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Abstract: Detecting saliency in videos is a fundamental step in many computer vision systems.
Saliency is the significant target(s) in the video. The object of interest is further analyzed for high-
level applications. The segregation of saliency and the background can be made if they exhibit
different visual cues. Therefore, saliency detection is often formulated as background subtraction.
However, saliency detection is challenging. For instance, dynamic background can result in false
positive errors. In another scenario, camouflage will result in false negative errors. With moving
cameras, the captured scenes are even more complicated to handle. We propose a new framework,
called saliency detection via background model completion (SD-BMC), that comprises a background
modeler and a deep learning background/foreground segmentation network. The background
modeler generates an initial clean background image from a short image sequence. Based on the idea
of video completion, a good background frame can be synthesized with the co-existence of changing
background and moving objects. We adopt the background/foreground segmenter, which was
pre-trained with a specific video dataset. It can also detect saliency in unseen videos. The background
modeler can adjust the background image dynamically when the background/foreground segmenter
output deteriorates during processing a long video. To the best of our knowledge, our framework is
the first one to adopt video completion for background modeling and saliency detection in videos
captured by moving cameras. The F-measure results, obtained from the pan-tilt-zoom (PTZ) videos,
show that our proposed framework outperforms some deep learning-based background subtraction
models by 11% or more. With more challenging videos, our framework also outperforms many
high-ranking background subtraction methods by more than 3%.

Keywords: background modeling; background subtraction; foreground segmentation; saliency
detection; PTZ camera; mobile camera

1. Introduction

High-level applications such as human motion analysis [1] and intelligent transporta-
tion system [2] demand the localization of targets in the video. For instance, in video
surveillance, humans are detected for motion recognition. Vehicles are located in an
intelligent transportation system. This foremost task can be achieved via saliency detec-
tion. Assuming that the background scene possesses invariant characteristics, a target
is detected due to its deviated visual cues. One approach is to formulate the task as
background/foreground segmentation. With the estimated background scene model, the
foreground (i.e., saliency) is segmented by a pixelwise background subtraction algorithm.
The foreground is defined as a region of interest that is not a part of the background. While
it is usually a moving object, it may also stop suddenly. Therefore, the region outside the
foreground such as the shadow is considered as the background. The background may
have moving elements, but their motions are not of interest.

However, the two assumptions—invariant background and deviation of foreground—may
be violated in some circumstances. For instances, background motion and illumination
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change can result in false detection (false positive). With the pre-generated background
model, background pixels may be predicted as foreground pixels. This is a false positive
(FP) error that is due to image feature(s) of the background pixel different from the back-
ground model. On the other hand, camouflage and intermittent object motion will result in
missing detection. This false negative (FN) error is due to the fact that some foreground
pixels may be erroneously identified as the background pixels if they have similar image
feature(s) to the background model.

The saliency detection task becomes more challenging with the use of moving camera.
The assumption of a static background is violated. Videos can be captured by a pan-tilt-
zoom (PTZ) camera or free-moving (e.g., hand-held) camera. The pan and tilt camera
motions can capture a broader vision field. Zooming can focus the region of interest with a
higher resolution. While these camera motions are constrained, free-moving camera can
perform any kind of motion without constraint. Systems that can handle such type of video
are of interest. They demand sophisticated techniques for generating and maintaining the
background model, as well as foreground segmentation.

Researchers have proposed various background subtraction algorithms. Many back-
ground subtraction methods are deterministic, i.e., background/foreground segmentation
is achieved based on hand-crafted features. One earliest approach is to adopt statistical
models [3,4]. Elgammal et al. [5] utilized kernel estimator to characterize the probability
density function (pdf) of the background pixels. Some researchers have presented the survey
on the background subtraction techniques [6,7]. Sobral and Vacavant [8] evaluated 29 back-
ground subtraction methods. In general, background subtraction comprises three main
parts—background modeler, background/foreground classifier, and background updating.

Another approach is to use neural networks for saliency detection. Its cognitive
power is made possible with the structure simulating complex connectivity of neurons.
Maddalena and Petrosino [9] proposed Self Organizing Background Subtraction (SOBS).
The background scene is modeled with the weights of the neurons. The network com-
pares the current image frame with the background model and outputs pixelwise back-
ground/foreground classification. Recently, a popular approach is to develop deep learning
models, such as convolutional neural network (CNN). The layered structure can accom-
modate multi-scale representation, with which image data are transformed and abstract
features are extracted. Wang et al. [10] proposed a basic CNN model, with which multi-
resolution CNN and cascaded CNN architectures were designed for object segmentation.
Lim and Keles [11] proposed an encoder–decoder network for object segmentation. The
encoder part is a triple CNN for multi-scale feature extraction. The concatenated feature
map is fed to a transposed convolutional network in the decoder part. They [12] further
proposed another model that uses feature pooling module on top of the encoder part.

In this paper, we propose a new framework, called saliency detection via background
model completion (SD-BMC), that comprises a background modeler and a deep learning
background/foreground segmentation network. Our framework can detect saliency in
videos captured by moving camera. The results, obtained from the benchmark datasets,
show that our proposed framework outperforms many high-ranking background subtrac-
tion models. Our contributions can be summarized as follows:

• Inspired by the filling of missing pixels via the inpainting technique, we adopt a
video completion module for modeling the background scene. In order to generate
a clean background frame, foreground objects will be substituted by the estimated
background colors. Guided by the optical flow, the video completion module can
generate good background model for video captured by moving camera, which is not
possible for other existing methods.

• We adopt the BSUV-Net 2.0 [13] for background/foreground segmentation. Although
the model is pre-trained with the CDNet [14] video dataset, it can also segment the
foreground in unseen videos. However, most of the videos in CDNet are captured
by static camera. Although BSUV-Net 2.0 is enhanced with more training videos
of moving camera, we find that the model still produces many FP and FN errors.
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Therefore, we replace the background frame generation method of BSUV-Net 2.0 with
our video completion-based background modeler.

• We propose a framework that comprises video completion-based background modeler
and the enhanced BSUV-Net 2.0 foreground segmentation network. To thoroughly
evaluate the new framework, we create our own video dataset with videos captured
by PTZ camera and free-moving camera. The results show that our framework
outperforms many high-ranking background subtraction models.

The paper is organized as follows. The related research studies on background
subtraction, particularly with videos captured by moving camera, are reviewed in the
following section. Section 3 elaborates our saliency detection framework. We compare our
framework with other high-ranking background subtraction algorithms. Quantitative and
visual results are presented in Section 4. Discussion is also made on the performance of all
these methods. Finally, we draw the conclusion in Section 5.

2. Related Work

Many methods have been proposed for segmenting foreground in videos captured by
stationary cameras. In this section, we review sophisticated methods that are proposed to
handle videos captured by moving cameras. Moving cameras can be categorized into two
types: constrained moving camera and freely moving camera. For instance, PTZ camera
belongs to the first category. In the second category, examples are hand-held camera,
smartphone or camera mounted on drones. Methods developed for constrained camera
may not perform well with freely moving camera.

Hishinuma et al. [15] considered the camera small pan/tilt motion as translational. The
translation amount is computed from the correlation of the FFT phase terms of stationary
background blocks. The synthesized still background model is then used for foreground
segmentation. In [16], camera motion is compensated by calculating the homography
transformation between two image frames. Scene model, which is a panoramic background,
is then generated from the motion compensated video. Foreground objects are detected
by comparing the panoramic background with individual image frames of the video.
Szolgay et al. [4] proposed a method for detecting moving objects in video taken by a
wearable camera. Global camera motion is estimated first by a hierarchical block matching
algorithm and then refined by a robust motion estimator. The foreground is identified as
the difference between motion-compensated image frames. Tao and Ling [17] proposed
a neural network for segmenting foreground in videos captured by PTZ cameras. Deep
learning features are extracted by a pre-trained network. Homography matrix is estimated
from previous image frames and current image frame with a semantic attention based
deep homography estimator. The warped previous frames, current frames, and their
features are fed into the fusion network for foreground mask prediction. Komagal and
Yogameena [18] reviewed the methods and the datasets for foreground segmentation
research with PTZ camera.

With the use of a freely moving camera, both background and foreground are changing.
The assumption of background modeling may be violated. For instance, when background
and foreground motions are similar, the background model is contaminated with fore-
ground colors. In another scenario, inaccurate camera motion estimation will give rise
to false positive errors. Yun et al. [19] proposed an adaptive scheme that can update the
background model in accordance with the changes of background. The scheme compen-
sates three types of change—background motion produced by moving camera, foreground
motion, and illumination change. Knowing that an explicit camera motion model is not
reliable, Sajid et al. [20] proposed an online framework such that both background and
foreground models are continuously updated. Background motion is estimated with a
low-rank approximation. Motion and appearance models are combined to produce the
background/foreground classification. Zhu and Elgammal [21] proposed a multi-layered
framework for background subtraction. In each layer, both motion and appearance model
are estimated and used for foreground detection. A probability map is inferred by kernel
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density estimator [5]. Finally, a segmented foreground is generated from the multi-layered
outputs by multi-label graph-cut. Chapel and Bouwmans [22] reviewed moving object
detection methods with moving camera. They grouped methods into two categories in
accordance with scene representation—single-plane and multi-plane. Methods in the first
group may generate a panoramic background by image mosaics. Some methods detect
moving objects via motion segmentation. Multi-plane approach estimates several planes
(may be real or not) as scene representation. Matched feature points are located and
eventually used for background/foreground classification.

We adopt the background-centric approach for saliency detection. Instead of modeling
the background based on camera motion compensation, which may be inaccurate, we
generate and update the background dynamically via video completion and continuous
monitoring of foreground segmentation result. Our background modeler, based on the op-
tical flow information, can generate a much better background frame for video captured by
a moving camera than other methods. As demonstrated in our results, our framework with
the cascade of background modeler and deep-learning foreground segmenter outperforms
many high-ranking background subtraction models in saliency detection.

Various video datasets were created for background subtraction research. The CDNet
2014 dataset [14] contains videos grouped under 11 categories. Each video record provides
the original image sequence and the corresponding ground truths. Many of the videos were
captured in different challenging scenes. For instance, the “PTZ” category contains four
videos captured by PTZ camera. The Hopkins 155 dataset [23] contains indoor and outdoor
panning videos. Perazzi et al. [24] proposed three versions of the Densely Annotated
Video Segmentation (DAVIS) dataset. Some videos were captured by shaking camera. The
SegTrack v2 dataset [25] contains videos captured by a moving camera with ground truth
of the moving object. The Labeled and Annotated Sequences for Integral Evaluation of
SegmenTation Algorithms (LASIESTA) [26] database contains real indoor and outdoor
videos with pan, tilt, or shaking cameras. In our experimentations, we create our own
dataset comprising videos captured by PTZ camera and moving camera extracted from
various publicly available video datasets.

3. Saliency Detection Framework

The saliency detection framework SD-BMC is shown in Figure 1. It performs two
main tasks—generation of initial background model and continuous saliency detection
with updating of background model. First, in part (a), we initialize the system with the first
100 frames. We use the background image generated by the foreground segmenter (BSUV-
Net 2.0 [13]) with median filter to create masks in this step. These masks, together with
the initial image sequence, will be placed into the video completion-based background
modeler (FGVC [27]). From the sequence of completed frames, the most recent one is
selected as the background frame (see the dotted arrow). In the stream of saliency detection
in part (b), the initial background frame and the current image sequence will be input to
the foreground segmenter. The foreground segmenter is pre-trained with CDNet video
dataset. As shown in our results, it also performs well with unseen videos. Therefore, we
do not retrain the foreground segmenter. The background model will be updated based on
the new input masks that are the current foreground segmentation results. The stream of
saliency detection with feedback will continue until all video frames are processed.
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Figure 1. Overview of the saliency detection framework: (a) background model initialization; (b) continuous saliency detection.

3.1. Evaluation Metrics

In order to evaluate the performance of our framework, we compute eight quanti-
tative measures: Recall, Specificity, False Positive Rate (FPR), False Negative Rate (FNR),
Percentage of Wrong Classifications (PWC), F-Measure, Precision, and Matthew’s Correlation
Coefficient (MCC) (where TP is true positive, FP is false positive, FN is false negative, and
TN is true negative). F-Measure, calculated based on Recall and Precision, is often used as a
single numeric measure for ranking different methods.

Recall =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

FPR =
FP

FP + TN
(3)

FNR =
FN

TP + FN
(4)

PWC =
100× (FN + FP)

TP + FN + FP + TN
(5)

F−Measure =
2× Precision× Recall

Precision + Recall
(6)

Precision =
TP

TP + FP
(7)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(8)
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3.2. Background Modeler

Many background modeling algorithms can estimate a clean background frame and
even the image sequence contains moving objects. However, if the foreground objects exist
too long, there will be phenomena such as ghosts in the background image. The problem
becomes more complicated with video captured by a moving camera. Deep learning-based
methods have been proposed for background modeling. For instance, Farnoosh et al. [28]
proposed a variational autoencoder (VAE) framework for background estimation from
videos recorded by fixed camera. In our experimentation on videos of moving camera,
there are always blur pixels existing in the final background images.

We adopt and modify the video completion method FGVC [27] for background
modeling. The algorithm can generate a clean background image with more attention to
the masks corresponding to the foreground objects and also the changing scene between
adjacent image frames. Figure 2 shows our video completion-based background modeler.
In part (a), the color video sequence and the corresponding binary masks are input to the
background modeler. The masks are the foreground regions that need to be completed.
They are the results of foreground segmenter, as shown in Figure 1b. Next, in part (b),
optical flow F between adjacent frames is computed with FlowNet2 [29]. The forward flow
is computed from Ii to Ii+1.

Fi→i+1 =
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Moreover, flow between some non-adjacent frames is also computed. This can help to
estimate missing background colors when camera motion is large. The backward flow and
forward flow are predicted from the color video sequence and the corresponding masks.
In each flow field, flow edges are extracted. Guided by the flow edge map, a completed
optical flow field is generated. In part (c), a set of candidate pixels are computed for each
missing pixel. Most of the missing pixels can be filled with inpainting via fusion of the
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candidate pixels. After that, the network will use Poisson reconstruction [30] to generate
the initial completed background frame:

argmin
Ĩ
‖∆x Ĩ − G̃x‖2

2 + ‖∆y Ĩ − G̃y‖2
2 (11)

where Ĩ is the weighted average image, and G̃ is the weighted average gradient. Finally,
in the last part (d), the modeler will fix the remaining missing pixels with a number of
inpainting iterations until there is no missing pixel.

Experimentation is performed to determine the length of the video sequence for
background generation. If it is too short, there may not be a sufficient number of candidate
pixels for background color synthesis. If it is too long, the time for background generation
will be long, and the actual saliency detection will be delayed. First, we choose 30 frames
for background generation. Figure 3 shows background modeling on two videos. It can be
observed that ghosts exist in the background frame. Then, we lengthen the initialization
sequence to 100 frames. Most of the foreground pixels can be substituted with background
colors. Table 1 compares the F-measure of saliency detection on the PTZ category of CDNet
2014 dataset. Finally, we fix the length to 100 frames.

Figure 3. Visual results of background modeling: (a) original frame; (b) 30 initialization frames; and
(c) 100 initialization frames.

Table 1. F-measure of saliency detection with two settings for background modeling.

Length of Initialization Sequence F-Measure

30 frames 0.8062
100 frames 0.8147

3.3. Foreground Segmentation

We adopt BSUV-Net 2.0 [13] as foreground segmenter. As shown in Figure 4, it has
a U-Net [31] like structure. Based on BSUV-Net [32], BSUV-Net 2.0 further improves
background subtraction performance on complicated videos with more spatio-temporal
data augmentations. The encoder–decoder structure contains five convolutional blocks in
the downsampling path, four convolutional blocks in the upsampling path, and their links
via concatenation. The detail of the configuration is shown in Table 2.
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Figure 4. Structure of foreground segmenter.

Table 2. Layer Configuration of Foreground Segmenter (SD: spatial dropout layer; BN: batch
normalization).

Network Structure of BSUV Kernel Size In_Channels Out_Channels

Conv + BN 3 * 3 12 64
Conv + BN 3 * 3 64 64

SD + Maxpooling 2 * 2 64 64
Conv + BN 3 * 3 64 128
Conv + BN 3 * 3 128 128

SD + Maxpooling 2 * 2 128 128
Conv + BN 3 * 3 128 256
Conv + BN 3 * 3 256 256
Conv + BN 3 * 3 256 256

SD + Maxpooling 2 * 2 256 256
Conv + BN 3 * 3 256 512
Conv + BN 3 * 3 512 512
Conv + BN 3 * 3 512 512

SD + Maxpooling 2 * 2 512 512
Conv + BN 3 * 3 512 512
Conv + BN 3 * 3 512 512
Conv + BN 3 * 3 512 512

Up-Conv + BN 3 * 3 512 512
Conv + BN 3 * 3 512 + 512 512
Conv + BN 3 * 3 512 512

Up-Conv + BN 3 * 3 512 512
Conv + BN 3 * 3 512 + 256 256
Conv + BN 3 * 3 256 256

Up-Conv + BN 3 * 3 256 256
Conv + BN 3 * 3 256 + 128 128
Conv + BN 3 * 3 128 128

Up-Conv + BN 3 * 3 128 128
Conv + BN 3 * 3 128 + 64 64
Conv + BN 3 * 3 64 64
Conv + BN 3 * 3 64 1

Sigmoid 1 1

An empty background frame, a recent background frame, the current frame and
corresponding foreground probability maps (FPM) are needed for background/foreground
separation. The input has a total of 12 channels. In order to avoid overfitting problems and
to increase the generalization of the network, it uses a batch normalization layer for each
convolution layer in the encoder part and a convolution transpose layer in the decoder
part. Spatial dropout layers are also used before max-pooling to make the network more
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generative. Finally, the network uses the sigmoid function to obtain the prediction value
S(x) of the pixels in output binary saliency detection:

S(x) =
1

1 + e−x (12)

where x is the output of a neuron in the last layer.
Tezcan et al. [13] simulated some changes, e.g., changes that look similar to videos

captured by PTZ camera, for data augmentation in training the model. However, as shown
in our experimental results, BSUV-Net 2.0 is still not good enough in saliency detection with
videos captured by PTZ camera and freely moving cameras. It is because the background
modeling method cannot generate a fairly good background frame for complicated videos.
Therefore, in our saliency detection stream, we disable the default background modeling
method. Instead, we use video completion-based background modeler that can generate a
better background frame.

4. Result and Discussion
4.1. Datasets

We test our saliency detection framework on CDNet 2014 dataset [14] and our cus-
tomized dataset. As shown in Table 3, CDNet 2014 comprises 11 categories, each of which
contains four to six videos. Each video record provides the original image sequence and
the corresponding ground truths. Some videos, e.g., the PTZ category, were captured in
challenging scenes.

Table 3. CDNet 2014 Dataset Categories and Video Scene.

Category Video Scenes

Bad Weather Blizzard
(7000 Frames)

Skating
(3900 Frames)

SnowFall
(6500 Frames)

WetSnow
(3500 Frames)

Low
Framerate

port 0 17fps
(3000 frames)

tramCrossroad
1fps

(900 frames)

tunnelExit 0 35fps
(4000 frames)

turnpike 0 5fps
(1500 frames)

Night Videos bridgeEntry
(2500 frames)

busyBoulvard
(2760 frames)

fluidHighway
(1364 frames)

streetCornerAtNight
(5200 frames)

tramStation
(3000 frames)

winterStreet
(1785 frames)

PTZ continuousPan
(1700 frames)

intermittentPan
(3500 frames)

twoPositionPTZCam
(2300 frames)

zoonInZoomOut
(1130 frames)

Thermal corridor
(5400 frames)

library
(4900 frames)

park
(600 frames)

diningRoom
(3700 frames)

lakeSide
(6500 frames)

Shadow backdoor
(2000 frames)

bungalows
(1700 frames)

busStation
(1250 frames)

cubicle
(7400 frames)

peopleInShade
(1199 frames)

copyMachine
(3400 frames)

Intermittent
Object Motion

abandonedBox
(4500 frames)

parking
(2500 frames)

streetLight
(3200 frames)

sofa
(2750 frames)

tramstop
(3200 frames)

winterDriveway
(2500 frames)

Camera Jitter badminton
(1150 frames)

boulevard
(2500 frames)

sidewalk
(1200 frames)

traffic
(1570 frames)

Dynamic
Background

boats
(7999 frames)

canoe
(1189 frames)

fountain01
(1184 frames)

fountain02
(1499 frames)

overpass
(3000 frames)

fall
(4000 frames)

Baseline highway
(1700 frames)

office
(2050 frames)

pedestrians
(1099 frames)

PETS2006
(1200 frames)

Turbulence turbulence0
(5000 frames)

turbulence1
(4000 frames)

turbulence2
(4500 frames)

turbulence3
(2200 frames)

Our customized dataset comprises 22 videos from the FBMS dataset [33] and eight
videos from the LASIESTA dataset [26]. The videos were captured by handheld cameras
and PTZ cameras. For videos selected from the FBMS dataset, we used manually defined
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ground truths for 20 continuous frames randomly chosen after the 100th frame in each
video. For videos from the LASIESTA dataset, each record provides a number of ground
truth images. Table 4 shows the details of our customized dataset.

Table 4. Customized Dataset Categories and Video Scene.

Category Video Number of Frames Ground Truth Frames

animals cats06 331 (190, 209)

cats07 193 (110, 129)

dogs02 420 (160, 179)

horses01 500 (280, 299)

horses02 240 (140, 159)

horses03 240 (214, 233)

horses04 800 (540, 559)

horses05 456 (320, 339)

horses06 720 (380, 399)

rabbits01 290 (200, 219)

people I_MC_01 300 (1, 300)

I_SM_01 300 (1, 300)

I_SM_02 300 (1, 300)

I_SM_03 300 (1, 300)

marple1 328 (309, 328)

marple2 250 (220, 239)

marple3 323 (250, 269)

marple6 800 (180, 199)

marple7 528 (370, 389)

marple10 460 (440, 459)

marple11 173 (150, 169)

O_MC_01 425 (1, 425)

O_SM_01 425 (1, 425)

O_SM_02 425 (1, 425)

O_SM_03 425 (1, 425)

people03 180 (160, 179)

people04 320 (270, 289)

people05 260 (140, 159)

things farm01 252 (194, 213)

tennis 466 (281, 300)

4.2. Performance Evaluation

We implement SD-BMC with the Python-based Pytorch. The computing platform
comprised Intel Xeon Silver 4108 CPU 1.8 G 16 Cores and a HPC Cluster with NVIDIA RTX
2080 Ti 11 GB × 8 GPU nodes. The background frame, either in the initialization or in the
updating process, is generated from a sequence of 100 image frames. Therefore, each video
is partitioned into sections of 100 frames. If the last section contains less than 100 frames,
we input all remaining frames into our framework. We resized the original image sequence
and ground truth images with a resolution of 320 × 240.
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We compare SD-BMC with six background subtraction algorithms—BSUV-Net [32],
BSUV-Net 2.0 [13], Fast BSUV-Net 2.0 [13], PAWCS [34], SuBSENSE [35], and ViBe [36].
Tezcan et al. [32] first proposed the BSUV-Net. Background frames were estimated from
the video. The current frame of the video and the background frames are input into
the fully convolutional neural network for background subtraction. They proposed the
second version of the model [13] by training with data simulating spatiotemporal changes.
Moreover, they developed the Fast BSUV-Net 2.0 [13] which is a real-time version of the
model. St-Charles et al. proposed SuBSENSE [35] and PAWCS [34] for change detection.
The background model is a codebook that is generated based on the persistence of pixel
features. They are among the high-ranking methods in CDNet 2014. Barnich et al. [36]
adopted the bag-of-words approach and proposed an efficient background subtraction
method ViBe. At each pixel location, some samples are randomly selected from the image
sequence and stored as background colors. The background model is also updated with a
random process.

4.3. Quantitative and Visual Results

Table 5 shows the numerical results of SD-BMC on CDNet 2014 dataset. Table 6 shows
the average results of BSUV-Net, BSUV-Net 2.0, Fast BSUV-Net 2.0, and SD-BMC. The
best results are highlighted in red. The second best results are highlighted in blue. Table 7
compares the results of BSUV-Net, BSUV-Net 2.0, Fast BSUV-Net 2.0, and SD-BMC on the
PTZ category of CDNet 2014. Figure 5 shows some visual results of BSUV-Net 2.0 and
SD-BMC.

Table 5. Evaluation Metrics of SD-BMC on CDNet 2014.

Category\Metric Recall Specificity FPR FNR PWC F-Measure Precision

PTZ 0.8798 0.9970 0.0030 0.1202 0.3788 0.8147 0.7880

badWeather 0.7139 0.9997 0.0003 0.2861 0.4538 0.8155 0.9790

baseline 0.9325 0.9987 0.0013 0.0675 0.2642 0.9514 0.9736

cameraJitter 0.8310 0.9973 0.0027 0.1690 0.9369 0.8790 0.9382

dynamic background 0.7437 0.9998 0.0002 0.2563 0.1229 0.8013 0.9336

intermittentObjectMotion 0.7987 0.9980 0.0020 0.2013 1.3093 0.8758 0.9809

lowFramerate 0.5614 0.9994 0.0006 0.4386 0.6950 0.6292 0.9046

nightVideos 0.4856 0.9992 0.0008 0.5144 1.1114 0.5727 0.9328

shadow 0.9389 0.9984 0.0016 0.0611 0.4378 0.9543 0.9704

thermal 0.6156 0.9990 0.0010 0.3844 1.2019 0.7075 0.9531

turbulence 0.5732 0.9998 0.0002 0.4268 0.2583 0.7107 0.9654

Average value 0.7340 0.9988 0.0012 0.2660 0.6518 0.7920 0.9381

Table 6. Average evaluation metrics of BSUV-Net, BSUV-Net 2.0, Fast BSUV-Net 2.0, and SD-BMC
on CDNet 2014.

Method Recall Specificity FPR FNR PWC F-Measure Precision

BSUV-Net 0.8203 0.9946 0.0054 0.1797 1.1402 0.7868 0.8113
BSUV-Net 2.0 0.8136 0.9979 0.0021 0.1864 0.7614 0.8387 0.9011

Fast BSUV-Net 2.0 0.8181 0.9956 0.0044 0.1819 0.9054 0.8039 0.8425
SD-BMC 0.7340 0.9988 0.0012 0.2660 0.6518 0.7920 0.9381
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Table 7. Evaluation metrics of BSUV-Net, BSUV-Net 2.0, Fast BSUV-Net 2.0, and SD-BMC on PTZ
category of CDNet 2014.

Method Recall Specificity FPR FNR PWC F-Measure Precision

BSUV-Net 0.8045 0.9909 0.0091 0.1955 1.0716 0.6282 0.5897
BSUV-Net 2.0 0.7932 0.9957 0.0043 0.2068 0.5892 0.7037 0.6829

Fast BSUV-Net 2.0 0.8056 0.9878 0.0122 0.1944 1.3516 0.5014 0.4236
SD-BMC 0.8798 0.9970 0.0030 0.1202 0.3788 0.8147 0.7880

Figure 5. Cont.
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Figure 5. Visual results of BSUV-Net 2.0 and SD-BMC on CDNet 2014.

Our saliency detection framework achieves the best average Recall, FPR, PWC, and
Precision on CDNet 2014 dataset. As shown in the visual results, SD-BMC can achieve
comparable performance as BSUV-Net 2.0 in many video categories. The superiority of SD-
BMC over BSUV-Net 2.0 can be observed in the PTZ category. Due to the poor background
frame, BSUV-Net 2.0 produces a large amount of FP errors. The quantitative results shown
in Table 7 clearly indicate that SD-BMC outperforms the other three models in all evaluation
metrics on PTZ videos. When a single numeric result, F-measure, is chosen for ranking,
SD-BMC outperforms all other methods by more than 11%.

Table 8 shows the average results of BSUV-Net, BSUV-Net 2.0, PAWCS, SuBSENSE,
ViBe, and SD-BMC on customized dataset. Table 9 compares the F-measure on individual
videos. Table 10 compares the MCC on individual videos. Figure 6 shows some visual
results of BSUV-Net, BSUV-Net 2.0, PAWCS, SuBSENSE, ViBe, and SD-BMC.

Table 8. Average evaluation metrics of BSUV-Net, BSUV-Net 2.0, PAWCS, SuBSENSE, ViBe, and
SD-BMC on customized dataset.

Method Recall Specificity FPR FNR PWC F-Measure Precision

BSUV-Net 0.4823 0.8556 0.1444 0.5177 18.4314 0.3707 0.4547
BSUV-Net 2.0 0.5273 0.9934 0.0066 0.4727 7.3303 0.6123 0.8827

PAWCS 0.4730 0.8695 0.1305 0.5270 19.0191 0.3323 0.3055
SuBSENSE 0.3066 0.9460 0.0540 0.6934 13.9365 0.2936 0.4167

ViBe 0.1332 0.7947 0.2053 0.6680 25.4062 0.2001 0.1707
SD-BMC 0.5635 0.9906 0.0094 0.4365 7.1580 0.6446 0.8719

The videos in the customized dataset are more challenging. We classify the videos,
in accordance to their contents, into three groups: animals, people, and things. SD-BMC
achieves the best average Recall, FNR, PWC, MCC, and F-Measure. We select a single
numeric result, F-measure, for assessing the performance of all methods on individual
videos. As shown in Table 9, SD-BMC achieves the best F-measure in many videos. The
average F-measure in “animals” and “things” groups are higher than all other methods,
while in “people” group, the average F-measure is slightly lower than BSUV-Net 2.0.
Similarly, as shown in Table 10, SD-BMC achieves the best average MCC in “animals” and
“things” groups, while in “people” group the average MCC is second best. Moreover, all
MCC results of SD-BMC are positive, while other methods have some negative MCC due
to large FP and FN errors. As shown in Figure 6, SD-BMC can detect saliency very close to
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the ground truth. BSUV-Net, PAWCS, SuBSENSE, and ViBe produce many FP errors. The
second best method, BSUV-Net 2.0, produces more FP and FN errors than SD-BMC. As
shown in video marple3, BSUV-Net 2.0 produces FN errors due to camouflage. SD-BMC
can segment the human with fewer FN errors. Overall, SD-BMC outperforms BSUV-Net
2.0 in F-Measure result by more than 3%.

Table 9. F-measure of BSUV-Net, BSUV-Net 2.0, PAWCS, SuBSENSE, ViBe, and SD-BMC on Individual Videos of the
Customized Dataset.

F-Measure Comparison
on Individual Video Video SD-BMC BSUV-Net 2.0 BSUV-Net PAWCS SuBSENSE ViBe

animals

cats06 0.4417 0.0041 0.0005 0.0062

cats07 0.5700 0.6634 0.5549 0.7506 0.4268 0.4408

dogs02 0.7758 0.6531 0.1754 0.4514 0.6144 0.0981

horses01 0.7163 0.7075 0.5733 0.5131 0.7398 0.2828

horses02 0.3591 0.4368 0.3474 0.1090 0.0264 0.0485

horses03 0.8341 0.8130 0.1235 0.1844 0.2957 0.0454

horses04 0.2322 0.2198 0.4269 0.0018 0.2025 0.0449

horses05 0.1433 0.1493 0.6209 0.4218 0.1793 0.6971

horses06 0.4626 0.4583 0.1986 0.2434 0.4240 0.0353

rabbits01 0.1972 0.1607 0.1805 0.2484 0.1214 0.0239

Average 0.4732 0.4266 0.3557 0.3249 0.3031 0.1723

people

I_MC_01 0.8343 0.8495 0.6551 0.3541 0.4782 0.1049

I_SM_01 0.7957 0.8631 0.2943 0.4522 0.6024 0.2066

I_SM_02 0.7577 0.8310 0.3354 0.4601 0.5193 0.2312

I_SM_03 0.7283 0.8248 0.3593 0.4367 0.4462 0.2334

marple1 0.6106 0.6042 0.3784 0.2276 0.3022 0.0946

marple2 0.8292 0.9490 0.0586 0.0312 0.0085 0.4303

marple3 0.9186 0.4303 0.0013 0.0661 0.0050 0.2659

marple6 0.4521 0.3793 0.2967 0.3744 0.4677 0.3463

marple7 0.9308 0.8645 0.5030 0.0032 0.0452 0.0895

marple10 0.6870 0.8286 0.0016 0.0429 0.0443 0.0540

marple11 0.4359 0.7044 0.4371 0.1585 0.0344 0.3260

O_MC_01 0.7097 0.6292 0.2610 0.3230 0.2195 0.1570

O_SM_01 0.8686 0.8704 0.3575 0.3559 0.2926 0.1446

O_SM_02 0.8113 0.8298 0.1920 0.3108 0.3205 0.1067

O_SM_03 0.7955 0.8115 0.1516 0.2569 0.2894 0.0909

people03 0.5481 0.4985 0.2137 0.4588 0.0144 0.2158

people04 0.8333 0.8457 0.3818 0.1923 0.2498 0.0628

people05 0.8786 0.8662 0.6771 0.7264 0.6623 0.3420

Average 0.7459 0.7489 0.3086 0.2906 0.2779 0.1946

things

farm01 0.5936 0.4329 0.1859 0.3668 0.1654 0.2630

tennis 0.8360 0.8902 0.6442 0.2836 0.4341 0.2035

Average 0.7148 0.6616 0.4151 0.3252 0.2998 0.2333

Total Average 0.6446 0.6123 0.3707 0.3323 0.2936 0.2001
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Table 10. MCC of BSUV-Net, BSUV-Net 2.0, PAWCS, SuBSENSE, ViBe, and SD-BMC on Individual Videos of the Cus-
tomized Dataset.

MCC Comparison
on Individual Video Video SD-BMC BSUV-Net 2.0 BSUV-Net PAWCS SuBSENSE ViBe

animals

cats06 0.4527 −0.0054 −0.0120 −0.0264 −0.0134 −0.0242

cats07 0.6181 0.6922 0.6064 0.7597 0.4867 0.4224

dogs02 0.7837 0.6833 0.1643 0.4546 0.6059 0.0826

horses01 0.7145 0.7071 0.5188 0.4147 0.7110 0.0906

horses02 0.4261 0.5021 0.3021 0.0505 0.0068 −0.0978

horses03 0.8260 0.8008 −0.2155 0.1212 0.3344 −0.0733

horses04 0.3097 0.3064 0.2132 0.0203 0.2379 −0.1266

horses05 0.1890 0.1931 −0.0718 0.3369 0.1708 0.5011

horses06 0.5152 0.5165 0.1678 0.2073 0.3970 0.0060

rabbits01 0.1594 0.1207 0.2417 0.2900 0.0959 −0.0811

Average 0.4994 0.4517 0.1915 0.2629 0.3033 0.0700

people

I_MC_01 0.8370 0.8552 0.6597 0.3794 0.4837 0.1186

I_SM_01 0.7801 0.8531 0.2879 0.4453 0.5758 0.1416

I_SM_02 0.7304 0.8125 0.2932 0.4315 0.4602 0.1142

I_SM_03 0.7011 0.8059 0.3226 0.3982 0.3771 0.1186

marple1 0.5877 0.5836 0.3740 0.0990 0.1064 −0.1778

marple2 0.7430 0.9223 −0.0360 −0.1704 −0.1508 0.0133

marple3 0.9090 0.4920 0.0238 −0.0335 0.0461 0.1245

marple6 0.4511 0.4032 0.2078 0.1964 0.3597 0.0991

marple7 0.9137 0.8422 0.4403 −0.1902 0.0302 −0.1260

marple10 0.7114 0.8333 −0.0218 −0.0092 −0.0295 −0.0048

marple11 0.3744 0.6867 0.4030 0.0470 −0.0467 0.2817

O_MC_01 0.7071 0.6326 0.3258 0.3975 0.3112 0.2158

O_SM_01 0.8722 0.8737 0.3973 0.4027 0.3162 0.1670

O_SM_02 0.8200 0.8365 0.2352 0.3511 0.3420 0.1137

O_SM_03 0.8056 0.8194 0.1759 0.3017 0.3113 0.0834

people03 0.5799 0.5420 0.3204 0.4959 0.0778 0.0328

people04 0.8409 0.8504 0.4327 0.2422 0.2449 0.0123

people05 0.8648 0.8514 0.6700 0.7042 0.6516 0.2668

Average 0.7350 0.7498 0.3062 0.2494 0.2482 0.0886

things

farm01 0.6131 0.4933 0.2097 0.2273 0.0250 0.0860

tennis 0.8279 0.8838 0.6233 0.2481 0.3992 0.1327

Average 0.7205 0.6886 0.4165 0.2377 0.2121 0.1094

Total Average 0.6516 0.6300 0.3047 0.2500 0.2545 0.0893
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4.4. Comparative Analysis

According to the results on the CDNet 2014 dataset, we found that SD-BMC outper-
forms other methods in the PTZ category. For other video categories, SD-BMC achieves
comparable results with other methods. The reason is that our video completion-based
background modeler, together with the feedback scheme, can generate clear and updated
background images. FGVC is a non-scene-specific method, which could be generalized to
unseen videos. As FGVC can capture temporal and spatial information, this modeler can
generate much better background images. On contrary, the empty background images used
in BSUV-Net 2.0 are very blur, which could significantly affect the final saliency detection
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result. PAWCS and SuBSENSE, which are designed for fixed camera, produce even worse
background frame. Figure 7 shows the comparison of background images.

Figure 7. Comparison of background frames used in BSUV-Net 2.0, PAWCS, SuBSENSE, and SD-BMC on PTZ video.

In Table 9, the F-Measure values of BSUV-Net and PAWCS on “cats06” video are
left blank. It is because these two methods have zero Recall value. Therefore, their F-
Measures cannot be calculated. It is clear that methods that are designed for fixed camera,
e.g., PAWCS, SuBSENSE, and ViBe, cannot achieve accurate background subtraction on
videos captured by moving camera. The deep learning model BSUV-Net, which can tackle
unseen videos, also fails to detect the foreground in many videos of the customized dataset.
The enhanced model BSUV-Net 2.0, which is trained with PTZ such as augmented data,
performs much better than the first version. SD-BMC, as compared with BSUV-Net 2.0, can
detect more accurate saliency with fewer FP and FN errors.

5. Conclusions

We propose a new framework, SD-BMC, for the detection of salient regions in each
video frames. The framework contains two major modules: video completion-based
background modeler and the deep learning-based foreground segmenter network. In
order to enable our framework for long-term saliency detection, the background modeler
can adjust the background image dynamically via a feedback mechanism. SD-BMC can
best segment foregrounds in videos captured by moving camera. In order to demonstrate
this capability, we create our customized dataset with challenging videos captured by
PTZ camera and handheld camera. The results, obtained from the PTZ videos, show that
our proposed framework outperforms some deep learning-based background subtraction
models by 11% or more in the F-Measure result. With more challenging videos, our
framework also outperforms many high-ranking background subtraction methods by more
than 3%.

Although the results show that SD-BMC is superior to other deterministic as well
as deep learning-based background subtraction methods, there are still more method
that can further improve it. In this study, we focus on designing a saliency detection
framework for moving camera videos. In the future, we will work on new models for other
challenging scenarios. The background modeling process can be made faster in order to
tackle abrupt changes. Moreover, the foreground segmenter can adopt a teacher–student
structure. While the complex teacher model is used in the training process, the testing
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process will be performed by a simpler student model. The lite model can be used for
real-time saliency detection.
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