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Heart failure with reduced ejection fraction (HFrEF) is a progressive disorder whereby cardiac structure and function continue to deteriorate,
often despite the absence of clinically apparent signs and symptoms of a worsening disease state. This silent yet progressive nature of
HFrEF can contribute to the increased risk of death—even in patients who are ‘clinically stable’, or who are asymptomatic or only mildly
symptomatic—because it often goes undetected and/or undertreated. Current therapies are aimed at improving clinical symptoms, and
several agents more directly target the underlying causes of disease; however, new therapies are needed that can more fully address factors
responsible for underlying progressive cardiac dysfunction. In this review, mechanisms that drive HFrEF, including ongoing cardiomyocyte loss,
mitochondrial abnormalities, impaired calcium cycling, elevated LV wall stress, reactive interstitial fibrosis, and cardiomyocyte hypertrophy,
are discussed. Additionally, limitations of current HF therapies are reviewed, with a focus on how these therapies are designed to counteract
the deleterious effects of compensatory neurohumoral activation but do not fully prevent disease progression. Finally, new investigational
therapies that may improve the underlying molecular, cellular, and structural abnormalities associated with HF progression are reviewed.
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Introduction
Patients with heart failure (HF) are often considered clinically stable
if they are receiving treatment and show no physical signs and
symptoms suggestive of worsening cardiac function. However, a
lack of clinically observable signs and symptoms of worsening HF
may not always be indicative of a patient’s long-term prognosis.
Although currently available therapies for HF with reduced ejection
fraction (HFrEF) can be used to minimize clinical symptoms,
most do little to correct the underlying pathology responsible for
progressive cardiac dysfunction. Recent studies have shown that
most patients with clinically stable HFrEF have chronic low-level
elevations in plasma troponin, a marker for myocardial injury
and cardiomyocyte loss that is associated with neurohormonal
activation, inflammation, oxidative stress, and cell wall stretch.1–3

HF is thus a progressive disorder, and ongoing cardiac structural
and functional deterioration is present in many patients who are
asymptomatic or mildly symptomatic.4 Once LV dysfunction is
established, it can worsen over the course of months or years
without any clinically apparent symptoms;5 thus, progressive yet
silent worsening of the HF state often remains unrecognized, and,
consequently, may be left undertreated.4 Despite their apparent
clinical stability, these patients remain at high risk of adverse
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. outcome. Sudden cardiac death, for example, is most common

in patients with mild or moderate HF symptoms who could
be considered ‘clinically stable’.6 Furthermore, in patients with
HFrEF, gradual functional and structural deterioration can lead to
progressive lowering of the LVEF and progressive LV dilation, both
of which are surrogate indicators of poor long-term outcome.7,8

Recognition of the underlying processes in HFrEF that drive the
progression of cardiac functional and structural deterioration in
the absence of clinically apparent signs and symptoms is essential
for the development of novel therapies needed to counteract
and prevent this ongoing deterioration. However, HF is extremely
complex, and a number of cellular and subcellular maladaptations
may exist in the failing heart that can have a direct or indirect
impact on driving the slow but ongoing state of deterioration that
leads to worsening disease.9 Many of these processes can also
occur as part of ageing and, therefore, are not always identified
as mediators of the gradually deteriorating HF state.10 A principal
challenge is to identify which derangements can be reversed to
impact a patient’s clinical trajectory (i.e. to discern underlying risk
factors from clinical risk markers).

In this review, we will examine the nature of these adverse, bio-
logically active processes; evaluate the impact of existing therapies
on them; and discuss novel treatment strategies that can amelio-
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rate or limit their impact. In doing so, physicians can aim to prevent
or, at the very least, slow the pace of ongoing cardiac structural and
functional deterioration toward intractable HFrEF.

Underlying intrinsic mechanisms
that drive left ventricular
dysfunction
Cardiomyocyte apoptosis
Early studies of the pathophysiology of HFrEF identified car-
diomyocyte apoptosis as a potentially important factor in the
progression of LV dysfunction, and cardiomyocyte loss is now
recognized as a defining feature of HFrEF.5,11–13 Adult cardiomy-
ocytes have a limited capacity for self-renewal, and the gradual
loss of functional cardiac units through apoptosis contributes to
disease progression.12–14 The increase in cardiomyocyte apoptosis
is associated with increased levels of cytotoxic pro-inflammatory
cytokines and reactive oxygen species (ROS).14 Additionally,
members of the tumour necrosis factor (TNF)/TNF-receptor
superfamily have been linked to numerous adverse processes that
include cell death, hypertrophy, and fibrosis.15 Low levels of soluble
TNF-like weak inducer of apoptosis (sTWEAK) are associated
with increased risk of functional impairment and mortality, and
sTWEAK levels are decreased in patients with stable HFrEF.16

Cardiomyocyte apoptosis and autophagy can also occur as a result
of increased wall stress.3,17 Recent evidence has suggested that
TNF may also initiate necroptosis, a tightly controlled form of
necrosis that also results in cardiomyocyte death.18

Mitochondrial abnormalities
In addition to cardiomyocyte loss through apoptosis and necrosis,
the function of residual viable cardiomyocytes of the failing heart
can be impaired as a result of deficiencies in availability of energy
related primarily to abnormalities in mitochondria.19 Abnormal-
ities of mitochondrial structure and function exist in the failing
heart of both humans and experimental animals, as evidenced by
hyperplasia, reduced organelle size, diminished rate of ATP syn-
thesis, and increased formation of ROS.19–23 Mitochondrial func-
tional abnormalities in the failing heart include poor respiration,
reduced membrane potential (Δ𝜓m), and opening of the perme-
ability transition pore.19,21,22 Examination of these mitochondrial
abnormalities, along with other identified metabolic defects in HF,
led, in part, to the emergence of the concept that the failing heart
is ‘energy starved’, a condition synonymous with ‘an engine out of
fuel’.24 Although this is perhaps an overly simplified explanation of
HF, since energy starvation is probably a downstream consequence
of profound disruption in myocardial architecture, it highlights the
importance of considering modulations of both extracellular and
cellular components as key contributors to worsening LV function.
Further research is needed to understand how different processes
may be inter-related to drive the cascade of events that lead to
progression of HF. ..
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.. In addition to abnormalities of ATP synthesis, impairments in
mitochondrial function are associated with derangements in the
electron transport chain and excessive production of ROS. Exces-
sive production of ROS by mitochondria can exert widespread
adverse effects on the failing heart through damage to cellular and
subcellular components that include components of key signalling
pathways, membrane lipid sublayers, and components of the extra-
cellular matrix.25–27

Impaired intracellular calcium cycling
Calcium signalling plays an important role in modulating systolic
and diastolic function, and in regulating excitation–contraction
coupling.28,29 Abnormalities of intracellular calcium handling are
known to develop in failing cardiomyocytes.30–32 These abnormal-
ities are characterized by reduced sarcoplasmic reticulum activity
and expression of calcium ATPase (SERCA2a), reduced phospho-
rylation of phospholamban, and increased phosphorylation of the
ryanodine channel with subsequent development of a ryanodine
calcium leak.28,33,34 The net result of these abnormalities is the
development of intracellular calcium irregularities, which can lead
to calcium overload, arrhythmogenesis, cardiomyocyte dysfunc-
tion, and often death of the cardiomyocyte.28,33,34

Wall stress
During the course of evolving HFrEF, the left ventricle progres-
sively enlarges and its shape transforms from elliptical to one that
more closely approximates a sphere.35,36 These structural changes
promote worsening HF symptoms and predict poor long-term
outcome.37 An important contributor to progressive LV systolic
dysfunction in HFrEF, and supported by Laplace’s Law, is the ele-
vation of LV wall stress that results from progressive LV enlarge-
ment and wall thinning. Wall stress or tension is a major deter-
minant of myocardial oxygen consumption (MVO2). Structural LV
changes that develop during disease progression can, therefore,
lead to increased wall stress and consequently increased MVO2

with increased energy demands; a condition the failing heart can ill
afford.38

Fibrosis and cardiomyocyte hypertrophy
Global remodelling of the failing left ventricle is invariably accom-
panied by structural changes at the cellular level characterized by
cardiomyocyte hypertrophy, secondary accumulation of collagen in
the interstitium termed ‘reactive interstitial fibrosis’, reduced cap-
illary density, and increased oxygen diffusion distance.39–41 These
abnormalities favour increased LV stiffness and the development of
hypoxia that can lead to progressive worsening of LV function.40

Cardiac fibroblast activation may also play a primary role in
myocardial disease as a result of microRNA-21 stimulation of
mitogen-activated protein kinase signalling in response to cardiac
stress. This increase in cardiac fibroblast survival leads to fibro-
sis, hypertrophy, and cardiac dysfunction.42 It is also noteworthy
that clinical evaluation of myocardial fibrosis using cardiovascular
magnetic resonance extracellular volume fraction measures may
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predict HF prognosis. In a recent study, Schelbert and colleagues
showed that such measures of myocardial fibrosis were associated
with risk of HF hospitalization, death, or both.43 However, available
techniques for measuring fibrotic changes associated with myocar-
dial interstitial disease may not be practical for clinical use, making
it difficult to detect and easy to overlook such changes.44

Hypertrophy of the residual viable myocardium develops early
after myocardial injury in response to increased workload. As
such, it is always present in the failing heart even under clinically
stable conditions. Therefore, therapies that reduce the burden
of interstitial fibrosis and attenuate cardiomyocyte hypertrophy
should improve tissue oxygenation, improve capillary density, and
reduce LV stiffness, and, in doing so, improve global LV systolic and
diastolic function as well as ‘passive’ LV filling.

Extrinsic mechanisms that drive
left ventricular dysfunction
Heart failure with reduced ejection fraction is characterized
by a reduction of cardiac output that leads to a reduction
in perfusion pressure to vital organs.45 The body’s natural
response is to compensate for these changes via neurohormonal
activation—namely activation of the sympathetic nervous system
(SNS), the renin–angiotensin–aldosterone system (RAAS), and
the natriuretic peptide system (NPS), all designed to maintain
homeostasis.45 Activation of the SNS results in the release of
norepinephrine and epinephrine, which lead to increased heart
rate and cardiac contractility, thereby increasing cardiac output
and perfusion pressure to vital organs.28,45 Activation of the RAAS
results in the formation and release of a host of potent vasocon-
strictors, namely angiotensin-II, aldosterone, and vasopressin, all
of which are intended to restore homeostasis.45 NPS activation
counteracts the vasoconstrictive effects of the RAAS and SNS in
blood vessels by stimulating vasodilation via adjustments to salt and
water excretion.45 However, as HF advances, there is inadequate
activation of, or a diminished response to, natriuretic peptides
(NPs). This subdued response when coupled with enhanced and
sustained activation of the RAAS fails to elicit the necessary
balance between vasoconstriction and vasodilation.46 Ultimately,
vasoconstriction prevails, thus setting the stage for a sustained
elevation of systemic vascular resistance that is characteristic of
HFrEF.

Enhanced and sustained activation of the SNS and RAAS results
in undesirable consequences that include cardiomyocyte injury and
loss, development of cellular hypertrophy and reactive intersti-
tial fibrosis, water retention, increased sodium reabsorption, and
increased vascular resistance—all of which contribute to the dete-
riorative state of HFrEF.45,47 Further, enhanced and sustained neu-
rohormonal activation can also lead to the development of malig-
nant ventricular arrhythmias with increased incidence of sudden
cardiac death.45 The adverse consequences of sustained neurohu-
moral activation include a sustained increase of heart rate, LV filling
pressure, and contractility, along with structural LV remodelling
manifested by progressive LV dilation and increased LV chamber
sphericity with attendant increase of LV wall stress and tension. ..
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.. Elevated heart rate, LV wall stress and tension, contractility,
and elevated preload and afterload are all major determinants of
MVO2. The resultant increase of MVO2, an energy demand state
that the failing heart can ill afford and indeed cannot supply, can
itself drive progressive dysfunction and loss of functional cardiac
units, and thus worsening of HF. Injury to tissue secondary to the
toxic effects of sustained neurohumoral activation can also trigger
an inflammatory response with elaboration of proinflammatory
cytokines that themselves become part of the deleterious arsenal
targeting the heart and other organs.

Limitations of current heart
failure treatments
Current treatments for HF are aimed at counteracting the sus-
tained enhancement of neurohumoral compensation and its
adverse pathological consequences.45 Digoxin reduces SNS and
RAAS activation, and diuretics relieve fluid retention that can cause
pulmonary congestion and peripheral oedema.45 ACE inhibitors
and ARBs reduce RAAS activation and reverse the maladaptive
effects of angiotensin-II and, as such, act as vasodilators, evidenced
by reduction of systemic pressure and lowering of systemic
vascular resistance.45 Certain ACE inhibitors and ARBs have
demonstrated the ability to decrease levels of proinflammatory
cytokines and other markers of inflammation.48 However, the effi-
cacy of ACE inhibitors may decrease over time due to aldosterone
escape.49

Beta-blockers protect the heart and vasculature from the
adverse effects of SNS overactivity and reduce the heart rate,
allowing for a reduction of MVO2 through at least a heart rate
reduction pathway.45 Beta-blockers can also improve calcium han-
dling within the sarcoplasmic reticulum through restoration of
physiological calcium release via improvement of ryanodine recep-
tor function and restoration of SERCA2a activity and expression.31

Some beta-blockers have anti-inflammatory properties and can
reduce circulating levels of inflammatory cytokines.48 Aldosterone
antagonists (mineralocorticoid receptor blockers) directly inhibit
the actions of aldosterone and have been shown to attenuate the
burden of reactive interstitial fibrosis.50 Positive cAMP-stimulating
inotropic agents such as beta-1 agonists and phosphodiesterase-III
inhibitors are used in HF to increase cardiac output through a direct
increase of intrinsic myocardial contractility. However, these agents
are indicated for short-term use only, and not recommended for
chronic use.

Ivabradine is a specific and selective inhibitor of the If current
that reduces heart rate and has been reported to reverse some
structural, biochemical, and molecular maladaptations found in
HF.51 In the Phase III Systolic Heart Failure Treatment With the
If Inhibitor Ivabradine Trial (SHIFT) of patients with chronic HFrEF,
ivabradine reduced the rates of hospital admissions for worsening
HF and deaths due to HF compared with placebo, although the
primary endpoint was driven by a reduction in hospitalizations.52

The fundamental reduction of heart rate elicited by ivabradine
and the expected consequential decrease in MVO2 is the key to
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its effectiveness in this patient population. Ivabradine is currently
approved in Europe and the USA.

When viewed in aggregate, current pharmacological therapies
for HF elicit their benefits by reducing cardiac workload through
partial mitigation of the adverse consequences of sustained neu-
rohumoral activation. The effective reduction of cardiac workload
through lowering of heart rate and systemic vascular resistance
elicits a highly desirable reduction of MVO2, thus lowering myocar-
dial energy demands to levels in line with reduced myocardial
energy supply. However, it has become clear over the last decade
that, despite improvement in the haemodynamic status of the
affected patient afforded by current pharmacological therapies, HF
remains a progressive disease of significant mortality and morbidity.
It is true that the past three decades have seen enormous success
in the management of patients with HF with the use of current
medical therapies. However, if a patient with HF is to achieve
greater survival and a better quality of life, then other mechanisms
responsible for the progressive deterioration of heart, kidney, and
skeletal muscle function must be addressed.

Novel therapies that target
extrinsic and intrinsic factors
of heart failure
Considerable advances have been made in treatment strategies
targeting extrinsic factors through modulation of the NPS. The
approach holds promise in that these peptides promote vasodi-
lation and directly or indirectly counteract pathological growth,
fibrosis, and cardiac dysfunction.49 The BNP, nesiritide, is approved
in the USA and Canada for the treatment of acute decompensated
HF. In the pivotal VMAC trial, nesiritide reduced pulmonary capil-
lary wedge pressure compared with nitroglycerin and placebo, and
was associated with improvements in some self-reported symp-
toms (e.g. dyspnoea) compared with placebo.53 However, con-
flicting findings have been observed on the efficacy and safety of
nesiritide in subsequent studies. Some studies (including ADHERE)
showed a similar or decreased risk of short-term mortality or
worsening renal function with nesiritide vs. comparators,54–58

while findings from meta-analyses have shown an increased risk
of short-term death59 and worsening renal function.60 In the
ASCEND-HF trial, nesiritide was associated with a modestly
reduced symptom burden compared with conventional therapy in
European but not American patients with acute decompensated
HF, and did not affect rates of death or rehospitalization. Based on
these results, the authors of ASCEND-HF recommended against
routine use of nesiritide in patients with acute HF.61

The atrial natriuretic peptide (ANP)-like peptide urodilatin regu-
lates sodium and water handling and protects against hypertension,
and in Phase II studies of synthetic urodilatin (ularitide), favourable
haemodynamic, neurohumoral, and symptomatic effects have been
observed, without adverse effects on renal function.62,63 The
TRUE-AHF randomized, double-blind, placebo-controlled, Phase III
study of ularitide in patients with acute HF (NCT01661634) was
recently completed, but, to date, results have not been published.64

Another ANP-like peptide, carperitide, is approved in Japan for the ..
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.. treatment of HF. In the randomized, controlled PROTECT study

(n= 49), carperitide was associated with significantly reduced rates
of death and rehospitalzation during 18 months of follow-up com-
pared with controls.65 However, a recent retrospective propensity
score-matched analysis found that patients treated with carperitide
(n= 402) had an increased rate of in-hospital mortality.66

Currently available ANPs and BNPs are limited by short bioavail-
ability and the risk of hypotension.49 To minimize the undesir-
able effects of recombinant NPs, several ‘designer NPs’ have been
developed.49 Many of these drugs have been designed to mimic
the antifibrotic, antiproliferative, and antihypertrophic effects of
C-type natriuretic peptide (CNP).49 Another novel approach to
augmenting the NPS involves inhibition of neutral endopeptidase
(neprilysin), which hydrolyses CNP, ANP, and BNP, as well as
many other vasoactive peptides such as angiotensin-I, bradykinin,
and adrenomedullin.49 However, possibly due to its broad affinity
for many peptides beyond the NP, monotherapy with neprilysin
inhibitors has demonstrated limited clinical efficacy.67 Given the
opposing roles of the RAAS and NPS in HF, it was hypothesized
that the addition of a neprilysin inhibitor could enhance the ben-
eficial effects of RAAS inhibition.49 These beneficial effects were
confirmed in clinical studies, but combining neprilysin inhibition
with ACE inhibition was associated with serious angioedema.68,69

Because ARBs are less likely to cause angioedema than ACE
inhibitors, the combination of neprilysin inhibition with ARB
therapy was explored as a treatment option for HF.49 Sacubi-
tril/valsartan (LCZ696)—a salt complex comprising the prodrug
sacubitril (a neprilysin inhibitor) with the ARB valsartan in a 1:1
ratio49,70 —is a novel drug that delivers simultaneous neprilysin
inhibition and angiotensin-II type 1 (AT1) receptor blockade, thus
capitalizing on the beneficial effects of the NPS, while blocking the
detrimental effects of an overactive RAAS (Figure 1).

Because the neprilysin enzyme degrades NPs as well as other
vasoactive peptides, inhibition of neprilysin preserves the NPs
and, therefore, enhances their effects on vasorelaxation, natriure-
sis, diuresis, and inhibition of cardiac fibrosis and cardiomyocyte
hypertrophy. Through simultaneous blockade of the AT1 receptor,
sacubitril/valsartan also suppresses the long-term harmful effects
of RAAS overactivation, such as vasoconstriction and sodium and
water retention, and, in doing so, ameliorates the congestive HF
state. Further, the combined natriuretic and vasodilator proper-
ties of sacubitril/valsartan may provide renal protection by reducing
intraglomerular pressure and proteinuria.71–73

In pre-clinical studies, sacubitril/valsartan reduced cardiomy-
ocyte hypertrophy and cardiomyocyte apoptosis, improved
endothelial function, prevented adverse cardiac remodelling,
and attenuated cardiac dysfunction.74 Pre-clinical studies of dual
RAAS–neprilysin inhibitors have also shown increased syn-
thesis of nitric oxide, probably from endothelial nitric oxide
synthase (eNOS), which can lead to improved mitochondrial
respiration and biogenesis.75 The Phase II PARAMOUNT and
Phase III PARADIGM-HF studies compared sacubitril/valsartan
with valsartan and enalapril, respectively.70,76,77 In both trials,
sacubitril/valsartan significantly reduced levels of NT-proBNP,
a marker for LV wall stretch. Results from the PARAMOUNT
study also showed that sacubitril/valsartan significantly reduced
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Figure 1 Mechanism of action for sacubitril/valsartan.93 Reprinted from Langenickel TH, Dole WP. Angiotensin receptor–neprilysin inhibition
with LCZ696: a novel approach for the treatment of heart failure. Drug Discov Today Ther Strateg 2013; 9:e131–e139. ANG, angiotensin; AT1,
angiotensin-II type 1; cGMP, cyclic guanosine monophosphate; GTP, guanosine-5’-triphosphate; NP, natriuretic peptide (e.g. atrial natriuretic
peptide, BNP); NPR-A, NP receptor-A; RAAS, renin–angiotensin–aldosterone system. *In vitro evidence.

high-sensitivity troponin-T levels compared with valsartan in

patients with HF with preserved ejection fraction (HFpEF), sug-

gesting amelioration of ongoing cardiomyocyte degeneration and

loss.78 When compared with enalapril in the PARADIGM-HF trial

of patients with HFrEF, sacubitril/valsartan treatment resulted

in decreased mortality and hospitalizations for HF along with

sustained reductions in circulating troponin-T levels.70,77

In addition to the recently approved sacubitril/valsartan, other

agents in development that target improvement in cardiomyocyte

function or survival include: phosphoinositide-3 kinases; selective

type 5 phosphodiesterase inhibitors (e.g. sildenafil); 𝛽3 adrener-

gic receptor agonists (e.g. nebivolol); gene therapies to increase

SERCA2a expression; microRNAs that regulate cardiomyocyte

hypertrophy, contractility, and function; myosin activators (e.g. ..
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. omecamtiv mecarbil); and agents that may prevent cardiomy-
ocyte death (e.g. cyclosporine A, necrostatin-1, neuregulin 1,
and heat shock proteins that act as cardioprotective molecular
chaperones).79 Agents in development that may regulate inter-
stitial remodelling processes include thrombospondins, secreted
protein acid rich in cysteine (SPARC), syndecans, torasemide, and
microRNAs that inhibit fibroblast proliferation and alter extracel-
lular matrix properties.79

Other novel HF therapies that are currently under development
may improve cardiac unloading and target the structural and func-
tional abnormalities that exist in the failing heart. It is well known
that vascular endothelial growth factor (VEGF), acting through
its receptor, can promote cell proliferation and possibly cell
migration and regeneration. Additionally, growth factors such as
VEGF, basic fibroblast growth factor, and hepatocyte growth factor
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Figure 2 Treatment effect of a partial adenosine A1-receptor agonist on LV function.90 Left: change Δ (treatment effect) between
pre-treatment and 12 weeks post-treatment of LV end-diastolic volume (EDV), end-systolic volume (ESV), EF, and stroke volume (SV) in
untreated control dogs and dogs treated for 3 months with capadenoson. Right: change Δ (treatment effect) between pre-treatment and 12
weeks post-treatment in plasma levels of NT-proBNP. Data are shown as mean± SEM. Probability values are comparisons between untreated
control and capadenoson. Reprinted from Sabbah HN et al. Chronic therapy with a partial adenosine A1-receptor agonist improves left
ventricular function and remodelling in dogs with advanced heart failure. Circ Heart Fail 2013;6:563–571.

can promote angiogenesis through increased myocardial capillary
density.80–82 Therapy with VEGF-A, VEGF-B, and other agents
that boost cardiac angiogenesis is being explored in pre-clinical
and early-phase clinical studies.79

New therapies are needed that target intrinsic structural and
functional abnormalities of the failing heart rather than easing
the work burden on the heart by targeting treatment to the
periphery. To this end, considerable research was conducted in
recent years to target and reverse abnormalities of sarcoplas-
mic reticulum calcium handling in the failing heart. These abnor-
malities include dysfunction of ryanodine receptor 2 (RyR2), evi-
denced by hyperphosphorylation of RyR2 and the presence of
a pathological calcium leak, down-regulation of SERCA2a along
with reduced activity and reduced calcium uptake, and dysfunction
of the sodium–calcium exchanger, which is evidenced by hyper-
phosphorylation and operation in ‘reverse mode’.28 Despite these
efforts, no new drugs have currently been identified that directly
target these signalling pathways. Recently published results from
the randomized, double-blind, multicentre CUPID 2 clinical study
of SERCA2a gene therapy in patients with HFrEF were disappoint-
ing because this treatment failed to improve the clinical course of
worsening HFrEF.83

Substantial research has been, and continues to be, expended
in understanding the adverse ramifications of the excessive proin-
flammatory state that exists in HF, which is characterized by excess
elaboration of proinflammatory cytokines including TNF-𝛼 and
interleukin-6. Drugs approved for indications other than HF that
have anti-inflammatory properties or that target certain cytokines
involved in the pathogenesis of HF (e.g. statins, etanercept, inflix-
imab, methotrexate, and colchicine) have been tested in HF,
but results of these studies to date have been disappointing or
inconclusive.48

Serelaxin, a recombinant form of human relaxin-2, has been
reported to increase arterial compliance, cardiac output, and renal ..
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. blood flow.84 Relaxin ligand–receptor binding has been shown

to increase the expression of VEGF.85 Furthermore, in the failing
heart, capillary density is reduced and oxygen diffusion distance
is increased, leading to regional hypoxia, and relaxin can there-
fore relieve myocardial hypoxia, leading to improved myocardial
oxygenation and improved LV function. Relaxin ligand–receptor
binding can also stimulate the activity of eNOS and release of
nitric oxide.86 In the Phase III RELAX-AHF trial, serelaxin was asso-
ciated with dyspnoea relief and reduced 180-day cardiovascular
mortality rates in patients with acute HF, but failed to reduce rates
of all-cause death or hospital readmission for HF or renal failure
before day 60 compared with placebo.87

The soluble guanylate cyclase (sGC)–cGMP pathway has been
identified as a potential target in patients with HF and sGC stim-
ulators, and sGC activators may provide haemodynamic improve-
ments and organ-protective properties independently of haemo-
dynamic changes.88 The sGC stimulator, vericiguat, is currently
being evaluated in patients with worsening chronic HF in the
Phase II SOCRATES programme, consisting of a trial for patients
with HF and preserved LVEF ≥45% (SOCRATES-PRESERVED)
and another for patients with HF and reduced LVEF <45%
(SOCRATES-REDUCED).89

Other novel therapies that have been tested in pre-clinical stud-
ies and are currently in Phase II clinical trials in patients with
HF include (i) partial adenosine A1 receptor (pA1R) agonists; (ii)
mitochondria-targeting peptides; and (iii) myocardial augmentation
with hydrogels. In dogs with chronic systolic HF, 12 weeks of ther-
apy with a pA1R agonist resulted in improved LV systolic function
and prevention of progressive LV enlargement, as evidenced by a
significant improvement in LVEF and reduced LV end-systolic vol-
ume (Figure 2).90 Unlike full adenosine A1 receptor agonists, pA1R
agonists are not associated with bradycardia, heart block, seda-
tion, or antidiuretic effects. The benefits of pA1R agonists for
the treatment of HF lie in their ability to afford protection to
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Figure 3 Mitochondrial function in cardiomyocytes of LV myocardium of normal dogs, untreated heart failure control dogs (HF-CON), and
dogs with heart failure treated with elamipretide (HF+ ELA).92 Top left: mitochondrial state 3 and 4 respiration. Top right: mitochondrial
membrane potential. Bottom left: mitochondrial permeability transition pore (mPTP). Bottom right: maximum rate of adenosine triphosphate
(ATP) synthesis and ratio of ATP to adenosine diphosphate (ADP). Probability values are comparisons between normal dogs, HF-CON,
and HF+ ELA dogs. Statistical significance based on one-way analysis of variance (ANOVA) followed by the Student–Newman–Keuls test.
All bar graphs are depicted as the mean± SEM. Reprinted from Sabbah HN et al. Chronic therapy with elamipretide (MTP-131), a novel
mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail
2016;9:e002206.

the failing myocardium by limiting triggers of cell injury and death

and potentially by providing the necessary energy to the working

myocardium.90

Elamipretide (MTP131), a novel mitochondria-targeting peptide

that enhances ATP synthesis and limits excessive ROS produc-

tion, improved LV systolic function without increasing heart rate

or decreasing mean arterial pressure compared with placebo in a

canine model of chronic HF (Figure 3).91,92 Additionally, elamipre-

tide has been demonstrated to reverse abnormalities of mitochon-

drial function and normalize the rate of ATP synthesis in cardiomy-

ocytes isolated from canines with experimentally induced advanced

HF.91,92 The benefits of this targeted approach to the treatment

of HF lie in the ability of this peptide to improve mitochondrial

function in HF, thus providing the necessary energy to the working

myocardium through improved mitochondrial function, while at the ..
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. same time significantly reducing the formation of tissue-destructive

ROS originating from the mitochondria.
In dogs with advanced HF, augmentation of LV wall thickness

with intramyocardial alginate hydrogel implants (AHIs) significantly
improved LV systolic and diastolic function and was associated with
preload-independent improvement of LV performance.36 Therapy
with AHIs that directly targeted the heart also reduced LV size,
partially restored physiological LV shape and reduced LV wall stress,
and had a favourable impact at the cellular level consistent with
reverse LV remodelling.36

Conclusions
Despite current optimal medical therapy in patients with stable
HF, the underlying structural and molecular abnormalities that
drive disease progression persist in many, if not all, patients. This
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progression is often silent and frequently remains undetected, and
is only manifested with the emergence of a serious life-threatening
event. Understanding the mechanisms contributing to progression
of cardiac dysfunction in HF has led to the identification of thera-
peutic targets that may correct some of the key underlying cardiac
abnormalities. Novel approaches to therapy, such as a neprilysin
inhibitor plus ARB therapy, relaxin, pA1R agonists, sGC activa-
tors and stimulators, mitochondria-targeting peptides, and direct
cardiac wall thickness augmentation, have the potential to correct
some of these abnormalities. Although promising new treatments
for stable yet progressive HF may be on the horizon, contin-
ued efforts directed at the development of treatments that target
the multitude of complex molecular mechanisms associated with
HF progression are needed. More effort should be expended in
the development of therapies that target structural and functional
abnormalities of the heart rather than the periphery. These ther-
apies should strive toward ‘haemodynamic neutrality’. New drugs
that further lower heart rate and blood pressure beyond those
that exist today are less likely to succeed and more likely to cause
harm in this patient population. Finally, while we shift attention to
the heart as the target of therapy and move away from targeting
the periphery, we should not lose sight of the need to address
abnormalities of skeletal muscle and the kidney in the setting of
chronic HF. Abnormalities of skeletal muscle are the key to improv-
ing exercise tolerance in HF and, hence, quality of life of the affected
patient. By the same token, renal dysfunction in HF, if left unat-
tended, will undoubtedly contribute to poor survival. The ideal
therapy for HF is one that reverses or prevents the progression of
intrinsic cardiac structural and functional abnormalities, improves
skeletal muscle function, and affords the necessary protection to
the kidneys.
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