than that for

rw, which itself is less than that for ru.

3.3 | Founders from two populations

In the following, we will focus on rβ. We see in Figure 5 (left panel)

that when the founders consist of individuals from two differenti-

ated populations, the relation between estimates of kinship from

markers and predicted values from pedigrees is noisy (rw and ru

show a similar pattern; data not shown). In particular, for pedigree

kinships of 0, 0.125 and 0.25, we see a large range of marker‐
based estimates, larger than when the founders come from a single

population (Figure 2). This is because the pedigree predictions rp

assume all founders to be equally unrelated, whereas in reality,

they are not: Pairs of founders coming from the same population

are more related than pairs of founders coming from different pop-

ulations.

If genetic information is available for the founders, we can

account for the heterogeneity of kinship among them by using their

marker‐based estimates of kinship as a seed to the algorithm
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calculating pedigree kinship. This is represented in Figure 5 (right

panel). By seeding the pedigree kinship matrix with marker‐based
estimates of kinship rβ for the founders, the scatter around the pedi-

gree value is much reduced.

We can use the same principle when all founders come from one

population. The scatter seen in Figure 2 is due to the founders being

considered as identically unrelated. If we use the genotypes of the

founders to estimate their kinship rather than assuming it to be 0,

we obtained Figure 6. The correlation between rβ and rp is much

increased in all situations, and for the smaller number of typed SNPs

(bottom row), rβ is the most correlated with rp.

3.4 | Real data applications

3.4.1 | Great tit data set

The great tit pedigree is shallow, covering at most three generations,

pedigree‐based predictions of kinship have few categories, and some

of these have very few observations:

rp 0 0.015625 0.03125 0.0625 0.125 0.25

Number 3,114,008 7 111 289 781 1,060

Figure 7 displays violin plots of marker‐based estimates of kin-

ship as a function of the pedigree‐based predictions. The three mar-

ker‐based kinship estimators show very similar behaviour in this

shallow pedigree. The modes of their distributions are aligned with

the corresponding pedigree values (horizontal solid lines). Notewor-

thy is the fairly high proportion of predicted half‐sibs from the pedi-

gree (rp = 0.125) who are identified as full‐sibs with marker‐based
estimates of kinship (rm = 0.25, middle panel of the bottom row). A

similar pattern is seen for first cousins and half‐sibs. The three mar-

ker‐based estimators of kinship for the unrelated individuals show a

unimodal distribution with all modes at r = 0, but long tails extending

to 0.4. This is probably due to founders being related. For instance,

individuals 17 and 557, both males and founders, have a pedigree‐
based kinship assumed to be 0, but their estimated rβ17;557 ¼ 0:32.

Descendants of these individuals will have their pedigree‐based kin-

ships underestimated.

3.4.2 | Soay sheep data set

Next, we look at the sheep data set. Figure 8 presents the results.

The top row shows the relation between pedigree‐based predictions

of kinship and marker‐based estimates, rβ, ru and rw from left to

right. The correlations are 0.65, 0.73 and 0.71, respectively. While in

all three panels we see a tendency for marker‐based estimates to

increase with the pedigree‐based predictions, there is much scatter.

In particular, for all three marker‐based estimators, some pairs of

individuals assumed to be unrelated with pedigree‐based predictions

have fairly high marker‐based estimates, and some individuals with

pedigree‐based predictions of 0.25 (full‐sibs or parent–offspring)
have marker‐based estimates around 0.

The second row of Figure 8 shows the relation between pedi-

gree‐based predictions and marker‐based estimates from genotypes

simulated along the pedigree. The relation is much tighter, particu-

larly for rβ and rw, while ru shows similar scatter to previously, partic-

ularly for pedigree kinship class 0.25.

The last row of Figure 8 compares the marker‐based estimates

of kinship based on simulations and observed data. For rβ and rw,

most of the points fall close to the one‐to‐one line, and points out-

side this envelope are easy to identify (for instance, the points for

which rβdat ≈ 0:25 and rβsim ≈ 0, or those for which rβdat < 0:1 while

rβsim ≈ 0, bottom left), providing the opportunity to correct the pedi-

gree. It would be much more difficult to use ru for such a correction.
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3.4.3 | Pig data set

This data set is the most complete: All individuals (bar founders)

have both parents identified. Close to 55% of the 6,473 individuals

in the pedigree have been genotyped. The first row of Figure 9

shows the relation between pedigree‐ and marker‐based kinship for

the three marker‐based estimators. The relation is not as tight as

that seen in Figure 2, and the correlation between marker‐ and pedi-

gree‐based kinships is 0.55, 0.55 and 0.56 for rβ, ru and rw, respec-

tively, for a standard deviation of pedigree‐based kinship estimates

of 0.02. There is therefore little separating the three marker‐based
estimators of kinship in terms of correlation, and rβ shows the least

scatter and bias of the three estimators (compare the top left panel

(b) of Figure 9 with the top middle (u) and right (w) panels).

The marker‐based estimates of kinship (particularly rβ) from simu-

lated genetic data (middle row of Figure 9) match the pedigree‐based
kinships extremely well. The correlation between marker‐based and

pedigree‐based predictions is 0.96, 0.85 and 0.87 for rβ, ru and rw,

respectively (the results are almost identical if using only 42k SNPs; fil-

tering on minor allele frequency (MAF) larger than 0.01 reduces the cor-

relation for rβ and rw and marginally increases it (0.85 to 0.87) for ru).

The last row of Figure 9 shows the relation between simulated marker‐

based estimates of kinship and observed marker‐based estimates of kin-

ship. The key point to take from this bottom row is best seen from the

leftmost panel comparing the two rβ: Among the simulated marker‐
based estimates of kinship close to 0, we observed two high‐density
spots of estimates from real data (the two dark spots), an indication that

the founders may not come from a homogeneous stock.

Seeding the pedigree‐based estimator of kinship with the mar-

ker‐based estimation of kinship for the 81 genotyped founders does

not significantly improve the relation between marker‐ and pedigree‐
based values (data not shown).

4 | DISCUSSION

For three data sets where both pedigree and genetic data are avail-

able, the match between pedigree‐based predictions and marker‐
based estimates of kinship is poor. Using simulated pedigrees and

genetic data, we identify two likely causes for this mismatch: errors

in the assignment of parentage when constructing the pedigree and

heterogeneity in the origin of the founders. We show that the new

estimator rβ closely tracks rp over the whole range of kinship values

(despite being an estimator of β, not rp) and performs better than ru
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and rw for small pedigrees and pedigrees with many related individu-

als. ru is a poor estimator of rp for pairs of individuals with high kin-

ship. We confirm that with a sufficient number of markers, marker‐
based estimation of kinship better reflects individual relationship

than pedigree‐based prediction.

Heterogeneity in the origin of founders seems quite clear in the

pig data set (see bottom row of Figure 9) and the Soay sheep data

set (bottom row of Figure 8). This has been discussed for the sheep

by Feulner et al. (2013) who suggest that the 107 Soay sheep intro-

duced on the island of Hirta in 1932 were the result of admixture

between Soay and Dunface sheep. The founders of the pedigree

analysed here are more recent (around the 1980–1990s), and it is

unclear whether more recent admixtures or introductions took place

after 1932. Heterogeneity of genetic origin among founders is likely

to be common in populations (re)established for conservation, and it

seems that much is to be gained by using genetic markers rather

than pedigrees in these situations.

A third source of discrepancy between marker‐ and pedigree‐based
values of kinship is the size of the genome: With small genome size,

genetic relatedness will differ from pedigree‐based expectations (Hill &

Weir, 2011). This holds true even with a very large number of SNPs since

these SNPs are inherited as blocks (Wang, 2016). We have assumed

unlinked markers in our simulations, effectively assuming infinitely large

genomes. Pigs and sheep have approximately 2.7 Gb genomes (Groenen

et al., 2012; Jiang et al., 2014), and the tit genome is around 1 Gb (Cai et

al., 2013). Accordingly, pig and sheep genomes are ≈ 20 morgans long,

and the tit genome is smaller. Figure 1 of Wang (2016) shows that the

correlation between pedigree‐based prediction and true kinship is around

0.9 for genome that is ≈ 20 morgans long. Thus, part of the scatter seen

in Figure 1 may result from finite genomes. To verify this, We ran addi-

tional simulations with a finite genome of 20 morgans instead of an infi-

nite‐sized genome, the results are shown in Supporting Information

Figure S5 and are essentially the same as Figure 3.

Another potential source of discrepancy between marker and

pedigree estimates of kinship is the type of genetic data used. The

three observed genetic data sets were obtained from DNA array

data, which typically focus on common variants and filter out the

rarest. We found with the pig data set that filtering on MAF slightly

reduces the correlation for rβ and rw and only marginally increases it

for ru. This is in agreement with the findings in table 7 of Weir and

Goudet (2017), where increasing levels of MAF filtering (from 0.01

to 0.1) increased the downward bias of rβ. We thus recommend the
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use of the full range of the allele frequency spectrum whenever pos-

sible when estimating rβ.

4.1 | Properties of marker estimates

Figure 3 shows that the correlation between rβ and pedigree kinship

increases as the variance in pedigree kinship increases. This makes

intuitive sense. If all individuals are unrelated, there is no variation in

kinship and nothing to explain. As the proportion of related individu-

als increases, genetic similarity between individuals becomes a good

proxy for kinship, and this tendency should increase with the pro-

portion of related individuals. Seeing the correlations decrease after

the ≈ 0.02 threshold of standard deviation in pedigree kinship for ru

and rw is initially puzzling. However, these two estimators were

derived assuming the data come from a random‐mating population

(Ritland, 1996). If this is not the case, then the expectations of rujj0

and rwjj0 are not the kinship of individuals j and j′, but a complex func-

tion of their kinship and their average kinship with all other individu-

als in the population, as shown in Equation 3 and demonstrated in

Weir and Goudet (2017).

Substantial improvements in the estimation of rp (rather than γ)

by ru and rw could be obtained by using the founders’ allele frequen-

cies (if these were available) instead of the sample allele frequencies

(VanRaden et al., 2011). In many ecological situations, however, it is

not possible to extract the frequencies from the founders

generation, either because the founders are not known and no pedi-

gree is available or because no genetic information is available from

the founders (for instance, genetic data were available for only 81 of

the founders in the pig data set).

The third method to estimate kinship described in VanRaden

(2008) contains MM′ as the central quantity and, like rβ, does not

require estimation of allele frequencies. In this method, the intercept

of the regression of MM′ on pedigree kinship is subtracted, thus

ensuring that the mean value of marker‐based kinship for individuals

whose pedigree kinship is 0 is also 0. This difference is then divided

by the slope of the regression of MM′ on pedigree kinship, con-

straining the upper bound of the third estimate to 1. rβ differs from

this third estimate in that the mean of all MM′ values (excluding the

diagonal elements), MS, is subtracted from each entry, ensuring that

the overall mean kinship is 0. We then divide this difference by

1 − MS, constraining the upper bound of rβ to 1. In order to obtain

the third estimate of VanRaden (2008), one needs both pedigree and

markers, while calculating rβ requires neither a pedigree nor allele

frequencies.

In the animal breeding literature, including both genomic esti-

mates of kinship and pedigree values for genomic prediction is a

very active question. The key difference with the ecological and evo-

lutionary biology literature is the reliability of the pedigrees (in terms

of accuracy, completeness and depth). In ecological and evolutionary

biology studies, pedigrees are never as complete and accurate as in
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animal breeding, and inclusion of pedigree information is likely to

add more noise than information.

4.2 | Which marker‐based estimate of kinship
should be used?

There is not a general answer to this question. Below we list con-

text‐dependent recommendations:

• Where founder populations are small (e.g., reintroductions and

threatened populations), the recommended marker-based estimate

of kinship is rβ.

• In sample populations with high kinship (such as those used to inves-

tigate cooperation between kin), rβ is the recommended estimator of

kinship, as it performs well across the whole range of kinship values.

At the level of first cousins and above, ru performs poorly.

• For estimation of heritability and variance components in geno-

mewide association studies, the situation is more complicated and

will depend on population parameters: If the population is large

enough that the individuals analysed are unlikely to be related

above the level of first cousins, ru should be used to estimate the

genetic relationship matrix, since it estimates the kinship of unre-

lated individuals most accurately. It might be necessary in this

case to filter the SNPs for MAF larger than 1%, as low-frequency

SNPs tends to generate a long tail of high kinship values for

unrelated individuals (see Supporting Information Figure S2, top

left subpanels in each panel). If the population is not so large or

higher levels of kinship are suspected, the data set could be first

filtered to remove these individuals (they likely share more than

their genotypes, i.e., some maternal and environmental effect), or

one could use rβ or rw to estimate the genetic relationship matrix.

We also note that when kinship is estimated to calculate the heri-

tability of a trait for a specific genomic region, Speed, Hemani,

Johnson, and Balding (2012) showed that estimation is improved

by accounting for and borrowing from SNPs near the focal region.

In this context, such methods might be more relevant than the

estimates presented here.

4.3 | Take‐home messages

Finally, our results point to the following:

• As identity by descent is not an absolute state, but is relative to a

reference population for which there is generally little informa-

tion, we can estimate the kinship of a pair of individuals only rela-

tive to some other quantity. For rβ, we use the average kinship of

all pairs of individuals in a study as the reference value.

• With 10k SNPs or more, marker-based estimates of kinship per-

form very well.
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• When using pedigrees, completeness is paramount. Even in complete

pedigrees, pedigree kinship expectations may differ dramatically from

true genetic kinship if founders come from different populations.

• ru is accurate if very few individuals are related, but estimates kin-

ship for closely related individuals (first cousins and above) poorly.

rβ is accurate over the whole range of possible kinship values.

• The recommended marker-based estimate of kinship to use

depends on the amount of variation in kinship in the population.

• MAF filtering is not a good idea; it diminishes the correlation with

pedigree kinship in most cases.

• The most suitable marker-based estimator also depends on why

kinship is being estimated. If the purpose is estimation of heri-

tability, and the proportion of related individuals is small, ru is a

good choice. For choosing breeders in conservation genetics or

for comparing levels of relatedness among pairs of individuals in

social species, rβ is the estimator of choice.
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