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Abstract

In this study, experiments are conducted to gauge the relative importance of model, initial

condition, and driving climate uncertainty for simulations of malaria transmission at a high-

land plantation in Kericho, Kenya. A genetic algorithm calibrates each of these three factors

within their assessed prior uncertainty in turn to see which allows the best fit to a timeseries

of confirmed cases. It is shown that for high altitude locations close to the threshold for trans-

mission, the spatial representativeness uncertainty for climate, in particular temperature,

dominates the uncertainty due to model parameter settings. Initial condition uncertainty

plays little role after the first two years, and is thus important in the early warning system

context, but negligible for decadal and climate change investigations. Thus, while reducing

uncertainty in the model parameters would improve the quality of the simulations, the uncer-

tainty in the temperature driving data is critical. It is emphasized that this result is a function

of the mean climate of the location itself, and it is shown that model uncertainty would be rel-

atively more important at warmer, lower altitude locations.

1 Introduction

Any prediction for the future, whether for days, years or centuries, should be accompanied

with an estimate of its uncertainty or confidence [1]. This is valid for short range and seasonal

forecasts and long-term projections of climate-sensitive health outcomes. Understanding this

uncertainty is critical if forecast information is to contribute to health decision making effec-

tively. Incorporating uncertainty into the decision-making process should help to ensure fore-

casts are primarily used when confidence is high, thus minimizing potential losses from poor

forecasts. Communicating uncertainties effectively is extremely challenging and even in the

field of operational weather forecasting, the use of uncertainty information is rarely optimal.

In health applications, the necessity to understand the decision context adds an additional

layer of complexity [2, 3].
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In this paper uncertainty is considered in the context of a specific modeling system in

which climate information is used to drive a mathematical, dynamical model for disease, in

this case to simulate observed clinical malaria cases for a highland tea plantation location in

East Africa. In such a model hierarchy, it is useful and usual to separate the uncertainty into a

cascade of contributions represented schematically in Fig 1. Broadly speaking, uncertainty can

be divided into categories of initial condition, boundary condition and model uncertainty.

Any dynamical model requires knowledge of the initial state. In climate and weather

applications, data is collected each day via the global telecommunication system (GTS) for

assimilation, however no near real-time data on entomological or epidemiological condi-

tions exists to assess the initial state for malaria transmission simulations. Recent develop-

ments in digital health information management and surveillance systems across the

continent offer some hope of improved health data assimilation systems [4], but to date

have not been used for this purpose and are difficult to access outside health ministries.

Monitoring of vector density directly is presently not possible on a large-scale in an opera-

tional context. A pilot forecasting system estimated entomological conditions using climate

information to drive a malaria model to circumvent this difficulty [5]. Even if not available

in real-time, surface hydrology data may also be used to evaluate the modeling system out-

put. However, large hydrological, entomological and epidemiological data uncertainties will

hinder the evaluation of alternative modeling systems. Research experiments and surveys of

vector biting rates or malaria prevalence, as well as health ministry records of clinical cases

are also subject to errors and uncertainties.

The climate information and other environmental and socio-economic settings that essen-

tially provide the boundary conditions for the disease model may temporally vary over a range

of timescales. The climate information may be provided by a weather forecast model, a climate

model, or directly from observations, depending on the context of the simulation. In this

paper, we employ observational data, which will be subject to measurement errors. These are

likely to be dwarfed by the representativeness uncertainty, whereby the highly heterogeneous

environment is summarized with a point value at the station location (or by an area-averaged

satellite measurement or model grid output if these are alternatively used). A variation in alti-

tude of 150 meters across a health clinic catchment is adequate for a variation in temperature

of 1 K, which can have a significant impact on transmission rates, especially at mean

Fig 1. Schematic of the potential sources of uncertainty when using a weather-sensitive disease model to simulate

observed health outcomes.

https://doi.org/10.1371/journal.pone.0200638.g001
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temperatures approaching the lower or upper temperature bounds for transmission [6]. Obvi-

ously, random errors and biases in a model-produced climate dataset may be far larger.

Another source of uncertainties pertains to the dynamical disease model itself, which can

suffer from structural uncertainty, that is, errors in the model formulation through missing or

poorly represented processes. Given a specific model structure, there is also uncertainty with

regard to the setting of model parameters. These parameters may relate to entomological pro-

cesses, such as the degree day length of the sporogonic cycle or the temperature sensitivity of

vector mortality, for example, or other aspects relating to the environmental and socioeco-

nomic setting.

In weather prediction and climate projection there is a similar cascade of uncertainty, with

errors in the initial and boundary conditions in addition to the model system itself [7]. In this

field, uncertainty is systematically accounted for by employing (preferably large) ensembles of

simulations [7–9]. These often consist of multiple modeling systems (different models and/or

parameter settings/perturbations of a single model) subject to multiple initial and boundary

conditions [10–13], although recent work points out that ensemble sizes are often inadequate

to correctly separate initial condition and model structural uncertainty [14]. In a study using

large climate model ensembles, the parameter perturbation approach involved defining a prior

estimate of parameter uncertainty from expert opinion or field experiments, and then applying

a certain model performance criterion to reject some parameter combinations a posteriori [9].

The use of ensembles is sometimes referred to as a forward modeling approach, incorporating

the cascade of uncertainty at each stage of modeling [8, 15, 16]. There are, however, limitations

to this and alternative formal statistical approaches to assessing uncertainty [17].

In health research, large multi-model, multi-simulation ensemble methods for accounting

for uncertainty are relatively rare, or if employed, often sample a single aspect of uncertainty

such as that associated with the weather and climate driving information [5, 18, 19]. As an

example, a recent investigation into the climate change impact on malaria in West Africa uses

a single integration of two climate models to drive a single implementation of the malaria

transmission model under a single greenhouse gas emission scenario [20]. Thus most aspects

of climate initial condition, boundary conditions and model structural uncertainty are

neglected, limiting the relevance of the study to inform health policy.

One bottleneck to considering model structural uncertainty in health applications in a

multi-model ensemble framework is the disparate nature of the health modeling systems

themselves. Relative to global climate models, which solve approximately the same underlying

equation set and represent a similar set of physical processes using parameterization schemes,

disease models may be structurally much more diverse. For example, models for malaria range

from statistical, to compartmental SEIR models that focus on the disease in the human host, to

more comprehensive dynamical models that include the vector-parasite biology. Indeed, these

diverse models may not even predict a common set of health indicators. Taking malaria mod-

els as an example, some models may be simple R0 models, or statistical threshold models for

climate suitability, contrasted with mathematical Susceptible-Exposed-Infectious (SEI) com-

partmental models or full vector-parasite life cycle process dynamical models that may instead

simulate infectious biting rates or clinical cases expected per 1000 population. Such disparities

confound the attempt to construct multi-model approaches to assess model structural uncer-

tainty, although some recent multi-model assessments have been made for malaria [21, 22].

For the climate projection problem, a multi-climate model, multi-health model cascade has

been examined revealing similar responses from two (similarly structured) dynamical health

models, but large disagreements between the statistical and dynamical approaches [23, 24].

Uncertainty for malaria application models is identified as far exceeding that of other applica-

tion sectors such as hydrological or agriculture [25]. The small size of the health and climate

Model, climate and initial condition uncertainty in malaria simulations
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model ensembles implies that the relative contributions of climate and health model (struc-

tural) uncertainty to overall uncertainty in health projections remains an open question.

Identifying structural uncertainty is facilitated for models of a given structure, for example

compartmental models, with a recent study showing limited impact of model structural uncer-

tainty of 37 different compartmental models of ebola on intervention decision making [26].

Relative to structural uncertainty, the uncertainty associated with model parameter settings

has received considerable attention [27–31]. Bayesian techniques have been employed for

model parameter setting, which render an estimation of parameter uncertainty post priori

from a prior estimation and a measure of the model fit to data [30, 31]. This reflects similar

developments in other application fields such as hydrology, where Bayesian selection or alter-

native Kalman filtering approaches have sometimes been used to construct probability density

functions of outcome and posteriori parameter uncertainty [32–36]. A series of predictive

studies of a range of health outcomes used a Bayes approach to produce probabilistic predic-

tions [2, 37, 38]. Regarding dynamical models of malaria, model parameter sensitivity experi-

ments in low and high transmission settings determined mosquito biting rate to be key for R0

in the OpenMalaria model [39–41]. The methodology examined the output Jacobians (the

matrix of all first order function derivatives), a method that has also been employed for atmo-

spheric models [42–44], but has the drawback of being dependent on the basic state employed.

Parallel to the climate modeling approach, some studies employ ensembles of health models

integrations with stochastic parameter perturbations [45–47]. These studies showed limited

perturbations of a single model parameter could lead to a very large spread in the simulated

transmission intensity in highland setting where temperature was close to the 18˚C threshold.

These studies have demonstrated that, apart from model structure uncertainty, parameter

uncertainty in health application models could potentially be very significant. Even simple R0

models contain parameters concerning transmission probabilities and biting rates that are

uncertain. Complex process-based distributed models that account for climate in the disease-

vector life cycles contain an extended range of life-cycle and transmission-related parameters

that are set using data from a very limited number of field or laboratory studies [48–50].

When considering the cascade of uncertainty, it is useful to understand where the greatest

contribution to uncertainty originates. For example, if climate observations are used to drive a

model of malaria transmission, do the instrumental and representativeness errors described

above dominate the structural and parameter errors of the malaria model, and how do these

relate to initial condition uncertainty? Answering this question is important as it allows the

prioritization of error reduction.

A number of studies have attempted to answer this question using an additive approach

with statistical models of malaria or dengue [51–53]. These fit a statistical model to case data

using a number of non-climatic predictors, and then subsequently refit the model with a num-

ber of additional climate variables to determine if the additional climate information can

improve the simulation of the health index in question, taking care to avoid overfitting. Since

some of the non-climate variables can be proxies for climate, such as altitude, latitude, or the

month of the year to remove seasonality, these studies thus necessarily focus on the impact of

climate on interannual variability.

A variant of this approach employed a dynamical modeling framework for malaria, with a

susceptible-exposed-infected-recovered (SEIR) compartmental modeling approach with host

immunity [54]. First the model’s parameters were calibrated using a sequential Monte Carlo

methodology, and then the calibration was repeated allowing rainfall to impact one of the vec-

tor-related response parameters in an idealized way. The question posed was whether the

incorporation of rainfall allowed an improved calibrated fit of the model to the data, which

was indeed the case.

Model, climate and initial condition uncertainty in malaria simulations
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The above methodologies attempt to determine whether climate information can improve

the fit of a disease model to data, but they do not account for uncertainties in the driving data

or indeed the initial conditions. The aim of our study is thus to directly compare the three con-

tributions of initial condition uncertainty, climate boundary condition uncertainty, and model

parameter (but not structural) uncertainty. This is accomplished using a modification of the

approach of Laneri et al. [54], whereby a dynamical model for malaria transmission is used to

simulate observed malaria cases for a highland area, with the initial conditions, disease model

parameters and the driving climate data itself calibrated in turn. Thus the goal is to determine

whether calibration of model parameters or climate parameters within their respective uncer-

tainties would lead to the best fit of the simulated cases to observations. Additional simulations

will attempt to determine the relative uncertainty associated with the entomological initial

conditions.

2 Methods

2.1 Model and data

The model experiments are conducted for a tea plantation in a highland location near Kericho

in western Kenya which has a long record of monthly malaria case records, and is a region

which has received much attention in the literature with regard to the debate concerning the

impact of climate variability and trends on transmission [55–59]. The plantation malaria case

data used is taken from a previous study [60] and spans the period January 1979 to October

2004. Examining the timeseries of data, a discrete jump in the data series is noted after approx-

imately 1998 (Fig 2a). The cause of this is unknown, although we speculate that the implemen-

tation of drip irrigation in the area may have played a role. The small offset is removed by

subtracting the minimum number of cases found after 1998 from from the entire post 1998

period (Fig 2a). The years with anomalous transmission are highlighted by removing the linear

trend from the cases and applying a high pass filter to remove variability on timescales longer

than one year (Fig 2b). The one and two standard deviation lines emphasize the outbreak years

and months which are marked for clarity, with outbreaks identified in 1981, 1985, 1988, 1990,

1994, 1997-99, and 2002-03. While the majority of the outbreaks occur at the end or shortly

after the long rainy season in May, June or July, two outbreaks occurred in February and

March (1998 and 2003, respectively), in both cases following an outbreak 6 months previously.

The dynamical model used in this study is referred to as VECTRI [50]. It is a compartmen-

tal SEIR model for the transmission in the human host coupled to a compartmental model for

the parasite development in the vector in addition to the gonotrophic and larval cycles, similar

to the Liverpool Malaria Model [48]. VECTRI in its basic form has been used to simulate and

predict transmission intensities at seasonal timescales [5, 61] as well as investigating climate

and land use impacts on malaria [23, 24, 62].

New additions to VECTRI are included for the experiments presented in this paper. From

v1.4, there is a differential mean bite rate for hosts in the exposed, infected and recovered

(EIR) individuals relative to the susceptible category (S), to produce over dispersive biting

rates and reflect the fact that some individuals are more attractive to vectors [63–65], are more

vulnerable due to clothing and housing standards [66], access to nets, location of housing with

respect to water bodies [67–69], and that parasite infection also appears to increase attractive-

ness of individuals to vectors [70], although the latter effect is offset by increased net use in the

case of clinical symptoms. The temperature to which the vector is exposed is calculated as the

weighted average of the station measured outdoor temperature and an indoor hut temperature

using the parameterization presented by Lunde et al. [71], with the weighting related to the

vector endophilicity.

Model, climate and initial condition uncertainty in malaria simulations
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Each time step of the model, a proportion of the infectious class return to a susceptible state

as parasites are cleared. In addition, host immunity has been added to the model following the

compartmental model of Laneri et al. [54]. Some infectious individuals are moved to a new

recovered immune class at a rate that is governed by the EIR, such that 95% of individuals

receiving 100 infectious bites per year (EIRa = 100) will be clinically immune [72, 73]. Immu-

nity is lost according to an exponential decay function at a rate whereby 95% of individuals

lose immunity after 3 years. In addition to clinical immunity, the model also accounts for

transmission blocking immunity [54, 74], by reducing the host to vector transmission proba-

bility in immune individuals [75], (see review in S5 and S7 Tables in Ermert et al. [76]).

Another addition to the model is the introduction of a constant birth rate of population, set to

2% per annum here. An equal death rate is assumed, consistent with the assumption of a

Fig 2. (a) Number of monthly reported malaria cases at plantation, with dashed line showing adjusted series. (b) Anomaly of cases calculated by

removing linear trend from adjusted case series and then applying a one year, high pass filter. Dashed and dotted lines show 1 and 2 standard deviation

events, respectively, with positive 2σ events labeled.

https://doi.org/10.1371/journal.pone.0200638.g002
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unchanging population size. This is a reasonable assumption for a clinic that chiefly serves the

workers and families for a fixed-sized plantation, in the absence of data concerning the clinic

catchment population. Increasing population size tends to reduce transmission intensity in

VECTRI as the model does not account for super-infection.

The model is driven by daily temperature and rainfall measured at the Kericho station data,

originally obtained from the Kenyan Meteorological Department [77]. The VECTRI model

assumes daily mean temperature to simply be the average of the maximum and minimum val-

ues. The long-term, annual-mean temperature of the processed stations data is 17.4˚C for the

period of the experiment, cooler than the approximate 18˚C threshold assumed to be required

for sustained falciparum transmission (Fig 3). For most months of the year, daily mean tem-

peratures that exceed 18˚C are at least an upper quartile occurrence, and these occur more fre-

quently during the latter decade during to a warming trend that occurs at the station [77]. The

default model is initialized from an arbitrary state of 5% prevalence of the parasite in the host

population. The first year of the model integration is repeated four times in order to allow the

model parameters to adjust from the artificial and arbitrary initial conditions to a state that is

appropriate for the location. The first three repetitions are discarded in the analysis. The exper-

iments presented in this paper will demonstrate that this period is adequate to prevent initial

conditions from impacting the simulations. An additional ensemble of experiments are con-

ducted with varying initial conditions in order to investigate initial conditions uncertainty.

Fig 3. Box-whisker plot of the daily two meter height station temperatures. The horizontal lines give the mean for a

given month over the whole period, the boxes representing the lower and upper quartile limits of the daily

temperature, while the whiskers mark the minimum and maximum daily value observed over the whole dataset.

https://doi.org/10.1371/journal.pone.0200638.g003
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2.2 Soft constraint genetic algorithm calibration

There are a wide variety of calibration methods available to perform both local and global

parameter space calibration, including Bayesian methods, adjoint methods, ensemble Kalman

filtering and sequential Monte Carlo genetic algorithms [78, 79]. Genetic algorithms are an

effective, if non-optimal, global search strategy that have the attraction of not requiring a tan-

gent linear or adjoint model of the full code, and can find global function minima of highly

nonlinear systems. As the concept is relatively straightforward to understand and implement,

the technique is utilized in a wide range of fields, including atmospheric models, engineering

problems, machine learning and hydrology [80–84]. This simplicity is also an advantage if the

intention is to use a model in decision support, such that decision makers can easily appreciate

the underlying concepts of the tools they are using.

The method employed here is a standard genetic algorithm (GA) approach, with selection,

cross over and mutation, illustrated schematically in Fig 4. An ensemble of m VECTRI models

M1, M2,. . ., Mm are created, each of which has a set of n parameters K1, K2,. . ., Kn which are

to be calibrated. These parameters can be model parameters that determine the way malaria

transmission is modeled. The calibration process is also applied to the initial conditions [85]

and, in a relatively novel development, also to climate uncertainty parameters. These introduce

a scale factor or offset to the rainfall and temperature data to account for measurement and

spatial sampling uncertainty. Each parameter is initialized using a random value sampled from

a Gaussian distribution using the respective default value Ki,μ and the prior uncertainty esti-

mate Ki,σ, thus Ki � N ðKi;m;K2
i;sÞ. Parameters can be subject to upper and lower bounds to pre-

vent unphysical parameter settings: Ki 2 [Ki,min,Ki,max].

The ensemble is integrated to produce m predictions which can be compared to the data

source. A fitness function L is constructed for each member which determines the probability

of the member’s parameter settings being passed to model members of the subsequent “child”

generation. The GA allows for cross-over, thus rather than selecting whole models, the child

generation can have between 1 and a specified maximum of β parents, where b 2 Z \ ½1;m�.
In this work, β = m is adopted.

Fig 4. Schematic of genetic algorithm approach, see text for details.

https://doi.org/10.1371/journal.pone.0200638.g004
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Parameters can undergo mutation to ensure that adequate genetic variety is retained in the

ensemble and prevent the ensemble collapsing to a single member, usually referred to as

ensemble degeneracy, and that the global parameter space is explored. The mutation is accom-

plished by adding a random perturbation to each parameter thus

Ki ¼ Ki þHðP � lUÞgli; ð1Þ

where lU � U ½0; 1� is a random number sampled from a uniform distribution, H is the Heavi-

side function, li � N ð0;K2
i;sÞ is a random variable sampled from a normal distribution of zero

mean and standard deviation equal to the prior uncertainty. P is the probability of mutation

and γ is the mutation scale factor, and as is usual in GA, both the mutation probability and

magnitude decline over generations to a lower rate, with a relaxation timescale of τ (units are

number of generations). This allows the algorithm to find the global minimum of the model

fitness in the early stages of the search. Thus for generation G, if a ¼ e� G
t , then

g ¼ ag0 þ ð1 � aÞg1; ð2Þ

P ¼ aP0 þ ð1 � aÞP1: ð3Þ

From test simulations, we select γ0 = 1, γ1 = 0.1, P0 = 0.5 and P1 = 0.02, although the con-

clusions are not affected by variations in these parameters, as they were only found to impact

the number of generations required to converge to the final solution, not the solution itself,

within reasonable variation.

The final step is to define the fitness function L. The choice of function is flexible and can

represent any metric of model skill, such as accuracy of predicting monthly cases, interannual

cases variability, or aspects that describe the malaria seasonality [86], depending on the model

aspect that the user wishes to maximize with the calibration process. Indeed, a fitness function

can be constructed using an appropriately weighted average of a basket of different measures.

Here the r2 correlation coefficient goodness-of-fit is applied comparing the model’s simulated

monthly cases per 1000 prediction Cs to the observed total case number Co.

The fitness function for one model ensemble member is defined thus:

L ¼ ZHðCs � �Þr2ðCs;CoÞ
Yn

i¼1

PðKiÞ ð4Þ

The term η is a normalization factor such that the sum of the ensemble fitness is unity, the

second Heaviside function term on the right-hand side is to penalize any model with settings

that prevent malaria cases exceeding a small threshold value �. Thus model settings that results

in zero or near zero transmission are prevented from passing their parameter settings to the

next generation, increasing the efficiency of the algorithm. The third term represents the r2

correlation goodness of fit between Cs and Co. The fitness function has one further contribu-

tion which represents a penalty function depending on the departures of the model parameters

from their default values,
Qn

i¼1
PðKiÞ. Without this, calibration techniques would search for the

optimal model parameters that maximize the skill of the model.

If a good fit to data can only be obtained using extreme model parameter values that lie far

outside the accepted range, this would indicate that the model suffers from structural errors,

such as neglecting or poorly representing a key processes. The GA calibration technique

imposed here therefore implements a penalty function for departures in parameter settings

from the default value, accounting for the prior uncertainty, in much the same way that varia-

tional assimilation systems instigate a penalty function for departures from the first-guess

Model, climate and initial condition uncertainty in malaria simulations
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model integration [87]. Thus the calibration search is effectively performed within an n-sphere

of a dimension determined by the parameter priors, centered on the vector describing the

parameter prior best-estimate values. This has the added advantage of reducing the search

space, making the algorithm tractable for a high dimensional search, but with the obvious

drawback that optimal solutions may well be missed if the assessment of the default parameter

and/or its uncertainty is inaccurate.

The departure penalty is based on each respective parameter setting’s probability. In this

initial investigation the uncertainty of all model parameters is assumed to be Gaussian. It is

possible that further improvements in the approach could be achieved by allowing some

parameters to asymmetrical error distributions (possibly by assuming Gaussian error charac-

teristics of transformed variables [88]). If a parameter is poorly constrained, it may be appro-

priate to allow a range of values to be adopted without penalty, although setting large Gaussian

errors will have a similar effect. Thus the 2-tailed probability of parameter value Ki is:

PðKiÞ ¼ 1 � 2

Z Ki

� 1

N ðKi;m;K
2

i;sÞdKi �
1

2

�
�
�
�

�
�
�
�: ð5Þ

The product of the probabilities is used in the cost function to produce an overall probabil-

ity of the parameter vector. The fitness vector will be insensitive to the number of parameters

calibrated since the vector of fitness values for each ensemble member ðL1;L2:::LmÞ is normal-

ized by Z ¼ ð
Pm

j¼1
LjÞ

� 1
, so that the normalized vector of fitness sums to unity and each fitness

L represents the probability of the model member of passing on its parameter settings to the

child generation. Using the fitness vector, child generation models then generate β uniform

random numbers U ½0; 1� to select their β parents for each parameter.

2.3 Uncertainty assessment

The temperature and rainfall data have various sources of uncertainty, such as instrumental

random error and biases, trend errors and sampling error [89]. Temperature error is

accounted for by allowing a constant offset and a linear trend to the driving data. Station

instrumentation random error and bias for temperature are quite limited, on the order of

0.2˚C [90]. These errors are likely dominated by representative errors, that is, the temperature

data measured at the station may not be representative of the temperature everywhere within

the plantation catchment area. These will spatially vary due to changes in altitude across the

steep terrain, heterogeneous land cover creating microclimates [91–93] and vectors’ exposure

to temperature [94].

Considering the spatial uncertainty, altitude variations over complex topography can easily

result in temperature variations on the order of several degrees, and land cover variations

within a clinic catchment can also contribute to temperature heterogeneity [92, 95–97]. A very

approximate estimate is made of such effects using the root mean squared differences between

a gridded analysis of climate, the ERA interim reanalysis [98], and the daily station tempera-

tures, which are 1.4˚C. There are many other sources of uncertainty regarding the climate. For

example, endophilic vectors rest indoors and are subject to different temperatures, but the

impact will depend on the location and type of building, and the degree of endophilicity of the

key malaria vectors in Africa is also highly uncertain [59, 99]. This is also an example where

the boundary between climate and model uncertainty is blurred, since the VECTRI model

accounts for hut temperatures [71]. Thus part of this climate uncertainty is reflected in model

uncertainty in the setting of the parameters related to this scheme.

Taking the above uncertainties into account, the tolerance for the temperature offset

is set 2.5˚C. It is acknowledged that while this may be a reasonable estimate for spatial
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representativeness uncertainty for a typical health clinic catchment, it may be a overestima-

tion in the context of a plantation where workers and their families are often housed in a

single on-site residential location. As the simulations span more than two decades, it is pos-

sible that changes in urbanisation and other land cover changes may also impact the assess-

ment of temperature trend over the experiment period. A tolerance is thus also allowed on

the temperature trend of 0.02˚C per annum, which is of the same order as the observed

trend.

Rainfall measurement errors are difficult to judge, despite a large literature inter-comparing

various satellite-based retrievals and station data in Africa [100–109], and rainfall is also highly

spatially heterogeneous in the tropics [110, 111] implying sampling error can be large. The

uncertainty is thus set to 30% of the mean.

The prior uncertainty is also required for model parameters. Although many life cycle-

related parameters are known from laboratory and/or field studies, often only a single study is

available and ah-hoc estimates of the prior uncertainty are necessary. Here the priors are set to

20% of the mean for most life-cycle parameters (Table 1) following Lindstrom and coauthors

[31]. Parameters pertaining to the model’s treatment of hydrological processes [112, 113] are

poorly constrained are subject to a higher level of uncertainty to allow the calibration algo-

rithm maximum scope to find the global optimum.

The initial conditions for the malaria model consist of the entomological parameters, such

as vector and larvae densities as well as the circumsporozoite protein rate (CSPR), and epide-

miological parameters, such as the parasite ratio (PR) and immunity levels in the host popula-

tion. It was found that the calibration procedure did not converge when calibrating the

malaria model initial conditions. To demonstrate why this was the case, an additional experi-

ment was conducted, in which an ensemble of 100 VECTRI integrations are run, each initial-

ized with a PR value ranging from 0.01 to 1.0, with an increment of 0.01. No model spin up

period was applied in these experiments.

3 Results

3.1 Full calibration

The relative importance of the different sources of uncertainty (model, initial conditions and

driving climate) are assessed by assessing the quality of fit of the converged constrained genetic

algorithm ensemble. The convergence of the algorithm is first examined for the case where all

climate, model parameters and initial conditions are calibrated, in order to confirm that the

Table 1. Default model parameters (Kμ), the uncertainty estimate (Kσ), and the ensemble mean of the calibrated

values (K ) for the experiment in which only the model parameters are calibrated (“model”) and the experiment

where model, climate and initial conditions are calibrated (termed “all”). Only those parameters that differ from

their default value in the final calibrated state are given.

Parameter K Kμ Kσ K (model) K (all)

Infiltration and evaporation loss (mm day−1) 250 150 118 239

Clearance rate for non-immune subjects (days) 20. 20. 27.9 20.3

Degree day length of sporogonic cycle 111. 20. 95.9 110

Success rate for vectors to find blood meal (day−1) 0.5 0.3 0.61 0.51

Base‡ larval daily survival rate 0.92 0.1 0.999 0.985

Base‡ vector daily survival rate 0.96 0.2 1.0 1.0

‡ The base survival rates for the vector and larvae are both subsequently modified by temperature-dependent

mortality schemes [50].

https://doi.org/10.1371/journal.pone.0200638.t001
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model is able to capture at least some of the observed interannual variability and malaria out-

breaks (Fig 5). The ensemble mean skill is maximized after approximately 20 generations, and

while the mean parameter departure is stable after approximately the same time. The algo-

rithm makes further adjustments to the parameter settings over subsequent generations which

do not increase the departure penalty but improve the ensemble fitness, which reaches a maxi-

mum after 80 generations.

The simulation of cases per 1000 population of the VECTRI model ensemble is compared

to the observed cases in Fig 6, where the shading indicates the ensemble spread, with bands for

the middle tercile, the 20-80th percentiles (excluding the 16 lowest and 16 highest models) and

the 5-95th percentiles. Although the model simulation is poor in the initial period from 1979

to 1983, the simulation is able to reproduce the seasonality of cases numbers for a number of

years, in particular the seasons of 1990, 1991 and 1992. The model is also able to reproduce the

enhanced outbreak of 1998, which was associated with rainfall anomalies and enhanced tem-

perature associated with the strong El Niño event that year [91], but the timing of the event is

inaccurate. In both the 1987/88 and 1998/1999 strong El Niño years, the model tends to main-

tain a higher level of cases over a period of one to two years that is not observed. The overall

ensemble-mean correlation approaches 0.25 which is statistically significant given the length

of the timeseries.

The nature of the observed and modeled variability can be assessed by conducting a wavelet

analysis [114], which is accomplished using the WaveletComp package of R [115]. The wavelet

power spectra of the normalized and detrended observed and simulated timeseries of malaria

clinical cases (Fig 7a and 7b) shows some similarities between the two. Both the observations

and model unsurprisingly have a statistically significant peak at the 12 month annual cycle. In

Fig 5. Adjustment of r2 correlation and a measure of the mean normalized parameter departure
1

nm

Pm
i¼1

Pn
j¼1

jKjðiÞ� Kj;m j

Kj;s
.

https://doi.org/10.1371/journal.pone.0200638.g005
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addition both have a clear mode at approximately 4 to 5 years, related to the impact of ENSO,

although this is relatively stronger in the model than the observations. One interesting dispar-

ity between the two is that the observations sometimes show strong transmission anomalies

after only one of the two rainy seasons experienced in this location, which results in a stronger

mode at a period of around 6 months and also 18 months. The model instead often maintains

transmission between consecutive rainy seasons, which results in a much weaker 6 month

mode which is not statistically significant at the 10% level. This is associated with the fact that

the model did not reproduce the two pairs of outbreaks that were separated by 6 months in

1997/98 and 2002/03. This could also indicate a model structural error such as an overly long

memory associated with parasite clearance. The lack of stochastic forcing term in the model is

also likely to be a factor, leading to transmission being overly regular. The lower panels exam-

ine the coherency between the model and observations, and highlight the agreement at the

annual cycle (Fig 7c and 7d) period. Coherency is high across timescales in the early 1990s

when the two timeseries match very closely. The periods of high coherency at ENSO timescales

match the periods when high wavelet power is observed in the observational record.

3.2 Impact of climate versus model parameter uncertainty

Two further experiments were conducted that calibrated the model parameters and the climate

parameters separately. When the model parameters are calibrated, despite the fact that over 17

Fig 6. Timeseries of malaria cases for the Kericho plantation (red line, right axis) and the simulations of malaria cases per 1000 population from

the calibrated 80 member ensemble of VECTRI integrations. Both model parameter and climate information is calibrated.

https://doi.org/10.1371/journal.pone.0200638.g006
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parameters are able to adjust, the calibrated model is unable to sustain continuous transmis-

sion through the earlier part of the series (Fig 8a). Outbreaks begin to occur in the late 1980s

due to the presence of a weak warming trend in the station data and it is only after the warm-

ing of 1998 that sustained transmission can begin. In Fig 8b the result of the temperature and

rainfall calibration is revealed to be very similar to the results with all parameters calibrated.

Thus, simply allowing the calibration process to apply a constant offset to the air and pond

water temperature, and to scale the temperature trend and precipitation amount, leads to a

vastly improved simulation of the malaria case variability, even using the default, uncalibrated

malaria transmission model. In fact, a further pair of experiments which separated the rainfall

and temperature calibration show that the temperature calibration is by far the most important

(not shown); and only allowing the rainfall to calibrate via a scaling parameter, the model is

unable to simulate malaria transmission at all due to the cold temperatures at this station

location.

Table 1 (right columns) gives the mean of the calibrated model parameters for the model-

only and all-parameters experiments, for the key parameters which were perturbed more than

10% of the prior uncertainty when calibrated in at least one experiment. Calibrated parameters

Fig 7. Wavelet spectral power of (a) Kericho cases data and (b) Fully calibrated VECTRI model cases simulation

and (c) mean and (d) time-evolution of wavelet coherence between the two time series. In panel (d), areas with

p> 0.33 are masked for clarity.

https://doi.org/10.1371/journal.pone.0200638.g007
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that are perturbed significantly from their default values are all perturbed in the direction of

increased transmission intensity. This is expected, as it is recalled that the cold mean tempera-

tures imply no transmission in the default model. For example, in the model-only calibration

experiment, parasite clearance rates increase from 20 to 28 days, the sporogonic cycle

decreases from 111 to 96 days and the underlying survival rates for larvae and vector are both

increased to unity (which are subsequently reduced by temperature-related functions [50]); all

changes that increase transmission intensity and the number of clinical cases modeled. There

is also a strong reduction in the infiltration and evaporation rate of ponds, which would

increase their duration after rains and increase vector productivity. Without the soft con-

straint, the calibration process may have produced a closer reproduction of the observed case

data, but at the expense of unreasonable settings for these parameters.

Many of the parameters are calibrated to values close to their default, indicating that these

variables have a limited influence on the simulation quality as measured by the r2 correlation.

Perturbing these parameters from their default values does little to improve the fit of the simu-

lation to the observed cases but increases the penalty function for the parameter departure. For

example, the parameter that specifies the number of eggs laid per batch by each gravid female

is calibrated to a mean of 78 eggs per batch, very close to the default value of 80, with a

Fig 8. Timeseries of malaria cases for the Kericho plantation (red line, right axis) and the simulations of malaria cases per 1000 population from

the calibrated 80 member ensemble of VECTRI integrations, where (a) only malaria model parameters are calibrated and (b) only climate

information is calibrated.

https://doi.org/10.1371/journal.pone.0200638.g008
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perturbation far smaller than the prior. The parameters governing the behavior of the immu-

nity scheme are also insensitive to the calibration process.

For the climate calibration, the temperature offset is the key parameter, and it is calibrated

with a value approaching its specified uncertainty of 2.3˚C (Table 2). The method also slightly

enhances the temperature trend by a further 0.02˚C decade−1 and a small water temperature

offset of 0.25˚C is applied, with substantial spread across the ensemble. The rainfall is left

largely unchanged. The temperature offset is much smaller in magnitude when both model

and climate parameters are calibrated, with the mean temperature calibrated warmer by 1.1˚C

in this case due to the additional contribution of the model calibration.

3.3 Impact of initial conditions

The calibration procedure did not converge when calibrating the initial conditions. The reason

for this is clear when the evolution of the PR is examined for the 100-member VECTRI ensem-

ble of integrations, which each was initialized with a different PR value ranging from 0.01 to

1.0. The solutions converge over a period of approximately two years (Fig 9), indicating that

the system is asymptotically stable. This result is expected from the extensive literature on

regional climate and numerical weather prediction models, driven by lateral boundary condi-

tions for meteorological variables such as winds, temperature and humidity. Initial condition

uncertainty has been shown to be highly constrained in a regional model forced by lateral

boundary conditions [116], and initial conditions uncertainty reduces over time in both low

[117] and high [118] resolution experiments. These lateral boundary conditions are analogous

to the time-evolving climate boundary conditions used for the disease model. The simulations

here suggest that initial conditions are important in the seasonal prediction early warning con-

text, and still lead to significant spread between the models in the second year, but can be safely

neglected as a source of uncertainty in multi-year simulations or climate change experiments.

The rate of convergence is dependent on the temperature, which is demonstrated in Fig 9 by

two further ensembles in which an arbitrary additional temperature offset is used to give a

mean temperature of 19.9˚C and 24.4˚C. At 24.4˚C the ensemble spread collapses almost to

zero after just 4 months, as this temperature is close to the optimum temperature for transmis-

sion [6] and PR values are close to their potential maximum. Thus initial condition uncertainty

is relatively more important in cooler highland locations than warmer lowland endemic areas.

4 Discussion

In this work, the various contributions of model and climate uncertainty to overall uncertainty

in modeled malaria-related health outcomes was assessed. The approach was to use a genetic

algorithm to calibrate the driving climate data and the malaria model parameters, each con-

strained by an estimate of parameter uncertainty.

Table 2. Default model parameters (Kμ), the uncertainty estimate (Kσ), and the ensemble mean of the calibrated

values (K ) for the experiment in which only the climate parameters are calibrated (“climate”) and the experiment

where model, climate and initial conditions are calibrated (termed “all”).

Parameter K Kμ Kσ K (climate) K (all)

Temperature offset (˚C) 0.0 2.5 2.3 1.1

Temperature trend (˚C decade−1) 0.0 0.02 0.022 0.017

Water temperature offset (˚C) 0.0 2.0 0.25 0.23

Rainfall scale factor 1.0 0.3 0.98 1.0

https://doi.org/10.1371/journal.pone.0200638.t002
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The first task was to determine if the model could provide a reasonable simulation of

malaria. In its default setting the model did not simulate malaria due to the cold mean temper-

atures recorded at the plantation station. However, once the model parameters were calibrated

it provided a reasonable simulation of the malaria case data and its seasonality and the out-

breaks of 1986, 1990, 1991, 1992, and the exceptional year of 1998 are well captured. The posi-

tive correlation between the model simulations and observations was statistically significant.

There are three notable outbreaks in observations that the model is unable to capture, specifi-

cally in 1999, 2002 and 2003. Shanks et al. [57] discuss the 2002 outbreak at some length, in

particular the fact that no outbreak was observed at a nearby plantation (Fig 4 of reference

[57]). They noted that both plantations switched to malaria treatment for outpatients from

chloroquine to sulfadoxine-pyrimethamine during the period between 1999 and 2000 and

were consequentially unable to explain the differences between the plantations. The year 2002

was associated with elevated cases at the district hospital, reflecting the plantation data pre-

sented here [119]. Hay et al. [119] showed that precipitation was normal in Kisii and Gucha

districts in 2002, while Nandi and Kericho appeared to have anomalous wet conditions in May

Fig 9. Evolution of PRd for three experiments, each with an ensemble size of 100 integrations that differ only in

their initial conditions of PRd, equi-spaced between 0.01 and 1.0. The gray shading marks the 10 to 90 percentile of

the ensemble, and the thick line indicates the ensemble mean. The first experiment uses the calibrated model and

climate parameters and has a mean temperature of 18.5˚C, while the other two add an additional (arbitrary)

temperature offset to give a mean of 19.9 and 24.4 ˚C, respectively.

https://doi.org/10.1371/journal.pone.0200638.g009

Model, climate and initial condition uncertainty in malaria simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0200638 September 26, 2018 17 / 27

https://doi.org/10.1371/journal.pone.0200638.g009
https://doi.org/10.1371/journal.pone.0200638


2002. The rainfall anomaly in May 2002 was 3.22 mm day−1, which while not the largest in the

dataset, still represents a 90th percentile event, as the standard deviation of the monthly anom-

aly is 2.35 mm day−1. The temperatures anomalies are limited. Thus there is the indication

that, while the VECTRI model reproduces the seasonal cycle of malaria cases in response to

the rainy season well, interannual variations in rainfall do not drive as much malaria variability

as expected, possibly highlighting a model structural error that can not be easily addressed

with parameter calibration alone. It is also emphasized that the calibration process only allows

perturbations that are independent of time (with the exception of the linear temperature

trend) and thus the fit also indicates that the structure of the underlying model is reasonable.

Some parameters did not change radically from their default values with the calibration

process. This does not imply that these parameters do not affect the model simulations, only

that, relative to their respective uncertainties, these parameters have a smaller influence on the

simulation outcome for the given metric chosen to assess simulation quality. The calibration

method will tend to perturb those parameters lead to the greatest improvement of simulation

skill for the smallest departure penalty. This is subtly different to the study of model Jacobians,

which identifies the parameters to which a model output is sensitive to, but not necessarily

leading to improved skill. These experiments illustrate the power of departure constraint on

the GA calibration, since if the priors were an accurate reflection of our present state of knowl-

edge concerning a particular process then the method shows which processes should be priori-

tized for research to reduce these uncertainties.

The next question posed was, if we are able to calibrate the driving climate dataset within a

reasonable range of the assessed uncertainty, is it possible to achieve a better fit to the observed

series of malaria cases than if the malaria model parameters are fitted within their own respec-

tive uncertainties? In both experiments, the parameters were calibrated in such a way as to

increase transmission intensities. Vector and larval survival rates were increased, for example,

and the sporogonic cycle reduced. However, the calibration of malaria model parameters

was not able to match the data as effectively as calibrating the climate data, in particular the

temperature.

While instrumental random errors and biases are quite limited, the representativeness

error can be quite substantial, particularly over complex topography. Thus, vectors in two loca-

tions that may be quite close to each other (in the same health centre catchment on even the

plantation) may experience quite different temperatures due to differences in altitude, land

cover and vegetation. A difference of 1 or 2 degrees can imply a very significant difference in

terms of transmission, particularly near the 16 to 18˚C threshold for sustaining transmission

or in the range of temperatures where transmission intensity changes rapidly as a function of

temperature [120], even if the transmission-temperature relationship is still hotly debated [6,

121]. As an example, if the sporogonic cycle for falciparum is assumed to obey a degree day

relationship with a threshold of 18˚C and a length 111 degree days [120], then a temperature

range of 18.5 to 19.5˚C across a health clinic catchment, representing an uncertainty of just

1˚C, would be equivalent to an uncertainty in sporogonic cycle length ranging from 37 to 111

days. A comparison of a 1˚C temperature uncertainty to a 20% uncertainty in the sporogonic

cycle is shown in Fig 10. The simple calculation shows that while climate uncertainty would

dominate at cooler temperatures, the model uncertainty of setting the degree day length for

the sporogonic process is larger once the temperature exceeds around 23˚C. This emphasizes

the fact that the relative contributions of model uncertainty and climate uncertainty are a func-

tion of the locality and its mean climate. Climate is the most important in the experiments pre-

sented here due to the highland location chosen for the study.

As interannual temperature variability is limited in the tropics relative to higher latitudes,

there is sometimes the tendency to neglect the impact of its temporal and small scale spatial
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variability on transmission fluctuations. For example, some earlier work on predicting out-

breaks, particularly associated with El Niño, used a univariate analysis focused on rainfall vari-

ability alone [91, 122, 123], neglecting the fact that tropical temperatures are usually O(1)˚C

warmer in El Niño years, which would also contribute to transmission intensification in high-

land areas. Likewise, while there is evidence from detailed mapping exercises that proximity to

water bodies greatly amplifies risk of infection [67, 68], such analyses often neglect the impact

of spatial variations in temperature that are associated with changing altitude, proximity to

water and the associated changes in land cover. For example, one analysis dismissed tempera-

ture as a contributor to contrasts in malaria transmission between two highland locations

since a statistical test using daily data deemed there to be no significant difference between

annual mean temperatures of 26.1˚C and 28.3˚C [124], when in fact these differences could

have a significant impact in terms of malaria transmission.

Statistical modeling approaches can attempt to separate temperature and rainfall contribu-

tions over small scales [125] but even these resort to interpolated gridded products which will

neglect small scale variations in temperature and possibly underestimate its impact. Here it is

seen that simply calibrating temperatures with a tolerance of 2.5˚C and a tendency of 0.2C

decade−1 is adequate to progress from a model that simulates no transmission at all, to one

which is able to reproduce many of the seasonal changes in malaria in a highlands location.

Given the importance of temperature uncertainty, what could be the possible approaches to

reduce this? One of the key uncertainties was related to the spatial representativeness of iso-

lated temperature data, which could be addressed by running VECTRI at finer spatial resolu-

tions, if the source of the spatial heterogeneity could be modeled and verified. VECTRI already

uses topography to statistically downscale temperature to a finer grid mesh, usually on the

order of 10km [50]. This could be extended to finer resolutions, although spatial information

on precipitation is not yet available at scales finer than 10km over Africa from the famine early

Fig 10. Comparison of range of uncertainty in the sporogonic cycle length (days) that would arise from assuming a 1˚C uncertainty in

temperature (red error bars) or a 20% uncertainty in the degree day length (black), as a function of mean temperature. The threshold temperature

is assumed to be 18˚C for this process.

https://doi.org/10.1371/journal.pone.0200638.g010
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warning system (FEWS) and more recently, the global precipitation measurement (GPM)

products. However, topographical effects are not the only drivers of fine-scale temperature het-

erogeneity. Other factors such as land cover and canopy effects on temperature introduce fur-

ther heterogeneity, and one approach to incorporate this would be to use the tile approach of

land surface schemes, whereby VECTRI would be integrated for each tile portion of a grid-cell

for each land cover type. At still smaller scales, factors such as the indoor temperatures of habi-

tations are important, and harder to model with certainty. VECTRI can account for in-hut

temperature impacts, but the data is not available to set the constants in these schemes accu-

rately, and incorporating the spatial heterogeneity is more challenging. These uncertainties

highlight the need of a modeling approach that can incorporate uncertainty in a calibration

approach.

This preliminary study uses a fixed, ad hoc estimate of the model parameter uncertainty

due to the fact that for many of the relevant biological processes, few analogous laboratory or

field studies exist. Additional repetition of past laboratory studies would greatly help modeling

efforts by allowing process uncertainty to be better estimated and incorporated.

5 Conclusions

Initial condition, model parameter and driving climate uncertainty were compared using a

constrained genetic algorithm to calibrate a malaria model used to simulate cases in a highland

location in south-west Kenya. As expected from earlier work with regional climate models, the

experiments showed that initial condition uncertainty is only significant for the first two years

of the simulation, and thus is relevant in the health early warning system context but not for

simulations on decadal or longer timescales. The spatial uncertainty of temperature was found

to be the dominant source of uncertainty, even though modification of parameters related

to temperature-sensitive processes also improved the simulation quality. A simple analysis

showed that this result is valid only for cold highland locations close to the lower threshold for

sustained malaria transmission. At warmer temperatures, the model parameter uncertainty

can become relatively more important. A number of sources of uncertainty have not been con-

sidered, in particular the model structural uncertainty. This could be achieved by employing

a multi-model experimental setup with additional modeling systems such as the Liverpool

Malaria Model [48]. Moreover the challenge of how to incorporate model uncertainty into the

decision making process within the presented framework is left open for future consideration.

Acknowledgments

This project was initiated during two visits of the lead author to IRI which were financially

supported by NIH. Bradfield Lyon and Israel Ukawuba are thanked for providing post-pro-

cessed and quality controlled climate and health data and advice thereon. MCT Directs the

IRI-WHO Collaborating Center (430) Malaria Early Warning Systems and Other Climate Sen-

sitive Diseases and acknowledges the support of WHO in facilitating engagement with national

policy makers and practitioners that generates questions for policy relevant research.

Author Contributions

Conceptualization: Adrian M. Tompkins, Madeleine C. Thomson.

Data curation: Adrian M. Tompkins, Madeleine C. Thomson.

Formal analysis: Adrian M. Tompkins.

Funding acquisition: Madeleine C. Thomson.

Model, climate and initial condition uncertainty in malaria simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0200638 September 26, 2018 20 / 27

https://doi.org/10.1371/journal.pone.0200638


Investigation: Adrian M. Tompkins.

Methodology: Adrian M. Tompkins.

Software: Adrian M. Tompkins.

Visualization: Adrian M. Tompkins.

Writing – original draft: Adrian M. Tompkins.

Writing – review & editing: Madeleine C. Thomson.

References

1. Palmer TN. Predicting uncertainty in forecasts of weather and climate. Rep Progress Phys. 2000;

63:71–116. https://doi.org/10.1088/0034-4885/63/2/201

2. Lowe R, Coelho CA, Barcellos C, Carvalho MS, Catao RDC, Coelho GE, et al. Evaluating probabilistic

dengue risk forecasts from a prototype early warning system for Brazil. elife. 2016; 5:e11285. https://

doi.org/10.7554/eLife.11285 PMID: 26910315

3. Tompkins AM, Lowe R, Nissan H, Martiny N, Roucou P, Thomson MC, et al. Predicting climate

impacts on health at sub-seasonal to seasonal timescales. In: Robertson AW, Vitart F, editors. The

gap between weather and climate forecasting: sub-seasonal to seasonal prediction. Elsevier; 2018.

p. in press.

4. Chaulagai CN, Moyo CM, Koot J, Moyo HB, Sambakunsi TC, Khunga FM, et al. Design and imple-

mentation of a health management information system in Malawi: issues, innovations and results.

Health policy and planning. 2005; 20(6):375–384. https://doi.org/10.1093/heapol/czi044 PMID:

16143590

5. Tompkins AM, Di Giuseppe F. Potential predictability of malaria using ECMWF monthly and seasonal

climate forecasts in Africa. J Appl Meteor Clim. 2015; 54:521–540.

6. Lunde TM, Bayoh MN, Lindtjørn B, et al. How malaria models relate temperature to malaria transmis-

sion. Parasit Vectors. 2013; 6(1):1–10. https://doi.org/10.1186/1756-3305-6-20

7. Hawkins E, Sutton R. The potential to narrow uncertainty in regional climate predictions. Bull Amer

Meteor Soc. 2009; 90(8):1095. https://doi.org/10.1175/2009BAMS2607.1

8. Palmer T, Shutts G, Hagedorn R, Doblas-Reyes F, Jung T, Leutbecher M. Representing model uncer-

tainty in weather and climate prediction. Annu Rev Earth Planet Sci. 2005; 33:163–193. https://doi.

org/10.1146/annurev.earth.33.092203.122552

9. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, et al. Uncertainty in predictions of

the climate response to rising levels of greenhouse gases. Nature. 2005; 433:403–406. https://doi.org/

10.1038/nature03301 PMID: 15674288

10. Molteni F, Buizza R, Palmer TN, Petroliagis T. The ECMWF ensemble prediction system: Methodol-

ogy and validation. Q J R Meteorol Soc. 1996; 122:73–119. https://doi.org/10.1002/qj.49712252905

11. Buizza R, Miller M, Palmer TN. Stochastic representation of model uncertainties in the ECMWF

Ensemble Prediction System. Q J R Meteorol Soc. 1999; 125:2887–2908. https://doi.org/10.1002/qj.

49712556006

12. Krishnamurti TN, Kishtawal C, Zhang Z, LaRow T, Bachiochi D, Williford E, et al. Multimodel ensemble

forecasts for weather and seasonal climate. Journal of Climate. 2000; 13(23):4196–4216. https://doi.

org/10.1175/1520-0442(2000)013%3C4196:MEFFWA%3E2.0.CO;2

13. Piccolo C, Cullen M. Ensemble data assimilation using a unified representation of model error. Mon

Wea Rev. 2016; 144(1):213–224. https://doi.org/10.1175/MWR-D-15-0270.1

14. Kay J, Deser C, Phillips A, Mai A, Hannay C, Strand G, et al. The community earth system model

(CESM) large ensemble project: A community resource for studying climate change in the presence of

internal climate variability. Bull Amer Meteor Soc. 2015; 96(8):1333–1349. https://doi.org/10.1175/

BAMS-D-13-00255.1

15. Tebaldi C, Knutti R. The use of the multi-model ensemble in probabilistic climate projections. Phil

Trans Roy Soc Lon A. 2007; 365(1857):2053–2075. https://doi.org/10.1098/rsta.2007.2076

16. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA. Challenges in combining projections from multiple

climate models. Journal of Climate. 2010; 23(10):2739–2758. https://doi.org/10.1175/2009JCLI3361.

1

17. Katz RW. Techniques for estimating uncertainty in climate change scenarios and impact studies. Cli-

mate Res. 2002; 20(2):167–185. https://doi.org/10.3354/cr020167

Model, climate and initial condition uncertainty in malaria simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0200638 September 26, 2018 21 / 27

https://doi.org/10.1088/0034-4885/63/2/201
https://doi.org/10.7554/eLife.11285
https://doi.org/10.7554/eLife.11285
http://www.ncbi.nlm.nih.gov/pubmed/26910315
https://doi.org/10.1093/heapol/czi044
http://www.ncbi.nlm.nih.gov/pubmed/16143590
https://doi.org/10.1186/1756-3305-6-20
https://doi.org/10.1175/2009BAMS2607.1
https://doi.org/10.1146/annurev.earth.33.092203.122552
https://doi.org/10.1146/annurev.earth.33.092203.122552
https://doi.org/10.1038/nature03301
https://doi.org/10.1038/nature03301
http://www.ncbi.nlm.nih.gov/pubmed/15674288
https://doi.org/10.1002/qj.49712252905
https://doi.org/10.1002/qj.49712556006
https://doi.org/10.1002/qj.49712556006
https://doi.org/10.1175/1520-0442(2000)013%3C4196:MEFFWA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013%3C4196:MEFFWA%3E2.0.CO;2
https://doi.org/10.1175/MWR-D-15-0270.1
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1098/rsta.2007.2076
https://doi.org/10.1175/2009JCLI3361.1
https://doi.org/10.1175/2009JCLI3361.1
https://doi.org/10.3354/cr020167
https://doi.org/10.1371/journal.pone.0200638


18. Morse AP, Doblas-Reyes FJ, Hoshen MB, Hagedorn R, Palmer TN. A forecast quality assessment of

an end-to-end probabilistic multi-model seasonal forecast system using a malaria model. Tellus A.

2005; 57(3):464–475. https://doi.org/10.3402/tellusa.v57i3.14668

19. Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, et al. Malaria early

warnings based on seasonal climate forecasts from multi-model ensembles. Nature. 2006; 439:576–

579. https://doi.org/10.1038/nature04503 PMID: 16452977

20. Yamana TK, Bomblies A, Eltahir EA. Climate change unlikely to increase malaria burden in West

Africa. Nature Climate Change. 2016;. https://doi.org/10.1038/nclimate3085

21. Wallace DI, Southworth BS, Shi X, Chipman JW, Githeko AK. A comparison of five malaria transmis-

sion models: benchmark tests and implications for disease control. Malar J. 2014; 13(1):1–16. https://

doi.org/10.1186/1475-2875-13-268

22. Ruiz D, Brun C, Connor SJ, Omumbo JA, Lyon B, Thomson MC. Testing a multi-malaria-model

ensemble against 30 years of data in the Kenyan highlands. Malar J. 2014; 13(1):1. https://doi.org/10.

1186/1475-2875-13-206

23. Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, et al. Impact of cli-
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