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1   |   INTRODUCTION

The Ehlers–Danlos syndrome (EDS), first described by 
two dermatologists, Edvard Ehlers and Henri-Alexandre 

Danlos, are a heterogeneous group of rare monogenic 
disorders mainly characterized by connective tissue fria-
bility, joint hypermobility, and skin and vascular fragility 
(Malfait et al., 2020). Patients with EDS commonly exhibit 
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Abstract
Ehlers–Danlos syndromes (EDSs) are a group of rare monogenic conditions 
with strong heterogeneity and can be caused by 20 genes associating with the 
essence of the extracellular matrix (ECM). This study enrolled three cases with 
various subtypes of EDS. Clinical evaluation and genetic testing with whole-
exome sequencing (WES) were performed. The clinical manifestations of all three 
patients were thoroughly monitored; and three de novo diagnostic variants, namely 
COL5A1: NM_001278074.1: c.4609-2A>C, COL3A1: NM_000090.3: c.3554G>T(p.
Gly1185Val), and COL1A1: NM_000088.3: c.545G>T(p.Gly182Val) were identi-
fied from them, respectively. The findings in this study expanded the mutation 
spectrum of EDS and strengthened the efficiency of WES in the differential diag-
nosis on disorders with overlapping phenotypes and various pathogenesis.
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soft and hyperextensible skin, abnormal wound healing, 
and easy bruising. Complications of certain EDS subtypes, 
such as arterial aneurysm and dissection, can be severely 
life-threatening (Malfait,  2018). There is still no specific 
medical or genetic therapeutic measure available for EDS, 
so integrated management and surveillance should be 
taken throughout the patients' lifetime.

The estimated prevalence of EDS is ~1 in 5,000 with no 
predisposition among ethnicities (Steinmann et al., 2002). 
So far, 14 various subtypes of EDS have been described, 
among which the genetic etiology of 13 was clarified, 
associating with 20 causative genes confirming to an 
autosomal dominant or recessive inheritance pattern 
(Malfait et al., 2017; Malfait et al., 2020). These genes in-
clude COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, 
ADAMTS2, PLOD1, FKBP14, TNXB, COL12A1, CHST14, 
DSE, B4GALT7, B3GALT6, SLC39A13, ZNF469, PRDM5, 
C1R, C1S, and AEBP1, which all contribute to the essence 
of the extracellular matrix (ECM) by encoding or modify-
ing fibrillar collagens types I, III, or V, or participating in 
the biosynthesis of the glycosaminoglycan (GAG) chains 
of proteoglycans (Malfait et al.,  2020). The phenotypic 
overlap and genetic heterogeneity between various EDS 
subtypes pose a challenge in the clinical differential diag-
nosis of EDS, which is gradually solved in the wake of the 
rapid development of next-generation sequencing (Joseph 
et al., 2018).

Classic EDS (cEDS, MIM #130000, and #130010), the 
most prevalent subtype, is mainly caused by pathogenic 
variants in COL5A1 (MIM *120215) and COL5A2 (MIM 
*120190) genes (over 90% cases), and also rarely by spe-
cific variations (certain “Arg to Cys” residue substitutions) 
in COL1A1 (MIM *120150) (Malfait et al., 2007). Vascular 
EDS (vEDS, MIM #130050), caused by mutations in the 
COL3A1 (MIM *120180) gene, is relatively the most se-
vere subtype which could be lethal owing to vascular dis-
section or rupture, gastrointestinal perforation, or organ 
rupture (Byers, 1999). Another subtype, the arthrochala-
sia EDS (aEDS, MIM #130060, and #617821), is caused 
by mutations in COL1A1 or COL1A2 (MIM *120160) 
genes which would impact the proper N-terminal cleav-
age of the peptides they encode and is distinguished from 
other types of EDS by the frequency of congenital hip 
dislocation and extreme joint laxity with recurrent joint 
subluxations and minimal skin involvement (Steinmann 
et al., 2002). Various subtypes of EDS, including the above 
three ones, together with other similar diseases may have 
similar phenotypic characteristics, so the differential diag-
nosis at molecular level is essential for their subsequent 
management.

In this study, we recruited three cases with patients 
exhibiting typical manifestations of EDS, and submitted 
them to genetic analysis with whole-exome sequencing 

(WES). The findings in our study highlighted the capa-
bility of WES in achieving a definite diagnosis to various 
subtypes of EDS with overlapping symptoms.

2   |   MATERIAL AND METHODS

This study was approved by the Ethics Committee of 
Shijiazhuang Obstetrics and Gynecology Hospital (ap-
proval No.20210068), and written informed consent was 
obtained from all participants.

2.1  |  Subjects

Three unrelated cases, each with one patient exhibit-
ing suspected EDS symptoms, were recruited between 
January/2018 and December/2020 at the department of 
dermatology, Shenzhen People's Hospital. These families 
were all Chinese Han ethnicity. A comprehensive physi-
cal examination was then conducted on the three patients.

2.2  |  Genomic DNA extraction

Three milliliters of peripheral blood was collected 
from the patients and their parents by means of BD 
Vacutainer™ tubes (BD Biosciences). Genomic DNA 
was extracted using the QIAamp DNA Blood Mini-Kit 
(Qiagen Sciences), and the DNA quality was validated by 
1% agarose gels and Qubit® DNA Assay Kit in Qubit® 2.0 
Flurometer (Life Technologies).

2.3  |  Whole-exome sequencing

Briefly, the enrichment of the exonic region sequences 
was conducted by the Sure Select Human Exon Sequence 
Capture Kit (Agilent). The sequencing libraries were 
quantified using the Illumina DNA Standards and Primer 
Premix Kit (Kapa Biosystems), and were massively 
parallel-sequenced using the Illumina Novaseq6000 plat-
form. After sequencing and filtering out the low-quality 
readings, the high-quality reads (with general quality level 
Q30 reads >89%) were compared to the human genome 
reference sequence [hg19]. The GATK software was used 
to identify suspected pathogenic variants (https://softw​
are.broad​insti​tute.org/gatk). The variations were iden-
tified by sequence alignment with the NCBI Reference 
Sequence (NG 011537.1) using Chromas v2.33. The path-
ogenicity of the identified variants was then assessed ac-
cording to the common guidelines issued by the American 
Association of Medical Genetics and Genomics (ACMG) 

https://software.broadinstitute.org/gatk
https://software.broadinstitute.org/gatk
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(Richards et al.,  2015) referring to multiple databases 
(1000g2015aug_eas, https://www.inter​natio​nalge​nome.
org/; ExAC_EAS, http://exac.broad​insti​tute.org; gno-
mAD_exome_EAS, http://gnomad.broad​insti​tute.org/); 
HGMD®: Human Gene Mutation Database (Professional 
Version 2019.4) with the Enliven® Variants Annotation 
Interpretation (Berry Genomics) system.

The suspected diagnostic variant was validated by 
Sanger sequencing using ABI 3730 Automated Sequencer 
(Applied Biosystems) according to the manufacturer's 
protocol.

2.4  |  Analysis of missense variants

The evolutionary conservatism of amino acid (AA) af-
fected by specific missense variant was analyzed using 
MEGA7 (http://www.megas​oftwa​re.net) with default 
parameters.

3   |   RESULTS

3.1  |  Clinical manifestations

Case 1  The pedigree diagram of case  1 is depicted in 
Figure 1a. The male patient was 30 years old when 

he referred to our outpatient. His skin was fragile, so 
the areas prone to trauma of him (forehead, temples, 
back, and shins) were full of multiple atrophic scars 
(Figure 1b–e), and his over-pressure parts (elbows, 
knees, and knuckles) manifested specific cicatrices 
after stretching of scars (Figure 1d–f). His joints of 
wrists and fingers were hypermobile (Figure 1g–i). 
His general skin was hyperextensible (Figure 1j–l). 
Based on these typical clinical indications, he was 
suspected to be with cEDS, and WES was therefore 
suggested.

Case 2  The pedigree diagram is depicted in Figure 2a. 
A 24-year-old female patient was admitted to 
our department with intermittent dizziness, in-
creased blood pressure (BP:167/118  mmHg), and 
unexplained hypertension. Clinical and labora-
tory evaluation indicated that she suffered from 
insulin resistance, hypercholesterolemia, right 
renal infarction with perinephritis, superior mes-
enteric dissecting aneurysm, lung infection, and 
severe hepatic adipose infiltration. She showed 
slender extremities, thin and translucent skin, tal-
ipesequinovarus, a readily visible venous pattern 
over limbs, chest, and abdomen (Figure  2b–g). 
Two months after, she suddenly suffered from re-
peated dizziness and abdominal distension with-
out inducement, accompanied by fatigue. As it 

F I G U R E  1   The pedigree diagram of Family 1 and manifestations of patient 1. (a) Pedigree diagram of case 1 (b–f) atrophic scars on 
forehead, temples, back, and shins, specific cicatrices after stretching of scars on the over-pressure parts such as elbows, knees, and knuckles 
(g–i) hypermobile joints of wrists and fingers (j–l) hyperextensible skin

https://www.internationalgenome.org/
https://www.internationalgenome.org/
http://exac.broadinstitute.org
http://gnomad.broadinstitute.org/
http://www.megasoftware.net
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F I G U R E  2   The pedigree diagram of Family 2 and manifestations of patient 2. (a) Pedigree diagram of case 2 (b–g) slender extremities, 
thin and translucent skin, talipesequinovarus, a visible venous pattern over limbs, chest, abdomen and extremities

F I G U R E  3   The pedigree diagram of Family 3 and manifestations of patient 3. (a) Pedigree diagram of case 3 (b–e) atrophic scars in her 
forehead, shin, and leg (f–h) hypermobile finger joints
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progresses, the patient developed spontaneous 
celiac hemorrhage, small intestine necrosis, coag-
ulation dysfunction, and splenic infarction. After 
laparoscopy, partial resection of the patient's small 
intestine was performed. Yet, the patient died from 
celiac hemorrhage in 24  hr. The patient's pheno-
type matched the vEDS, and we took her blood 
sample to conduct WES.

Case 3  The pedigree diagram is depicted in Figure 3a. The 
female patient was 33 when she referred to our depart-
ment. There were some spots of atrophic scars on her 
forehead, shin, and leg (Figure 3b, d and e), yet it was 
less severe than those in Case 1 patient. The skin in 
her prothorax showed mild translucency (Figure 3c). 
Her finger joints were also hypermobile (Figure 3f–h), 
but her skin was with less extensibility than typical 
cEDS. According to the patient, she had no history of 
joint dislocation or cryptogenic bone fractures.

3.2  |  Genetic variations

According to WES results, all three patients were posi-
tive with heterozygous variants (detailed data in Table 1). 
Patient 1 (II-1 in Family 1) carried a splicing site vari-
ant, namely COL5A1: NM_001278074 0.1: c.4609-2A>C 
(Figure  4a); Patient 2 (II-1 in Family 2) carried a mis-
sense variant, COL3A1: NM_000090.3: c.3554G>T(p.
Gly1185Val) (Figure  4c); and Patient 3 (II-1 in Family 
3) carried a missense variant, COL1A1: NM_000088.3: 
c.545G>T(p.Gly182Val) (Figure  4e). Based on the fol-
lowing familial validation using Sanger sequencing, it 
was demonstrated that all these variants were de novo 
(Figure 4a, c, and e). The location of each variant was il-
luminated in the gene and peptide diagrammatic sketches 
(Figure 4b, d and f).

3.3  |  Conservatism analysis of 
missense variants

As described above, two missense variants were detected 
in this study. The evolutionary conservatism of AAs af-
fected by them were analyzed. Resultantly, it was indi-
cated the AAs, namely COL3A1: Gly1185 and COL1A1: 
Gly182, maintained conserved across species (Figure 5).

4   |   DISCUSSION

EDSs and other disorders of joint hypermobility 
have been described and studied for over 100  years T
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(Chernogubow,  1892; Ehlers,  1901). For some common 
EDS subtypes, in addition to routine clinical diagnosis 
and management, genotype–phenotype correlation began 
to emerge owing to an increasing number of studies and 
identified variants (Malfait et al., 2020; Paladin et al., 2015; 
Rohrbach et al., 2011; Weerakkody et al., 2016). Besides, 
the phenotypic expressivity and environmental influence 
are being better elucidated since more studies involving in 

vitro models, transcriptome, and proteome were carried 
out (Chiarelli et al., 2018; Chiarelli et al., 2019).

In this study, we presented three cases with various 
EDS situations. Indicated by the clinical and genetic 
findings, Patient 1 was a typical cEDS sufferer. Up to 
date, more than 200 distinct pathogenic variants in 
COL5A1 and COL5A2 have been identified, account-
ing for over 90% cEDS cases (Ma et al., 2021). A novel 

F I G U R E  4   Genetic variants detected in the three cases. (a) A de novo splicing site variant, COL5A1: c.4609-2A>C in Patient 1 (Family 1 
II-1). (c) A de novo missense variant, COL3A1: c.3554G>T in Patient 2 (Family 2 II-1). (e) A de novo missense variant, COL1A1: c.545G>T in 
Patient 3 (Family 3 II-1). (b, d, and e) showing the location of each variant in respective gene and peptide diagrammatic sketches
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variant at the splicing site, COL5A1: c.4609-2A>C, was 
detected in Patient 1. According to the general standard 
issued by ACMG (American Committee of Medical 
Genetics and Genomics) (Richards et al.,  2015), it was 
inferred to be “Pathogenic” with the evidence levels 
of “PVS1 + PM2 + PP4”. However, how it affected the 
COL5A1 mRNA splicing is still to be investigated, and 
may be of particular importance for the contribution to 
genotype–phenotype correlation of cEDS.

vEDS is the most serious EDS subtype, with an inci-
dence of about 1/900,000, and a median survival age at 
54 years (Byers, 1999). So far, more than 480 pathogenic 
variants in COL3A1 gene have been indexed to cause 
vEDS (http://www.hgmd.cf.ac.uk), among which, patient 
with exon-skip variants would have the minimum age of 
survival; the substitution of glycine in “Gly-Xaa-Yaa” trip-
let repeats, particularly by glutamic acid or valine, could 
cause worse phenotype than substitution by smaller AAs 
(Malfait,  2018; Mizuno et al.,  2013; Pepin et al.,  2014). 
In this study, Patient 2 exhibited visible skin translu-
cency, which is a characteristic feature of vEDS (Brady 
et al.,  2017); and a reported missense variant, COL3A1: 
c.3554G>T(p.Gly1185Val), located in the N-terminal “Gly-
Xaa-Yaa” triplet repeat domain of COL1A1, was detected 
in her (Pepin et al.,  2014). According to the ACMG cri-
teria, it was determined as “likely pathogenic” (Table 1). 
In this patient, some uncommon symptoms like unex-
plained hypertension, insulin resistance, and hyperlipid-
emia emerged simultaneously. Gerogiannis et al. recently 
described another senior patient with similar metabolic 
manifestations (Gerogiannis et al., 2020). Further study is 
needed to clarify the functional impact of defective type III 
collagen resulting in these indications. Additionally, due 
to the lethal nature of vEDS, there are also some promis-
ing therapeutic studies, such as to use of MMP inhibitors 
(Tae et al., 2012). But there is still a long way to go till their 
clinical utilization.

The COL1A1 gene exhibits strong pleiotropy and con-
tributes to the pathogenesis of a greater part of osteogen-
esis imperfecta (OI) and aEDS cases, and also a few cases 

of cEDS or vEDS (Malfait et al., 2020; Marini et al., 2017). 
Moreover, mutations in the amino end of type I collagen 
could even result in OI/EDS combined syndrome (Cabral 
et al., 2005). This is probably because the type I collagen 
is the major protein component of the ECM in many tis-
sues such as the bone, dermis, blood vessel walls, and ten-
don, and co-assembles with type V or type III during the 
collagen fibril formation process (Malfait et al., 2020). In 
our study, we detected a novel missense variant, COL1A1: 
c.545G>T(p.Gly182Val) in Patient 3. Although according 
to the ACMG criteria (pp2  +  pm2  +  pp3), we can only 
determine this variant as VUS (variation of uncertain sig-
nificance) by now, its pathogenicity should be further de-
termined by functional study and/or tissue biopsy, since 
no other suspiciously causative variant was detected in 
the coding regions of any of the 20 EDS genes (data not 
shown). Patient 3 denied a history of congenital hip dis-
location and multiple recurrent dislocation, so it did not 
meet the aEDS characteristics. Based on the patient's clin-
ical indications, we cannot exclude her as a cEDS/vEDS 
overlapping subtype. So, attention should be continuously 
paid to her risk of vascular complications. It was reported 
that most cases of aEDS caused by COL1A1 or COL1A2 
were due to the abnormal N-terminal propeptide cleavage 
(Byers et al., 1997). Since the Gly182Val variant is located 
in the N-terminal “Gly-Xaa-Yaa” triplet repeat domain, 
how it affects the structure and function of the collagen 
I peptide chain requires further investigation, which may 
reveal the specific mechanism of its pathogenesis.

Two missense variants in this study both have low 
incidence (Table  1). And the evolutionary conservatism 
of the two AAs affected by the missense indirectly sup-
ports their pathogenicity. Besides, the predictive analysis 
scores of them by Revel were both over 0.9 (Table 1, cut-
off value is ≥0.7) supporting them to be deleterious. The 
main limitation of this study was the lack of functional ex-
periments to explore the pathogenic mechanism of novel 
variants. Besides, it only reported individual cases, so the 
genotype–phenotype correlation could not be established 
appropriately.

F I G U R E  5   The evolutionary conservatism of the two affected amino acids, (a) COL3A1: Gly1185 and (b) COL1A1: Gly182 among 
species

http://www.hgmd.cf.ac.uk
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In summary, we report three EDS cases with various 
genetic etiologies and different clinical manifestations. 
The findings in this study expanded the mutation spec-
trum of EDS, provided solid evidence for the counseling 
to the affected families, and might shed light on the patho-
genesis of various collagenosis.
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