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 Abstract: In view of the significant role of H2S in brain functioning, it is proposed that H2S may 

also possess protective effects against adverse effects of neurotoxicants. Therefore, the objective of 

the present review is to discuss the neuroprotective effects of H2S against toxicity of a wide spec-

trum of endogenous and exogenous agents involved in the pathogenesis of neurological diseases as 

etiological factors or key players in disease pathogenesis. Generally, the existing data demonstrate 

that H2S possesses neuroprotective effects upon exposure to endogenous (amyloid β, glucose, and 

advanced-glycation end-products, homocysteine, lipopolysaccharide, and ammonia) and exogenous 

(alcohol, formaldehyde, acrylonitrile, metals, 6-hydroxydopamine, as well as 1-methyl-4-phenyl-

1,2,3,6- tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenyl pyridine ion (MPP)) neu-

rotoxicants. On the one hand, neuroprotective effects are mediated by S-sulfhydration of key regula-

tors of antioxidant (Sirt1, Nrf2) and inflammatory response (NF-κB), resulting in the modulation of 

the downstream signaling, such as SIRT1/TORC1/CREB/BDNF-TrkB, Nrf2/ARE/HO-1, or other 

pathways. On the other hand, H2S appears to possess a direct detoxicative effect by binding endog-

enous (ROS, AGEs, Aβ) and exogenous (MeHg) neurotoxicants, thus reducing their toxicity. More-

over, the alteration of H2S metabolism through the inhibition of H2S-synthetizing enzymes in the 

brain (CBS, 3-MST) may be considered a significant mechanism of neurotoxicity. Taken together, 

the existing data indicate that the modulation of cerebral H2S metabolism may be used as a neuro-

protective strategy to counteract neurotoxicity of a wide spectrum of endogenous and exogenous 

neurotoxicants associated with neurodegeneration (Alzheimer’s and Parkinson’s disease), fetal al-

cohol syndrome, hepatic encephalopathy, environmental neurotoxicant exposure, etc. In this particu-

lar case, modulation of H2S-synthetizing enzymes or the use of H2S-releasing drugs should be con-

sidered as the potential tools, although the particular efficiency and safety of such interventions are 

to be addressed in further studies. 
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1. INTRODUCTION 

Hydrogen sulfide (H2S) is a colorless, water-soluble, and 
flammable gas with the odor of rotten eggs. The certain  
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physical and chemical similarity of H2S with water (H2O) 
mediates its high solubility in water and, consequently, body 
fluids [1, 2]. Environmental sources of H2S include anaero-
bic decomposition of sulfate by bacteria, degradation of S-
containing mammalian proteins, geothermal activity, and 
anthropogenic industrial activities. These industries include 
the oil and gas industry, animal feeding operations, geother-
mal power plants, etc. [3]. H2S was considered a toxic agent 
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for more than 300 years. The most characteristic features of 
acute H2S toxicity include central neurotoxicity, pulmonary 
edema, conjunctivitis, and olfactory paralysis. At the same 
time, chronic H2S exposure at both high and low doses was 
also found to be neurotoxic [4].   

In contrast to exogenous H2S exposure, the findings of 
the last two decades demonstrated that endogenous H2S may 
be involved in the physiological regulation of the organism's 
functions. In 1996, Abe and Kimura revealed a high rate of 
H2S production in the brain, as well as the neuromodulator 
effect of the molecule [5]. Since then, the increasing body of 
data on the physiological functions of H2S has been accumu-
lated. H2S has been considered as the third gasotransmitter, 
after nitric oxide (NO) and carbon monoxide (CO) [6], in-
volved in a variety of processes in cardiovascular [7], im-
mune [8], endocrine, and reproductive systems [9]. Being 
toxic at high and neuroprotective at low concentrations, H2S 
may pose a hormetic effect [10], as clearly demonstrated for 
NO [11].  

The role of endogenous H2S in the nervous system is me-
diated by its involvement in synaptic transmission, long-term 
potentiation, redox homeostasis, mitochondrial bioenerget-
ics, secondary messenger signaling, proteostasis, autophagy, 
inflammatory response, and cellular senescence [12].  

Recent studies demonstrated neuroprotective effects of 
H2S in a number of neurological and neurodegenerative 
models of diseases, including Parkinson’s [13] and Alz-
heimer’s disease [14], traumatic [15], hemorrhagic [16], and 
ischemia/reperfusion injury [17]. In this review, we discuss 
the neuroprotective effects of H2S against toxicity of a wide 
spectrum of endogenous and exogenous agents involved in 
the pathogenesis of neurological diseases as etiological fac-
tors or key players in disease pathogenesis. 

2. A BRIEF REVIEW OF H2S BIOCHEMISTRY AND 
NEURONAL FUNCTIONS 

Endogenous H2S is synthetized predominantly from L-
cysteine by cystathionine-β-synthetase (CBS) and cystathi-
onine γ-lyase (CSE) involved in the homocysteine metabo-
lism trans-sulfuration pathway (Fig. 1). CBS catalyzes inter-
action between L-homocysteine and L-serine with the for-
mation of L-cystathionine and H2O. L-serine may be re-
placed by L-cysteine to yield H2S instead of H2O as a reac-
tion product. However, the reactivity of CBS toward L-
cysteine is lower as compared to L-serine [18]. CBS also 
catalyzes the formation of lanthionine and homolanthionine 
with the release of H2S upon reaction between two cysteine 
and homocysteine molecules, respectively [18]. Another 
closely related enzyme, CSE, catalyzes the decomposition of 
L-cystathionine with the formation of L-cysteine, α-
ketobutyrate, and NH3. It is also involved in the biosynthesis 
of H2S through α and β-elimination of L-cysteine [19]. An-
other pathway of H2S synthesis involves the activity of two 
enzymes, cysteine aminotransferase (CAT) and 3-
mercaptopyruvate sulfurtransferase (3-MST). CAT was 
shown to catalyze the transformation of L-cysteine to 3-
mercaptopyruvate, whereas the latter undergoes a 3-MST-
catalyzed reaction together with α-ketoglutarate with the 
formation of L-glutamate, pyruvate, and H2S [20]. In addi-
tion, a closely related pathway for H2S synthesis from D-

cysteine was revealed. Specifically, D-cysteine is oxidized to 
3-MP by D-amino acid oxidase (DAO) with the subsequent 
3-MST-catalyzed formation of H2S [21]. While considering 
the relevance for the nervous system, it has been demonstrat-
ed that CSE provides a minor contribution to cerebral H2S 
production as compared to CBS and 3-MST due to its low 
abundance in the brain [22]. It has been also demonstrated 
that 3-MST is mainly localized in neurons, whereas CBS is 
more characteristic for astrocytes [23]. 

H2S-mediated S-sulfhydration or S-sulfuration of the pro-
teins is considered as the mechanism of post-translational 
protein modification, which contributes to a significant ex-
tent to intracellular H2S signaling [24]. Recent studies dem- 
onstrated that intact cysteine (Cys-SH) residues are unlikely 
to be S-sulfurated by H2S, although protein  –SH group oxi-
dation by reactive oxygen (e.g., O2

-•
) or reactive nitrogen 

(NO
•
) species increases protein susceptibility to S-sulfhydra- 

tion. In addition, proteins containing disulfide bonds are also 
considered the potential targets for S-sulfhydration (Fig. 2) 
[25].  

Recent studies revealed a wide spectrum of proteins sub-
jected to S-sulfhydration, including enzymes and receptors, 
transcription factors, and ion channels [26]. Post-
translational modification of these proteins by H2S may un-
derlie its impact on neurological diseases through the modu-
lation of neuroinflammation (NF-κB), neuronal oxidative 
stress (Keap1, p66Shc), AGEs toxicity (e.g., RAGE), mito-
chondrial energy metabolism (e.g., ATP5A1, IRF1), endo-
plasmic reticulum stress (PTP1B), etc. Specific proteins in-
volved in neurodegeneration, like parkin, are also affected by 
S-sulfhydration, thus at least partially contributing to Parkin-
son’s disease pathogenesis [25].  

In addition to S-sulfhydration, H2S is known to regulate 
redox homeostasis [10] that is tightly associated with vitagene 
network signaling, possessing a neuroprotective effect [27]. 

Although the above-referenced studies characterized the 
outcome of the target proteins with H2S for each particular 
metabolic pathway, their involvement in the response to neu-
rotoxic exposures is also unclear.  

3. ENDOGENOUS NEUROTOXICANTS 

3.1. Amyloid β  

Amyloid β (Aβ) is a physiological product of amyloid 
precursor protein (APP) proteolysis by β- and γ-secretases 
[28]. Within a physiological range, Aβ is involved in a num-
ber of functions, including the regulation of synaptic trans-
mission, brain recovery, maintenance of blood-brain barrier 
integrity, etc. [29]. However, an imbalance between Aβ 
cleavage and production, with a shift to a latter, results in Aβ 
accumulation and subsequent neurotoxicity [30]. The latter is 
mediated by oxidative stress, neuroinflammation, and apop-
tosis, leading to neuronal damage and a significant decline in 
brain functions [31]. 

The last decade of extensive studies demonstrated that 
H2S may modulate Aβ neurotoxicity by addressing both Aβ 
production and cleavage, as well as particular mechanisms of 
Aβ toxicity. Specifically, H2S was shown to down-regulate 
BACE1 expression and Aβ1-42 secretion through the activa-
tion of the PI3-K/Akt signaling pathway [32]. A similar 
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Fig. (1). Mechanisms of endogenous H2S synthesis. 

 

 

Fig. (2). Mechanisms of H2S-induced protein S-sulfhydration. 

 
mechanism was shown to be involved in H2S-induced γ-
secretase (PS1) down-regulation [33]. In addition, down-
regulation of cAMP production and cAMP-responsive ele-
ment-binding protein (CREB) phosphorylation may underlie
the inhibitory effect of H2S on γ-secretase and subsequent 
Aβ42 production [34]. 

In turn, the increase in ADAM17 activity in response to 
H2S treatment was shown to result in increased levels of 
non-amyloidogenic C83 fragment and a concomitant de-
crease in the production of amyloidogenic C99 fragment 
[35]. It has been demonstrated that H2S may up-regulate dis-
integrin and metalloprotease 10 (ADAM10), also resulting in 
a shift to a non-amyloidogenic APP processing product [36]. 
Finally, in an in vitro study, it has been demonstrated that 
H2S prevents β-sheet formation protein fibrillation through 

the organization of trisulfide bridges, resulting in the for-
mation of small spherical aggregates possessing lower cyto-
toxicity as compared to protein fibrils [37]. Therefore, en-
dogenous H2S may be considered a significant amyloidogen-
esis modulator inhibiting the formation and up-regulating its 
proteolytic cleavage, resulting in decreased Aβ deposition.  

At the same time, certain studies demonstrated bimodal 
dose-dependent effects of H2S on amyloid processing. Spe-
cifically, 30 µM NaHS significantly reduced Aβ levels along 
with a reduction of presenilin 1, presenilin enhancer 2, and γ-
secretase expression, whereas treatment of APP/PS1 neurons 
with 50 µM NaHS possessed significant opposite effects 
[38], thus demonstrating the potential difference in mecha-
nisms involved in physiological and toxicological effects of 
H2S. 
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In parallel with a decrease in Aβ production, H2S was 
shown to interfere with the mechanisms of Aβ neurotoxicity.  

H2S-induced up-regulation of Nrf2 signalling led to an 
increase in HO-1 and GST expression, which is in agree-
ment with the reported role of H2S as an endogenous antiox-
idant. These changes in redox homeostasis were associated 
with reduction of Aβ1–40 and Aβ1–42 levels, neuronal dam-
age, as well as APP and BACE1 levels, altogether resulting 
in the improvement of cognitive function [39]. Moreover, 
H2S was shown to be a component of the neuroprotective 
signaling pathway, being mediated by BDNF expression, and 
resulting in the up-regulation of Nrf2 expression, reduced Ab 
accumulation, and TNFa levels in the prefrontal cortex and 
hippocampus [40]. 

Improvement of mitochondrial function, including ATP 
synthesis and oxidative mitochondrial DNA damage by in-
creasing mitochondrial H2S levels, was shown to be protec-
tive against Aβ-induced memory loss [41]. Correspondingly, 
H2S-releasing aspirin prevented Aβ-induced mitochondrial 
membrane potential loss [42]. Taken together with the ob-
served Bcl2 up-regulation and inhibition of Bax expression 
and caspase 3 levels [43], these findings are indicative of the 
reduction of Aβ-associated mitochondria-dependent apopto-
sis. 

In addition to oxidative stress and mitochondrial dysfunc-
tion, H2S was shown to ameliorate Aβ-induced neuroin-
flammation in rat hippocampus through the inhibition of NF-
κB activation by reducing IΚB-α degradation [44] with a 
subsequent decrease in hippocampal TNF-α, IL-1β and IL-6 
levels and COX-2 activity [45]. In Aβ-exposed microglia, 
H2S attenuated proinflammatory effects and mitochondrial 
dysfunction through the down-regulation of JNK and p38-
MAPK pathway [46, 47]. Concomitantly, a key role of p38 
MAPK and p65 NF-κB modulation in H2S-induced the pre-
vention of hippocampal astrogliosis and microgliosis, as well 
as IL-1β and TNF-α overexpression was demonstrated in 
Aβ1-40-exposed rats [48].

Direct interaction between H2S and target proteins 
through the induction of persulfidation may underlie certain 
neuronal effects [49]. Specifically, in parallel with the inhibi-
tion of ATP-induced Aβ1–42 production, H2S inhibited 
STAT3 phosphorylation and subsequent Cathepsin S activa-
tion, as well as induced Cathepsin S sulfhydration at Cys25, 
thus resulting in the inhibition of NF-κB signaling and the 
resulting neuroinflammation [50]. 

H2S also plays a significant role in the regulation of tau 
protein phosphorylation, another key player in Alzheimer’s 
disease [51]. Particularly, H2S ameliorated tau phosphoryla-
tion in severe transgenic 3×Tg Alzheimer’s disease mice 
model [52] as well as Zucker diabetic fatty rats [53]. Specifi-
cally, H2S was shown to ameliorate Tau phosphorylation at 
Thr181, Ser396, and Ser202 residues in 3xTg-AD mice [43].  

A recent study demonstrated that H2S is capable of 
GSK3β sulfhydration with subsequent inhibition of Tau hy-
perphosphorylation. Moreover, binding Tau to H2S-produ- 
cing enzyme cystathionine γ-lyase up-regulates activity of 
the latter, whereas this process is down-regulated in Alz-
heimer’s disease [54]. Certain studies also investigated the 
impact of H2S on the PI3K/Akt pathway, being involved in 

the regulation of GSK3β phosphorylation. On the one hand, 
H2S-dependent sulfhydration of AKT was shown to affect 
Akt-mediated GSK3β phosphorylation and inactivation, thus 
promoting Tau phosphorylation [55]. In contrast, another 
study revealed that the prevention of mitochondrial translo-
cation of phosphatase and tensin homologs deleted on chro-
mosome 10 (PTEN) by H2S may result in PI3K/Akt pathway 
activation upon Ab exposure [56].  
 

 

Fig. (3).  The impact of endogenous H2S on amyloidogenesis and 

tau phosphorylation. 

 

3.2. Glucose and Advanced Glycation End-products 

The brain requires an adequate supply of glucose, being 
the primary energy source for neuronal processes [57]. How-
ever, persistent increase in glucose levels is known to be 
neurotoxic due to the formation of ROS, reactive carbonyls, 
and non-enzymatic protein glycation with the formation of 
advanced glycation end-products [58]. Recent findings 
demonstrate that H2S may be involved in the systemic regu-
lation of carbohydrate metabolism [59], although certain 
studies demonstrated that H2S may be directly involved in 
the modulation of neurotoxic effects of glucose and AGEs. 

A recent study demonstrated that H2S possesses signifi-
cant neuroprotection under hyperglycemic conditions 
through the up-regulation of autophagy and SIRT1 expres-
sion, thus reducing SH-SY5Y cell senescence [60]. Concom-
itantly, H2S-induced SIRT1 up-regulation was found to un-
derlie a reduction in proinflammatory cytokine expression in 
HT-22 neuronal cells through the modulation of mTOR/NF-
κB signaling [61]. These findings demonstrate that H2S-
dependent SIRT1 modulation may be considered a regulator 
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of oxidative stress and neuroinflammation upon hypergly-
cemic conditions. In addition, H2S was shown to ameliorate 
proamyloidogenic effects, including increased Aβ1-42 levels 
and BACE-1 mRNA and protein expression in primary neu-
ronal culture exposed to high glucose concentrations [62], 
thus also contributing to the earlier discussed role of H2S in 
amyloidogenesis.  

In vivo studies using rodent diabetes models also re-
vealed neuroprotective effects of H2S. In particular, in dia-
betic rats, treatment with H2S donor GYY4137 significantly 
reduced microglial activation and proinflammatory cytokine 
expression in parallel with increased astrocyte count in the 
spinal cord, as well as improved sensory functions [63]. Im-
provement of memory function by H2S was also shown to be 
associated with the reduction of neuroinflammation and im-
provement of cholinergic neurotransmission through the 
down-regulation of acetylcholinesterase activity after intrac-
erebroventricular injection of streptozotocin [64], disrupting 
local glucose uptake and being a model of Alzheimer’s dis-
ease [65].  

AGEs accumulation in brain tissues was shown to pos-
sess significant neurotoxic effects, contributing to a broad 
spectrum of neurodegenerative diseases [66], especially Alz-
heimer’s disease [67]. Recent studies demonstrated that H2S 
metabolism may be considered both a target and modulator 
of AGEs neurotoxicity. Specifically, exposure of RSC96 
Schwann neural cells to methylglyoxal and glucose resulted 
in significant inhibition of H2S production through down-
regulation of cystathionine-β-synthase (CBS) expression and 
activity in association with ROS and RNS overproduction, 
loss of mitochondrial membrane potential, and reduced cell 
viability. It is notable that improvement of CBS activity 
through calcitriol supplementation ameliorated these chang-
es, thus being indicative of the potential role of H2S in neu-
roprotective effects of vitamin D [68]. It has been also 
demonstrated that H2S-mediated neuroprotection against 
methylglyoxal neurotoxicity and up-regulation of 
Keap1/Nrf2 signaling is dependent on the formation of cys-
teine persulfides [69]. Moreover, polysulfides occurring 
from H2S oxidation were shown to scavenge methylglyoxal, 
thus decreasing intracellular AGEs accumulation and protein 
glycation and reducing cytotoxicity to differentiated SH-
SY5Y cells [70]. In addition, H2S was shown to ameliorate 
neurotoxic effects of D-galactose through the reduction of 
AGEs formation and oxidative stress in neuroblastoma SH-
SY5Y cells [71].  

Moreover, H2S may also interfere with RAGE signaling, 
which is known to contribute significantly to neurotoxic ef-
fects of AGEs in Alzheimer’s disease [72]. Specifically, H2S 
was shown to reduce RAGE expression, as well as RAGE 
dimerization through S-sulfhydration at C259/C301 residues, 
thus reducing RAGE-dependent toxic effects of Aβ1–42 or 
AGEs [73]. 

Therefore, physiological H2S may possess neuroprotec-
tive effects against glucose overexposure through the regula-
tion of oxidative stress and neuroinflammation, as well as 
AGE formation and toxicity. At the same time, H2S-
mediated neuroprotection may also be indirectly associated 
with its antidiabetic effects [74]. 

3.3. Homocysteine 

Homocysteine (Hcy) is a non-essential S-containing ami-
no acid formed as an intermediate product during the trans-
formation of methionine to cysteine. One of the steps of this 
process, the formation of cystathionine from Hcy, is cata-
lyzed by CBS, which also forms H2S as a byproduct. Con-
comitantly, decreased CBS activity is associated with in-
creased homocysteine levels, thus providing a mechanistic 
link between Hcy overload and H2S metabolism [75]. Alt-
hough Hcy is a physiological molecule formed in vivo, at 
higher accumulation rates, it possesses a broad spectrum of 
toxic effects associated with cardiovascular, endocrine, renal 
diseases, cancer, as well as neurological diseases [76]. Hcy 
was also shown to possess neurotoxic properties through the 
induction of neuronal oxidative stress, DNA damage, and 
apoptosis, thus contributing to neurodegeneration [77]. 

H2S was shown to ameliorate Hcy-induced down-
regulation of bcl2 expression as well as ROS-dependent mi-
tochondrial dysfunction, thus decreasing proapoptotic signal-
ing [78]. Taken together with up-regulation of Bax expres-
sion and DNA damage [79], these H2S-associated changes 
result in a significant decrease in mitochondrial cytochrome 
c release and caspase 3 activation underlying the inhibition 
of Hcy-induced mitochondria-dependent apoptosis [80]. The 
particular mechanism of protective H2S effects in Hcy-
induced mitochondrial dysfunction may involve up-
regulation of NADH dehydrogenase, cytochrome c oxidase, 
and F0-F1 ATPase activity in brain mitochondria, as well as 
increased oxygen consumption at mitochondrial complexes I, 
II, and IV, thus resulting in reduced ROS production and 
mitochondrial damage [81].  

Given the role of ROS overproduction in mitochondrial 
dysfunction, one of the key mechanisms of protective action 
of H2S upon Hcy exposure may include up-regulation of 
Nrf2 signaling that prevents Hcy-associated decrease in anti-
oxidant enzyme activity [82]. In addition, H2S was shown to 
prevent Hcy-induced inhibition of paraoxonase 1 expression 
and activity in PC12 cells that also suppresses ROS accumu-
lation and oxidative damage [83]. Given the role of oxidative 
stress with the generation of reactive aldehydes, 4-HNE and 
MDA, in Hcy neurotoxicity, up-regulation of ALDH2 by 
H2S may also be considered as the potential neuroprotective 
mechanism of the latter [84].  

Protective effects of H2S upon Hcy overexposure may al-
so involve up-regulation of SIRT1 expression, a key regula-
tor of redox homeostasis, as well as inhibition of ER stress, 
as evidenced by the down-regulation of GRP78 and cleaved 
caspase�12 protein expression in PC12 cells [85]. Similar 
effects were observed in HT22 cells, being associated with 
reduced Hcy-induced cellular senescence [86]. In turn, the 
up-regulation of BDNF expression and BDNF/TrkB signal-
ing by H2S significantly reduced hippocampal ER stress and 
apoptosis in Hcy-exposed rats [87], thus preventing cogni-
tive decline in response to Hcy [88]. Correspondingly, a 
Hcy-induced inhibition of CBS activity resulting in lower 
H2S production was shown to be associated with ER stress, 
altogether contributing to impaired learning and memory 
[89]. Taken together, these data suggest that H2S may up-
regulate SIRT1 expression with subsequent TORC1 deacety-
lation and its interaction with CREB, being considered as a 
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regulator of BDNF expression [90] altogether resulting in the 
reduction of Hcy-induced ERS. 

Neuroinflammation with microglia activation due to 
STAT3 signaling was shown to be a significant contributor 
to Hcy neurotoxicity [91]. In turn, H2S was shown to ame-
liorate Hcy-induced microglia activation, as evidenced by 
reduced glial fibrillary acidic protein (GFAP) and ionized 
calcium-binding adaptor molecule 1 (Iba1) expression, as 
well as the resulting expression of proinflammatory IL-6, 
TNFa, and MCP-1 in the cortex and hippocampus [92].  

Another mechanism of H2S-mediated neuroprotection 
against Hcy-induced neurodegeneration may involve the 
reduction of BBB permeability through the inhibition of 
MMPs’ (MMP2, MMP9) activity and improvement of tissue 
inhibitor of metalloproteinase and tight junction protein 
(zonula occludens 1) expression [93]. In turn, increased BBB 
permeability may be involved in stimulated leukocyte ex-
travasation and brain edema upon Hcy neurotoxicity [94]. 
The modulation of NMDAR expression may also be in-
volved in neuroprotective effects of H2S in Hcy-induced 
BBB permeability [95]. Down-regulation of NMDA receptor 
signaling and prevention of Ca

2+
 overload by H2S may also 

mediate the protective effect of the latter against Hcy neuro-
toxicity [96]. 

Being in agreement with the indications of a tight associ-
ation between Hcy and H2S metabolism, the down-regulation 
of CBS expression and activity leading to reduced H2S gen-
eration through ERK1/2 pathway activation may contribute 
significantly to Hcy neurotoxicity [97]. Concomitantly, ma-
ternal hyperhomocysteinemia also results in reduced H2S 
production through the inhibition of CBS, whereas H2S sup-
plementation significantly improved neurobehavioral effects 
of Hcy exposure [98, 99]. 

3.4. Lipopolysaccharide (LPS) Endotoxin 

Lipopolysaccharide (LPS) is a component of Gram-
negative bacteria cell wall that is known to be a potent proin-
flammatory molecule, causing a significant impact on gut 
health [100]. However, in the case of increased gut wall 
permeability, translocation of LPS into the bloodstream un-
derlies metabolic endotoxemia that may induce systemic 
inflammatory response [101]. In turn, LPS was shown to 
affect the structural integrity of the blood-brain barrier with 
subsequent development of LPS-induced neuroinflammation 
that is known to play a significant role in neurotoxicity and 
neurodegeneration [102].   

LPS exposure was shown to induce anxiety-like behavior 
along with oxidative stress and neuroinflammation in the 
cortex and hippocampus in parallel with reducing H2S pro-
duction. In turn, H2S ameliorated behavioral deficits and 
promoted microglia polarization from pro-inflammatory M1 
phenotype expressing IL-1β and TNF-α to an anti-
inflammatory M2 phenotype characterized by up-regulated 
IL-4 and TGF-β expression, thus being indicative of the po-
tential role of H2S in the regulation of neuroinflammation 
[103]. Moreover, the modulation of LPS-induced microglia 
activation is considered as the key mechanism in neuropro-
tection, whereas the direct effect of H2S-releasing com-
pounds on neuronal SH-S5Ys cell viability was not signifi-
cant [104]. In contrast to other studies, it has been demon-

strated that the anti-inflammatory effects of H2S in BV2 mi-
croglial cells are accompanied by ROS overproduction 
[105].  

In view of the key role of NF-κB transcription factor in 
LPS-induced inflammation [106], the anti-inflammatory ef-
fect of H2S was shown to be dependent on the inhibition of 
LPS-induced IkB degeneration, thus preventing NF-κB acti-
vation and nuclear translocation and down-regulation of 
downstream signaling genes, including TNFa and TNFR 
[107]. In addition to the direct regulation of NF-κB signal-
ing, the anti-inflammatory effect of H2S in LPS-exposed 
microglia and astrocytes was shown to be dependent on the 
inhibition of p38 MAPK phosphorylation [108]. Other neu-
roinflammatory mechanisms involved in H2S anti-
inflammatory effects upon LPS exposure may involve the 
down-regulation of JAK-STAT3, cytokine-receptor interac-
tions, TLR, NOD-like receptor, and chemokine signaling 
pathways, all being associated with H2S-induced up-
regulation of genes involved in sulfur metabolism, HSP pro-
duction, and DNA replication [109].  

In addition to the inhibition of LPS-induced neuroin-
flammation and oxidative stress upon LPS exposure in mice, 
H2S also reduced neuronal apoptosis through the modulation 
of c-Jun and caspase 3 activation [110].  

3.5. Ammonia 

Ammonia is a physiological product of amino acid me-
tabolism, although significant amounts of ammonia originate 
from the metabolic activity of gut microbiota. Being highly 
toxic, ammonia is detoxified in two pathways, the urea cycle, 
and the glutamine-glutamate cycle, with the liver playing a 
key role in NH3 removal [111]. Liver dysfunction due to a 
wide spectrum of pathologies, including cirrhosis and hepati-
tis, results in impaired NH3 detoxification, hyperammone-
mia, and its toxic effects on target tissues, especially the 
brain. A particular case of liver dysfunction-induced neuro-
toxicity is hepatic encephalopathy [112].  

In rats with hepatic encephalopathy, H2S significantly re-
duced liver damage and inflammation, as well as decreased 
circulating ammonia levels, altogether resulting in decreased 
hippocampal NMDA receptor subtype 2B protein levels 
[113]. Concomitantly, in a model of acute liver failure, a 
significant H2S-mediated decrease in ammonia levels pre-
vented cognitive deficiency [114]. In a culture of rat astro-
cytes, H2S treatment ameliorated NH4Cl-induced apoptosis 
by decreasing caspase-3 and Bax expression along with up-
regulation of Bcl2 expression. The observed effects were 
found to be dependent on Nrf2/ARE signaling and subse-
quent up-regulation of downstream antioxidant genes [115].  

4. EXOGENOUS NEUROTOXICANTS 

4.1. Alcohol 

Although ethanol is formed physiologically in minor lev-
els during metabolism [116], toxicologically valuable doses 
originate from external exposure, most commonly due to 
alcoholism causing significant health hazards [117]. Exces-
sive doses of ethanol cause significant neurotoxicity, espe-
cially during neurodevelopment through a variety of path-
ways [118]. Alteration of neuronal cystathionine β synthase 
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Fig. (4). Interference of endogenous H2S with RAGE signaling and NF-κB activation. 

 
(CBS) and cystathionine γ lyase (CSE) activity, as well as 
cellular H2S levels, is also considered as the potential mech-
anism of ethanol neurotoxicity [119]. 

In view of the high sensitivity of the developing brain to 
ethanol toxicity, special focus was made on the protective 
role of H2S in fetal alcohol syndrome. Specifically, in a rat 
model of fetal alcohol disorder, H2S significantly increased 
the reduced glutathione levels and the activity of antioxidant 
enzymes in parallel with the reduction of TNF-α and IL-1β 
levels, altogether resulting in decreased pro-apoptotic signal-
ing and necrosis in hippocampal neurons [120]. Therefore, 
the inhibition of NF-κB pro-inflammatory signaling was 
proposed as the potential mechanism of anti-inflammatory 
effects of H2S upon alcohol and cigarette smoke exposure 
[121]. In addition, H2S was shown to increase hippocampal 
neurogenesis in a model of fetal alcohol disorders through 
the up-regulation of BrdU and BDNF expression in dentate 
gyrus area, in parallel with reduced apoptosis rate, altogether 
resulting in improved spatial memory [122]. 

It has been also demonstrated that exercise-induced ame-
lioration of endoplasmic reticulum stress upon alcohol expo-
sure was associated with the improvement of cystathionine β 
synthase (CBS) and cystathionine γ lyase (CSE) activity and 
the resulting increase in H2S production [123]. It is, there-
fore, hypothesized that H2S may possess a protective effect 
against alcohol-induced neurotoxicity through the inhibition 
of oxidative and endoplasmic reticulum stress [124].  

Given the role of alcohol exposure in hyperhomocyste-
inemia, it is proposed that neuroprotective mechanisms of 
H2S may be shared between hyperhomocysteinemia and al-
coholism [124].  

4.2. Formaldehyde 

Formaldehyde is a reactive aldehyde with high toxicity 
that is considered a human carcinogen. Significant amounts 
of FA are formed endogenously during metabolism, although 

being tightly regulated under physiological conditions [125]. 
In turn, exogenous FA exposure possesses significant health 
hazards, especially in view of increased emissions [126]. In 
addition to carcinogenic effects, FA toxicity also affects oth-
er adverse health effects [127]. FA neurotoxicity [128, 129] 
was shown to be linked to neurodegeneration and other neu-
rological disorders [130]. As in the case of the earlier re-
viewed endogenous neurotoxicants, H2S was shown to be 
tightly associated with FA neurotoxicity. 

On the one hand, disturbance of H2S metabolism was 
considered the potential mechanism of formaldehyde neuro-
toxicity. Specifically, formaldehyde exposure was shown to 
induce NO-mediated inhibition of cystathionine-beta-
synthase activity with a subsequent decrease in endogenous 
H2S production and intracellular ROS overproduction, alto-
gether resulting in neurotoxicity in the PC12 cell model 
[131]. Similar effects were observed in vivo. Specifically, 
formaldehyde-induced inhibition of hippocampal CBS ac-
tivity with reduced H2S production is associated with altered 
learning and memory functions in rats that may be at least 
partially mediated by the induction of oxidative stress and 
apoptosis [132].  

On the other hand, H2S significantly modulates FA tox-
icity pathways, including neuronal apoptosis. Specifically, 
activation of BDNF production and TrkB-mediated signaling 
contributing to the reduction of proapoptotic signals through 
the up-regulation of Bcl-2 and the inhibition of Bax protein 
expression is considered as a potential neuroprotective 
mechanism of H2S upon FA overexposure [133]. Moreover, 
H2S-induced improvement of mitochondrial membrane po-
tential in FA-exposed cells may also contribute to reduced 
cytochrome c release and inhibition of caspase 3 activation 
[134]. These TrkB-dependent effects on apoptosis may be 
mediated through MAPK/ERK and Akt signaling pathways 
[135]. Concomitantly, the up-regulation of hippocampal 
BDNF expression, reduction of oxidative stress, and apopto-
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sis upon H2S (as a donor, NaHS) treatment significantly re-
versed learning and memory dysfunctions in rats exposed to 
FA [136].  

Moreover, it has been demonstrated that protective ef-
fects of H2S against formaldehyde neurotoxicity may be 
dependent on H2S-induced SIRT1 and subsequent ameliora-
tion of ER-stress in PC12 cells [137], thus being indicative 
of the role of the SIRT1/TORC1/CREB/BDNF-TrkB path-
way in the promotion of neuronal survival by H2S upon FA 
neurotoxicity.  

As an additional protective mechanism, H2S-induced up-
regulation of leptin signaling in HT-22 cells was shown to 
ameliorate apoptosis and senescence associated with FA 
exposure through the inhibition of p16INK4a and p21CIP1 
pathways [138]. 

4.3. Acrylonitrile 

Acrylonitrile is used in the production of plastics and res-
ins, being highly toxic even at low-dose exposure [139]. Ac-
rylonitrile was shown to be toxic for both neuronal and glial 
cells [140]. Therefore, the search for neuroprotective agents 
to be used to counteract acrylonitrile neurotoxicity is of par-
ticular importance [141]. 

Acrylonitrile exposure was found to decrease H2S pro-
duction in primary rat astrocytes in a dose-dependent man-
ner, while the inhibition of the cystathionine-β-synthase 
(CBS)/3-mercaptopyruvate sulfurtransferase (3-MST)-H2S 
pathway predisposed to acrylonitrile neurotoxicity. At the 
same time, supplementation with NaHS significantly reduced 
acrylonitrile cytotoxicity, thus being indicative of the signifi-
cant role of H2S as a target for acrylonitrile-induced neuro-
toxicity [142]. In turn, H2S significantly ameliorated acrylo-
nitrile neurotoxicity through the up-regulation of Nrf2 sig-
naling and the resulting increase in heme oxygenase-1 and γ-
glutamylcysteine synthetase expression and the resulting 
decrease in ROS formation, as well as the activation of au-
tophagy in primary rat astrocytes [143]. Taken together, the-
se findings are indicative of the role of H2S metabolism as a 
mediator of acrylonitrile-induced oxidative stress and subse-
quent neurotoxicity. 

4.4. Laboratory Neurotoxicants for the Modeling of Par-
kinson’s Disease (6-hydroxydopamine and MPTP) 

4.4.1. 6-hydroxydopamine 

6-hydroxydopamine is a neurotoxic compound that is 
frequently used for Parkinson’s disease modeling due to do-
paminergic neuron damage through the induction of oxida-
tive stress, apoptosis, neuroinflammation, and dopaminergic 
neurodegeneration [144]. In turn, H2S significantly attenuat-
ed the 6-OHDA-induced decrease in striatal dopamine lev-
els, tyrosine hydroxylase-positive neuronal death in substan-
tia nigra pars compacta, as well as behavioral disorders [145, 
146]. Amelioration of 6-OHDA-induced loss of nigral tyro-
sine-hydroxylase positive neurons and striatal dopamine de-
cline was shown to be dependent on H2S-induced Nrf2 acti-
vation and nuclear translocation, resulting in the up-
regulation of downstream antioxidant enzyme expression 
[147]. Correspondingly, cystathionine-beta-synthase overex-
pression also had neuroprotective effects on 6-OHDA-
exposed rats by decreasing neuronal apoptosis, oxidative 
stress, and α-synuclein expression [148].  

In addition to oxidative stress and apoptosis, targeting 6-
OHDA-induced ERS was also shown to mediate neuropro-
tective effects of H2S. Specifically, in SH-SY5Y cells ex-
posed to 6-OHDA, NaHS treatment significantly reduced ER 
stress, as evidenced by a decrease in CHOP, phospho-eIF2α, 
and GRP78 expression, being dependent on H2S-induced 
Akt-Hsp90 pathway activation [149]. Activation of PKCα 
and PKCε was shown to play a significant role in H2S-
induced Akt/PI3K activation and neuroprotection in 6-
OHDA-treated SH-SY5Y cells [150].  

H2S may also contribute to neuroprotection upon 6-
OHDA exposure through the modulation of neuroinflamma-
tion. Specifically, in 6-OHDA-exposed rats, H2S significant-
ly reduced NF-κB signaling along with the inhibition of mi-
croglial activation and proinflammatory cytokine levels. Ex-
perimental studies using BV-2 microglial cells demonstrated 
that the impact of H2S on NF-κB signaling may be mediated 
by the stabilization of IkB [151]. 

It is also notable that H2S-mediated prevention of 6-
OHDA dopaminergic neuron loss and PD-like behavior is 
associated with increased nigral leptin expression and aero-
bic glycolysis (Warburg effect), as evidenced by increased 
expression of hexokinase 1, pyruvate kinase M-2, pyruvate 
dehydrogenase kinase 1, and lactate dehydrogenase, whereas 
the inhibition of leptin signaling ameliorated both H2S neu-
roprotection and Warburg effect [152]. It has been also 
demonstrated that leptin signaling is involved in antiapoptot-
ic effects of H2S and the induction of autophagy response. 
Specifically, H2S reduced 6-OHDA-induced neuronal apop-
tosis characterized by increased Bax expression, caspase 3 
activation, and down-regulated Bcl2 expression. These ef-
fects, as well as H2S-induced autophagy, were reduced by 
the inhibition of leptin receptor signaling [153]. Autophagy 
flux induced by H2S was shown to be related to AMPK 
sulfhydration at Cys302 with its subsequent activation as 
well as mTOR inhibition [154]. 

4.4.2. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
and its Metabolite 1-methyl-4-phenyl Pyridine Ion (MPP) 

MPTP is a neurotoxic agent widely used for the devel-
opment of Parkinson’s disease that is metabolized by mono-
amine oxidase B to a more toxic 1-methyl-4-
phenylpyridinium ion (MPP

+
) [155]. MPP

+
 possesses dopa-

minergic neurotoxicity through the induction of mitochon-
drial dysfunction, as well as oxidative stress, apoptosis, neu-
roinflammation, and excitotoxicity [156].  

Induction of PD-like phenotype upon MPTP/MPP
+
 expo-

sure is also associated with the dysregulation of H2S produc-
tion. Specifically, motor deficits and dopaminergic neurotox-
icity of MPTP were also shown to be associated with the 
down-regulation of CBS, thus reducing endogenous H2S 
levels, whereas CBS overexpression ameliorated these 
changes as well as the reduced α-synuclein level and glial 
activation in MPTP-exposed rats [157]. MPP

+
 was shown to 

down-regulate CBS expression and activity, thus resulting in 
decreased H2S production in PC12 cells, whereas the im-
provement of H2S levels ameliorated MPP

+
 cytotoxicity and 

oxidative stress [158]. Concomitantly, the prevention of oxi-
dative stress, mitochondrial membrane potential loss, cyto-
chrome c release, and decreased Bcl2 expression followed by 
improved cell viability by asymmetric dimethylarginine in 
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MPP
+
-exposed PC122 cells was shown to be dependent on 

CBS expression and subsequent release of H2S [159], thus 
being indicative of the beneficial role of H2S in protection 
against MPP

+
-induced neuronal apoptosis [160].  

The observed H2S-induced increase in cell viability, au-
tophagic flux, and inhibition of oxidative stress in MPP

+
-

exposed SH-S5Y5 cells was shown to be dependent on the 
increase in SIRT1 expression and sulfhydration [161]. Con-
comitantly, these effects were also accompanied by the up-
regulation of antioxidant enzyme expression, including heme 
oxygenase-1 and glutamate-cysteine ligase producing re-
duced glutathione [162]. 

Being in agreement with the observed increase in SIRT1 
expression, BDNT/TrkB signaling was shown to be critical 
for observed antioxidant effects and reduction of ER stress 
by H2S in MPP

+
-treated PC12 cells [163]. 

Certain studies revealed the role of Akt signaling in H2S-
induced neuroprotection against MPTP/MPP

+
 toxicity. Spe-

cifically, it has been demonstrated that H2S treatment signif-
icantly ameliorated dopaminergic neurotoxicity of MPTP 
through AKT-dependent inhibition of nNOS expression and 
activity with a subsequent decrease in NO production and α-
synuclein nitration [164]. In turn, H2S-induced up-regulation 
of the PI3K/AKT pathway, resulting in the up-regulation of 
Bcl2 expression, was shown to be mediated by an increase in 
KATP channel activity [165]. At the same time, another 
study demonstrated that the modulation of UCP2 activity 
may be considered as a more significant factor in the media-
tion of H2S-induced neuroprotection against MPP oxidative 
stress in dopaminergic neurons as compared to the KATP-
dependent mechanism [166].  

Finally, MPTP exposure was found to increase ROCK2 
expression, being involved in microglia activation and cyto-
toxicity, whereas H2S exposure significantly ameliorated 
MPTP-induced effects through the up-regulation of miR-
135a-5p possessing an inhibitory effect on ROCK2 mRNA 
translation [167].  

4.3. Metals  

4.3.1. Toxic Metals 

Toxic metals, arsenic, mercury, lead, aluminium, possess 
significant neurotoxic effects due to their prooxidant, pro-
inflammatory, and immunotoxic activity [168], being associ-
ated with the development of neurodevelopmental [169] and 
neurodegenerative diseases [170]. Certain studies aimed to 
estimate whether H2S may counteract metal-induced toxicity. 

Protective effects of H2S upon MeHg overexposure were 
shown to involve the up-regulation of antioxidant system 
with the increase of GPX and TrxR activity, as well as the 
prevention of mitochondrial dysfunction with a subsequent 
decrease in the release of cytochrome C and apoptosis-
inducing factors, thus preventing mitochondrial-dependent 
apoptosis in rat cortex [171]. In addition, direct interaction 
between methylmercury and H2S may also significantly con-
tribute to neuroprotective effects of the latter. Specifically, in 
SH-SY5Y cells, the H2S-dependent transformation of MeHg 
to bismethylmercury sulfide ((MeHg)2S) was shown to re-
duce MeHg toxicity [172]. Such interaction may result from 
the role of the H2S molecule as an equivalent of the thiol 

group, being a target for electrophilic Hg binding [173]. It is 
also notable that Hg species were considered as cystathi-
onine γ-lyase inhibitors [174], which may underlie reduced 
cellular H2S levels upon Hg exposure.  

In contrast to Hg, evidence on neuroprotective effects of 
H2S upon exposure to other toxic metals are rather insuffi-
cient, being limited to single studies. Specifically, in As-
exposed mice characterized by reduced cortical GSH levels 
along with Nrf2 and NF-κB activation, the increase in H2S 
production may be associated with glial glutamate trans-
porter 1 up-regulation that may result in increased glutamate 
uptake [175]. H2S was also shown to ameliorate cognitive 
deficits and reduce neuronal apoptosis, neuroinflammation, 
as well as oxidative stress through the up-regulation of the 
antioxidant system in Pb-exposed rats [176]. In the AlCl3-
induced model of AD, application of tacrine–H2S donor hy-
brid was shown to increase hippocampal H2S levels, as well 
as inhibit AChE activity, reduce neuroinflammation, and 
improve synaptogenesis, altogether resulting in improved 
cognitive and locomotor functioning [177]. 

4.3.2. Biometals 

Although biologically essential metals (biometals), zinc, 
iron, and copper, are required for adequate development and 
functioning of the brain, their overaccumulation also results 
in neurotoxicity [178]. Particularly, iron, zinc, and copper 
overload were found to be associated with Alzheimer’s dis-
ease [179] and other neurodegenerative diseases [180]. 
Therefore, the potential neuroprotective effect of H2S 
against metal neurotoxicity was investigated in several stud-
ies. 

In Zn-exposed neuroblastoma SH-SY5Y cells, H2S sig-
nificantly reduced mitochondrial dysfunction, resulting in 
increased intracellular ATP and NAD levels, as well as pre-
venting Zn-induced cell death. It is notable that these effects 
were also associated with H2S-induced inhibition of metal-
responsive transcription factor-1 (MTF1) and metallothi-
onein gene expression, thus being indicative of interference 
with intracellular Zn signaling [181]. In addition to direct 
binding to Zn

2+
 and prevention of its intracellular accumula-

tion, H2S-dependent amelioration of Zn-induced phosphory-
lation of glycogen synthase kinase-3β and protein kinase C 
may also contribute to H2S-induced prevention of Zn

2+
 neu-

rotoxicity [182].  

In contrast to other metals discussed, copper toxicity may 
be aggravated by H2S, which should also be discussed. Spe-
cifically, H2S promoted intracellular Cu accumulation in SH-
S5Y5 cells through the down-regulation of the exported 
ATP7A without any significant impact on ATP7B and Cu

2+
 

importer Ctr1. The resulting reduction in Cu export from the 
cell was associated with the induction of oxidative stress, 
mitochondrial dysfunction, and reduced ATP production, 
altogether leading to reduced cell viability [183]. These find-
ings corroborate findings from a culture of HeLa cells indi-
cating a higher rate of apoptosis upon H2S and Cu co-
exposure [184]. 

Direct data on the impact of H2S on iron neurotoxicity 
are lacking, although certain indications provide evidence for 
the significance of the interplay between H2S and iron for the 
brain. Specifically, in type 1 diabetic mice, H2S was shown 
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to reduce iron accumulation in the prefrontal cortex and pre-
vent ferroptosis, being associated with the up-regulation of 
GPX4, SLC7A11, and Sirtuin 6 expression, and the preven-
tion of microglia activation, altogether resulting in reduced 
anxiety-like and depressive-like behaviors [185]. These find-
ings generally corroborate the earlier observed role of cysta-
thionine β-synthase, a source of H2S, as a negative regulator 
of ferroptosis [186]. Similarly, cystathionine gamma-lyase 
(CSE) activity and H2S production were inversely associated 
with ferroptosis in myoblasts [187]. It should also be notable 
that H2S is involved in systemic iron metabolism regulation 
[188]. H2S was shown to inhibit IL-6-induced hepcidin se-
cretion through the down-regulation of JAK2/STAT3 signal-
ing [189]. The latter may be associated with inhibition of 
STAT3 acetylation due to H2S-induced SIRT1 activation 
[190]. At the same time, a more recent study revealed the 
key contribution of IL-6/pSTAT3/hepcidin mechanism to 
H2S-induced changes in iron metabolism only upon proin-
flammatory conditions. Oppositely, in normal non-
inflammatory conditions, the up-regulation of TfR1 and a 
decrease in Fpn1 expression in response to H2S treatment 
may be mediated by the modulation of IRP/IRE and Nrf2 
pathways [191]. Correspondingly, the deficiency of cystathi-
onine β-synthase is also associated with hemochromatosis-
like phenotype due to hepcidin dysregulation [192]. Alt-
hough these findings do not provide a direct indication of the 
impact of H2S on iron neurotoxicity, these data allow hy-
pothesizing the potential involvement of H2S dysregulation 
in the neurotoxicity of systemic iron overload. 

5. OTHER NEUROTOXIC AGENTS 

In in vitro and in vivo experimental studies, H2S treat-
ment was shown to possess protective effects through the 
inhibition of oxidative stress, mitochondrial dysfunction, 
apoptosis, and inflammation against neurotoxicity of a varie-
ty of physiological and exogenous agents, including sodium 
azide [193], 3-nitropropionic acid [194], metamphetamine 
[195], and corticosterone [196]. Given a wide spectrum of 
biological effects of endogenous H2S in the neural system, it 
is highly likely that it may possess protective activity against 
other neurotoxicants, although direct data are lacking. 

CONCLUSION 

The existing data demonstrate that H2S has neuroprotec-
tive effects upon exposure to endogenous and exogenous 
neurotoxicants. On the one hand, neuroprotective effects are 
mediated by S-sulfhydration of key regulators of antioxidant 
(Sirt1, Nrf2) and inflammatory response (NF-κB), resulting 
in the modulation of the downstream signaling, such as 
SIRT1/TORC1/CREB/BDNF-TrkB, Nrf2/ARE/HO-1, or 
other pathways. On the other hand, H2S appears to have a 
direct detoxicative effect by binding endogenous (ROS, 
AGEs, Aβ) and exogenous (MeHg) neurotoxicants, thus re-
ducing their toxicity. Moreover, alteration of H2S metabo-
lism through the inhibition of H2S-synthetizing enzymes in 
the brain (CBS, 3-MST) is expected to be considered as a 
significant mechanism of neurotoxicity. Taken together, the 
existing data indicate that the modulation of cerebral H2S 
metabolism may be used as a neuroprotective strategy to 
counteract neurotoxicity of a wide spectrum of endogenous 

and exogenous neurotoxicants associated with neurodegen-
eration (Alzheimer’s and Parkinson’s disease), fetal alcohol 
syndrome, hepatic encephalopathy, environmental neurotox-
icant exposure, etc. However, additional studies from rele-
vant animal models are required, including Parkinson’s dis-
ease models of mice overexpressing α-synuclein instead of 
chemically induced Parkinson’s disease models. In this par-
ticular case, the modulation of H2S-synthetizing enzymes or 
the use of H2S-releasing drugs should be considered as the 
potential tools against toxic exposure-associated diseases. 
However, the translation of the findings to humans is quite 
questionable due to the origin of the data from cell cultures 
and rodent models, while the efficiency, tolerability, and 
safety of H2S donors in humans are unclear and should be 
studied additionally. 
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