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As a common type of structural variation, an insertion refers to the addition of a DNA
sequence into an individual genome and is usually associated with some inherited
diseases. In recent years, many methods have been proposed for detecting insertions.
However, the accurate calling of insertions is also a challenging task. In this study, we
propose a novel insertion detection approach based on soft-clipped reads, which is
called SIns. First, based on the alignments between paired reads and the reference
genome, SIns extracts breakpoints from soft-clipped reads and determines insertion
locations. The insert size information about paired reads is then further clustered to
determine the genotype, and SIns subsequently adopts Minia to assemble the insertion
sequences. Experimental results show that SIns can achieve better performance than
other methods in terms of the F-score value for simulated and true datasets.

Keywords: structural variation, alignment, short read, the next generation sequencing technology, soft-clipped
read

INTRODUCTION

Although single-nucleotide polymorphisms (SNPs) represent the most frequent genomic variation,
it is generally acknowledged that human genomes show more differences as a consequence of
structural variations (SVs) (Gusnanto et al., 2012). SVs generally refer to genome sequence changes
greater than 50 bp and can be further categorized as insertions, deletions, duplications, inversions,
and translocations, among others, as well as combinations of these categories (Feuk et al., 2006;
Alkan et al., 2011; Baker, 2012). Some studies have shown that phenotypic changes and some
diseases are caused by SVs, e.g., autism, Parkinson’s disease, and schizophrenia (Suzuki et al., 2011).
Therefore, the accurate detection of SVs is of great significance for gene expression analysis and
related disease research (MacConaill and Garraway, 2010). However, until a few years ago, there
were no efficient methods for the detection of SVs with high precision. The development of
next-generation sequencing (NGS) technology has allowed researchers to obtain a large amount
of sequence data, which has improved research on SV detection (The 1000 Genomes Project
Consortium, 2010; Zhang et al., 2010; Guan and Sung, 2016; Kosugi et al., 2019).

As one type of SV, an insertion refers to the addition of a DNA sequence to the genome. This
sequence might be novel or could exist in the original genome, which would be equivalent to
translocation or duplication. In general, insertions can be divided into two types: (i) novel insertions
refer to the insertion of a sequence that cannot be found or mapped to the reference genome,
and (ii) mobile element insertions or duplications constitute insertions in which the sequence
comes from the original sequence. The sequence of this second type of insertion can be obtained

Frontiers in Genetics | www.frontiersin.org 1 April 2021 | Volume 12 | Article 665812

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.665812
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.665812
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.665812&domain=pdf&date_stamp=2021-04-30
https://www.frontiersin.org/articles/10.3389/fgene.2021.665812/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665812 April 26, 2021 Time: 15:4 # 2

Yan et al. SIns

through a comparison with the reference genome. Based on the
identification of discordant patterns in sequence data, some SV
detection methods can currently be utilized to detect insertions.
In general, these methods can be categorized into the following
four classes: (i) paired-end mapping (PEM-based methods, such
as BreakDancer (Chen et al., 2009), PEMer (Korbel et al., 2009)
and GASV (Sindi et al., 2009)), which is based on the physical
position and distance information of paired-end or mate-pair
reads (Lee et al., 2009; Hormozdiari et al., 2010); (ii) split
read (SR)-based methods, which search for split alignments of
unmapped or clipped reads, and an example is CREST, which uses
clipped reads to identify structural variations through multiple
alignments and assembly (Wang et al., 2011); (iii) depth of
coverage (DoC)-based methods such as SegSeq (Chiang et al.,
2009), EWT (Yoon et al., 2009) and CNVnator (Abyzov et al.,
2011)), which provide a macroscopic view of whether there is a
high coverage area on the genome; and (iv) de novo assembly,
which uses related reads to recover insertion sequences. The latter
methods, such as ANISE and BASIL (Holtgrewe et al., 2015),
SvABA (Wala et al., 2018), EPGA (Luo et al., 2015b) and EPGA2
(Luo et al., 2015a), require a coverage depth that is not less than
40X and have a high cost. However, these methods usually focus
on abnormal information, such as variations in the insertion
size and soft-clipped information, and thus cannot yield accurate
detection results for insertions with variable sizes.

Some hybrid methods have been proposed for the detection
of insertions with variable sizes in recent years. For example,
Pindel, as a classical method, is mainly designed for deletions
and small insertions and uses PEM and SR signatures to locate
the breakpoints (Ye et al., 2009). However, for large insertions
over 50 bp, Pindel does not perform well and yields many
false positive results. MindTheGap uses a k-mer-based method
to detect the insertion site and recovers insertion sequences
through an assembly of k-mers (Rizk et al., 2014). This method
enables the detection of small and large insertions, but the
methods finds it difficult to locate a breakpoint when other
polymorphisms occur near the insertion site, which leads to a
high number of false negative results. As an insertion detection
approach based on breakpoints, BreakSeek applies a Bayesian
model for the PEM and SR signatures to find the accurate
position of an insertion (Zhao and Zhao, 2015). The BreakSeek
method can obtain accurate breakpoint results and genotypes
without assembly, but the coverage depth of the dataset has
some impact on the performance. In addition, although some
insertion detection methods, such as PopIns (Kehr et al., 2016)
and Pamir (Kavak et al., 2017), perform well, they may require a
large number of data points.

In this paper, we propose an insertion detection approach
called SIns, which is based on soft-clipped reads and achieves
high insertion detection accuracy. SIns adopts PEM to identify
and correct the breakpoints from a previous analysis of soft-
clipped reads and clusters the insert size to determine the
genotype. For sequence assembly, SIns directly extracts all
abnormal reads and uses Minia to recover the insertion
sequences. We conducted experiments using simulated data and
real datasets, and the results show that SIns exhibits high accuracy
in breakpoint detection and genotype determination.

The rest of this paper is organized as follows: in Section 2,
we introduce the proposed method in detail. The experimental
results are shown in Section 3, and we summarize and discuss the
findings in Section 4.

METHODS

In this study, we propose a novel insertion detection approach
named SIns for the detection of insertions based on soft-clipped
reads. In general, SIns performs the following three steps: (i)
breakpoint detection, determining the location of insertions
based on comprehensive information; (ii) genotyping, identifying
the genotype of the insertion based on clustering results; and (iii)
assembly of insertion sequences. The overall pipeline of SIns is
shown (Figure 1).

Breakpoint Detection
Breakpoint detection is an important step in SIns. In this study,
the breakpoints can be obtained through the following steps.

Step 1 Selection of Soft-Clipped Reads
For each soft-clipped read, SIns first obtains its clipped part, Sc,
and then extracts a sequence Sr from the reference genome, which
corresponds to Sr. Note that the length of Sr equals that of Sc.

Based on the Smith-Waterman algorithm, a score matrix
between Sc and Sr can then be constructed to reflect their detailed
matching degree. Moreover, SIns can obtain the maximum score
from the matrix, which refers to the length of the longest
successive sequence. To identify and screen out real soft-clipped
reads, a threshold parameter c is then set to select those reads
whose Sc and Sr exhibit higher similarity. This parameter c can
be computed using the following equation:

c =
{

1, max score < cliplength ∗m
0, max score ≥ cliplength ∗m

(1)

where m represents the mappability (m ∈ [0,1]). If c equals 1,
SIns selects it for the following steps; otherwise, SIns abandons
it. A larger m indicates greater similarity between Sc and Sr. The
default value for the parameter m is 0.5.

Step 2 Determination of Candidate Breakpoints
In our study, the soft-clipped reads were further divided into four
types, namely, LL, LR, RL, and RR, which are shown in Figure 2.
Taking “LL” as an example, the first L means that the left mate
read is soft-clipped, and the second “L” specifies that this read is
clipped on its head, whereas “RR” indicates that the right mate
read is soft-clipped on its tail.

A true insertion might be related to the four types of soft-
clipped reads. These soft-clipped reads can provide similar
breakpoint information. In general, an insertion breakpoint is
regarded strongly as true if the four types of soft-clipped reads
mentioned above exist. However, it is difficult to find all types of
soft-clipped reads for a true insertion, particularly if the DoC is
low. In this paper, SIns defines four types of breakpoints, which
are represented as {LL, LR}, {LL, RL}, {RL, LR}, and {RL, RR}. For
a breakpoint, SIns collects all related soft-clipped reads that are
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FIGURE 1 | The process of Sins.

FIGURE 2 | Sequence A and B is normal, and sequence C is insertion sequence. R1, R2, R4′,and R3′ are soft-clipped reads. R1 belongs to the LL type, R2 belongs
to the LR type, R4′ belongs to the RL type, and R3′ belongs to the RR type.

kept to PSD and determines their types, and SIns then uses the
following equation to determine whether a breakpoint is true:

J = (LL ∨ RL) ∧ (LR ∨ RR) (2)

where LL∧LR indicates that the PSD of a breakpoint contains
LL and LR, and LL∨RL indicates that it contains LL or
RL. Subsequently, SIns obtains a list of breakpoints using
the above-described method. However, the method yields

some false positive breakpoints, which can be due to a
high GC content, sequencing error or SNPs. Therefore, even
though their proportion is small, these breakpoints should be
checked and filtered.

Step 3 Filtering of the Breakpoints
Through the above-described steps, SIns can obtain candidate
breakpoints, which might include some false breakpoints. SIns
then uses a filter method based on the insertion size to further
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FIGURE 3 | For a breakpoint, SIns only consider reads aligned in the region [p – (µ+3σ), p + (µ+3σ)], where p is the position of the breakpoint.

improve the precision of these breakpoints. An insertion usually
causes a series of abnormal reads with an anomalous insert
size distribution.

For a candidate breakpoint, SIns first finds the paired reads
that span this breakpoint and OEA reads (one-end-anchored
reads). Note that these reads should be aligned in the region
[p − (µ++3σ), p + (µ+3σ)], where p is the position of the
breakpoint, µ is the insert size of the read library, and σ is the
standard deviation of µ as shown in Figure 3. If the sum of
paired reads and OEA reads is larger than Cov/2, SIns treats
this breakpoint as true, otherwise, the method considers the
breakpoint to be false. Cov is the coverage of the read library.

Genotyping
Genotyping is a necessary step of SIns. In a polyploid,
the genotype is divided into heterozygous and homozygous
genotypes. Taking diploid as an example, a heterozygous
variation is only included in one chromosome and not the other
one contains. In contrast, homozygosity indicates that the same
variation is found in both chromosomes.

Genotyping can provide great convenience for subsequent
studies, and many approaches, particularly assembly-based
methods, are available for genotyping; however, all the assembly-
based methods usually require considerable time and memory.
Here, SIns adopts a cluster-based method, which can save as
much time as possible.

If an insertion occurs, it will inevitably cause a change in the
insert size for paired reads around the breakpoint, such as OEA
reads, and a decrease in the normal insert size. For a heterozygous
insertion, the insert size is difficult to determine because the
paired reads might originate from two different chromosomes.
Some paired reads contain insertions, whereas others do not.
We defined P (Pl, Pr , and i) for a paired read spanning the
breakpoint, where Pl is the aligning position of the left mate
read, Pr is the aligning position of the right mate read and i is
the insert size value around this paired read. After obtaining P

for all paired reads spanning the breakpoint, SIns applies the
DBSCAN for clustering. In DBSCAN, the parameter eps = 50,
min_samples = 2 in default, and these parameters can be adjusted.
And, SIns determines a breakpoint as heterozygote if there is
one cluster in the clustering result, otherwise, the breakpoint is
deemed as homozygous. Two types of insert size distributions are
shown in Figure 4.

Assembly Insertion Sequences
In the assembly stage, SIns extracts OEA, soft-clipped and
unmapped reads for a breakpoint to recover all possible insertion
sequences. After applying the Minia (Boeva et al., 2012) algorithm
to these abnormal reads, SIns generate a series of sequences with
overlap, which contain insertion sequences. SIns then maps these
sequences to the reference genome and obtains the insertion
sequence results. For example, if the CIGAR value of a candidate
sequence is 132M186I130M, the algorithm finds the length of this
insertion, i.e., 186 bp, and determines that the sequence content
is 133–318 bases.

EXPERIMENTS AND ANALYSIS

To verify the performance of SIns, we used SURVIVOR (Jeffares
et al., 2017) and ART (Huang et al., 2012) to simulate a large
number of insertions on human chromosome 22 ranging in size
from 50 to 1,500 bp and in coverage from 5X to 50X. The
recent popular detection methods MindTheGap and BreakSeek
were compared with the proposed SIns method. In addition,
the real human dataset NA12878 was selected to test the
performance of SIns.

Experimental Settings
Simulation Datasets and Parameter Setting
The simulation dataset was based on human chromosome 22, and
the error rate of the dataset was set to 0.1%. SURVIVOR was used
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FIGURE 4 | The paired reads (r1, r1′), (r2, r2′), and (r3, r3′) are obtained on the first chain, which contains an insertion. The other paired reads were obtained on the
normal chain as shown. These insert sizes can be clustered into two clusters.

to simulate the structural variation. Here, we selected insertions
for the simulation, and other types of structural variations
were set to 0. ART was used to simulate different read sets
from the simulated chromosome 22 containing insertions. We
first generated some simulations of chromosome 22 containing
insertions of different sizes, namely, 50–300 bp, 301–600 bp, 601–
1,000 bp, and 1,001–1,500 bp, and ART was then used to simulate
read sets with different coverages, i.e., 5X, 10X, 20X, 30X, 40X,
and 50X. The read length was uniformly set to 150 bp, the inset
size was 500 bp, and the standard deviation was 50. Using the
above parameters, we can understand the detection ability of SIns
under various conditions.

Evaluation Metrics
If the difference between the detected breakpoint and the
simulated breakpoint does not exceed 10 bp, we consider it a
positive result, which is represented by TP; otherwise, the result
is represented by FP. True breakpoints that were not detected are
indicated by FN. To clearly show the detection performance of
various methods, we used the metrics precision (Pr), recall (Rc)
and F-score as follows:

Pr =
TP

TP + FP
× 100% (3)

Rc =
TP

TP + FN
× 100% (4)

The F-score was defined as the harmonic average of precision
and recall:

Fscore =
2Pr × Rc
Pr + Rc

× 100% (5)

Simulation Dataset
Results on Homozygous Dataset
We compared SIns with MindTheGap and BreakSeek,
selected chromosome 22 as the reference and simulated
a chromosome containing 1,051 insertions of 50–300 bp,
a chromosome containing 597 insertions of 301–600 bp, a
chromosome containing 597 insertions of 601–1,000 bp and
a chromosome containing 790 insertions of 1,001–1,500 bp.
Based on different coverages, we simulated six read sets for

each simulated chromosome. The experimental results are
shown in Table 1.

As shown in Table 1, the performances of SIns and BreakSeek
in detecting insertions of 50–300 bp were better. Although the
precision of BreakSeek was generally higher than that of SIns,
its F-score was only better than that of SIns when the coverages
of the read set were 40X and 50X. We also found that SIns
has a higher recall, which means that SIns can detect more true
insertions. SIns exhibited higher precision and recall regardless of
the coverage and the length of insertions. In addition, none of the
methods worked well with low DoCs. However, for the case with
a low coverage (DoC ≤ 10X), SIns showed better performance
than the other methods.

Results on Heterozygous Dataset
To verify the performance of SIns in detecting heterozygous
insertions, we simulated read sets of chromosome 22. Simulations
of chromosome 22 containing insertions of 50–300 bp were used
to produce these read sets, and other simulations of chromosome
22 containing an insertion of 301–600 bp were also used to
generate other read sets. We then combine the read sets from the
normal chromosome 22 and the simulations of chromosome 22.
Note that the read sets were simulated with different coverages:
10X, 20X, 40X, 60X, and 80X. The experimental results are
shown in Table 2.

As illustrated in Table 2, the detection results obtained
with MindTheGap were less effective than those obtained
with homozygous detection because MindTheGap has more
sequences to choose from when selecting k-mers, which will
yield some conflicting issues. The performance of BreakSeek on
these two datasets was not as good as the results obtained with
homozygotes, and a reason for this finding might be that normal
reads extracted from the reference genome, which contained
many contradictory PEM and SR information, were added. When
BreakSeek iteratively analyses the PEM signature, there is too
much contradictory information that can be used, and thus,
the result cannot show the most authentic SV information.
In contrast, when SIns extracts breakpoint information at the
initial stage, the method relies more on SR information and thus
experiences less interference from contradictory information. At
the subsequent filtering stage, due to the addition of normal
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TABLE 1 | Comparison of three tools for four ranges.

Doc Tool 50-300 301–600 601-1,000 1,001-1,500

Pr Rc F-score Pr Rc F-score Pr Rc F-score Pr Rc F-score

5X SIns 99.784 87.726 93.367 100 64.992 78.782 100 61.977 76.525 100 63.924 77.992

BreakSeek 99.791 45.48 62.484 100 14.405 25.183 98.592 11.725 20.958 100 11.899 21.267

MindTheGap 11.949 26.546 16.48 2.317 27.471 4.274 3.104 26.801 5.563 4.551 29.494 7.885

10X SIns 99.412 96.48 97.924 99.815 90.62 94.996 100 89.615 94.523 100 90.127 94.807

BreakSeek 99.892 87.631 93.36 100 61.809 76.398 99.701 55.946 71.674 99.774 55.823 71.591

MindTheGap 30.356 64.986 41.381 20.918 65.662 31.728 21.315 67.337 32.38 25.962 67.468 37.496

20X SIns 99.037 97.812 98.42 99.65 95.477 97.519 100 93.802 96.802 99.868 95.57 97.671

BreakSeek 99.603 95.433 97.473 99.27 91.122 95.022 99.259 89.782 94.283 99.447 91.013 95.043

MindTheGap 85.845 80.209 82.932 75.955 79.899 77.878 73.242 80.235 76.579 79.597 80 79.798

30X SIns 98.848 98.002 98.423 99.308 96.147 97.702 100 94.807 97.334 99.867 95.316 97.539

BreakSeek 99.509 96.384 97.922 99.298 94.807 97.001 99.284 92.965 96.021 99.459 93.165 96.209

MindTheGap 86.829 81.541 84.102 77.564 81.072 79.279 75.425 81.742 78.457 80.73 81.139 80.934

40X SIns 98.102 98.382 98.242 100 96.482 98.21 99.825 95.477 97.603 99.868 95.949 97.87

BreakSeek 99.708 97.431 98.556 99.123 94.64 96.829 99.295 94.305 96.735 99.597 93.797 96.61

MindTheGap 86.917 81.541 84.143 77.404 80.905 79.115 75.889 82.245 78.939 80.832 81.139 80.985

50X SIns 98.57 98.382 98.476 98.969 96.482 97.71 100 95.477 97.686 99.869 96.203 98.001

BreakSeek 99.708 97.431 98.556 98.614 95.31 96.934 99.118 94.137 96.564 99.338 94.937 97.087

MindTheGap 87.018 81.637 84.242 77.28 80.905 79.051 75.153 82.077 78.463 80.881 81.392 81.136

The bold values represent the highest value of each data set in different depth.

TABLE 2 | Result of 50–300 and 301–600 bp heterozygous insertions.

50-300 Tool 50-300 301-600

Pr Rc F-score Pr Rc F-score

10X SIns 100 92.959 96.351 100 89.782 94.616

BreakSeek 100 33.111 49.75 100 21.441 35.31

MindTheGap 11.275 21.789 14.86 5.211 22.111 8.435

20X SIns 99.903 97.907 98.895 100 96.985 98.469

BreakSeek 99.707 64.7 78.477 100 48.576 65.389

MindTheGap 88.596 57.659 69.856 79.669 56.449 66.078

40X SIns 99.807 98.573 99.186 100 97.99 98.985

BreakSeek 98.847 65.271 78.625 98.805 41.541 58.491

MindTheGap 98.609 67.46 80.113 97.387 68.677 80.55

60X SIns 99.425 98.763 99.093 100 97.99 98.985

BreakSeek 98.389 63.939 77.509 98.214 46.064 62.714

MindTheGap 99.349 72.598 83.892 98.42 73.032 83.846

80X SIns 99.616 98.858 99.236 100 97.99 98.985

BreakSeek 98.503 62.607 76.556 98.264 47.404 63.955

MindTheGap 98.84 72.978 83.963 98.42 73.032 83.846

The bold values represent the highest value of each data set in different depth.

reads, the filtering conditions were more rigorous and precise,
which explains why the precision of SIns increased, whereas the
recall value decreased.

Experiments Based on Real Dataset
NA12878 is the gold standard dataset commonly used
in genomics. Experiments with NA12878 (ERR194147
50X1) samples were conducted using the SIns, MindTheGap and

1http://www.ebi.ac.uk/ena

BreakSeek methods. We extracted the reads with a probability of
0.1 because the coverage was too high. The generally recognized
VCF file of this sample contains 50,016 insertion reports larger
than 50 bp. The corresponding vcf file can be downloaded
from NCBI. We only selected the detected results in the file
records as true values. The test results are shown in Table 3.

We have filtered out the SNPs and Indels of this data set.
The above results show that SIns has good performance on

TABLE 3 | Results obtained with NA12878.

SIns MindTheGap BreakSeek

chr1 123 98 90

chr2 180 136 74

chr3 107 57 38

chr4 105 87 37

chr5 94 68 44

chr6 117 84 43

chr7 134 91 44

chr8 73 72 43

chr9 77 69 48

chr10 101 62 42

chr11 88 46 41

chr12 99 65 46

chr13 66 27 36

chr14 51 29 28

chr15 42 44 29

chr16 88 63 69

chr17 67 46 29

chr18 72 42 27

chr19 67 46 23

chr20 38 50 25

chr21 57 16 24

chr22 28 27 21
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TABLE 4 | Homozygote results obtained with four ranges.

Doc 50–300 301–600 601–1,000 1,001–1,500

Mind
TheGap

Break
Seek

SIns Mind
TheGap

Break
Seek

SIns Mind
TheGap

Break
Seek

SIns Mind
TheGap

Break
Seek

SIns

5X 176s 1868s 20s 174s 1842s 35s 178s 2130s 29s 177s 2127s 31s

10X 217s 1868s 40s 216s 2250s 68s 227s 2156s 65s 212s 2089s 61s

20X 243s 2177s 77s 242s 2178s 119s 242s 2054s 142s 235s 4349s 123s

30X 264s 2249s 116s 264s 2109s 180s 257s 3723s 191s 203s 5281s 184s

40X 284s 2415s 154s 286s 2589s 250s 292s 4948s 240s 204s 2736s 245s

50X 304s 2577s 193s 310s 2943s 343s 310s 3207s 319s 211s 2539s 307s

TABLE 5 | Heterozygous results obtained with four ranges.

Doc 50–300 301–600

Mind
TheGap

Break
Seek

SIns Mind
TheGap

Break
Seek

SIns

10X 140s 1997s 38s 139s 2020s 19s

20X 152s 2041s 76s 154s 1990s 47s

40X 171s 2224s 150s 180s 2495s 84s

60X 190s 2779s 227s 193s 2869s 122s

80X 212s 2703s 305s 215s 3294s 204s

100X 227s 3634s 425s 254s 3719s 259s

most chromosomes compared with MindTheGap and BreakSeek.
Although the detection number of insertions on chromosome 15
and 20 are lower than that of MindTheGap, we can find the result
on the rest of chromosomes are better than other two methods.
And the average of F-score on all 22 chromosomes is 5.46% for
SIns. MindTheGap is 2.42%, and BreakSeek is 2.85%. The average
of F-score shows the same conclusion.

Running Time Comparison
Here we list the time comparison results of homozygote and
heterozygous experiments.

Although clustering is useful in the SIns process, it does not
require as many iterations as in BreakSeek, MindTheGap and
other methods; thus, SIns exhibits a relatively obvious advantage
in terms of running time. As shown in Tables 4, 5, all the methods
were run in the same machine and a single thread by default. As
a result, SIns exhibited better performance than the other two
methods in most cases. The main time-consuming step of SIns is
the third step: the reads used for assembly are extracted from the
original read collection, which is the most work-intensive step.
If the assembly is not considered and the method aims to just
detect breakpoints and judge genotypes, SIns can complete the
task within a short time.

DISCUSSION

In this article, we propose an insertion detection method
named SIns based on the comprehensive processing of soft-
clipped read information. SIns can provide more precise
detection of breakpoints and can perform relatively accurate
genotyping. In addition, SIns uses the Minia algorithm for
assembly of the insertion sequence, and the successfully
assembled sequence is then filtered and tailored according to the

breakpoint information. After these steps, the complete insertion
sequence is provided.

Most of the existing methods show effectiveness in detecting
small insertions but show poor performance in cases of low
coverage. These methods usually are difficult to detect all types
of SVs of all sizes. SIns focuses on the detection of insertions
of different sizes. We tested the detection performance of
SIns using various simulated datasets and compared it with
MindTheGap and BreakSeek. In most cases, the performance of
SIns was better than those of the other two methods. Comparing
with the other two methods, SIns performs well both on low
and high coverage data sets and different size insertions. The
experimental results using a real dataset show that SIns exhibits
good detection capability.
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