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Abstract: Wheat flour’s end-use quality is tightly linked to the quantity and composition of storage
proteins in the endosperm. TAM 111 and TAM 112 are two popular cultivars grown in the Southern
US Great Plains with significantly different protein content. To investigate regulatory differences,
transcriptome data were analyzed from developing grains at early- and mid-filling stages. At the mid-
filling stage, TAM 111 preferentially upregulated starch metabolism-related pathways compared to
TAM 112, whereas amino acid metabolism and transporter-related pathways were over-represented
in TAM 112. Elemental analyses also indicated a higher N percentage in TAM 112 at the mid-filling
stage. To explore the regulatory variation, weighted correlation gene network was constructed from
publicly available RNAseq datasets to identify the modules differentially regulated in TAM 111 and
TAM 112. Further, the potential transcription factors (TFs) regulating those modules were identified
using graphical least absolute shrinkage and selection operator (GLASSO). Homologs of the OsNF-Y
family members with known starch metabolism-related functions showed higher connectivities in
TAM 111. Multiple TFs with high connectivity in TAM 112 had predicted functions associated with
ABA response in grain. These results will provide novel targets for breeders to explore and further
our understanding in mechanisms regulating grain development.

Keywords: nitrogen; wheat; grains; gene network; transcriptome

1. Introduction

Wheat (Triticum aestivum L.) is an internationally important staple crop whose milled
flour is used in many food products ranging from bread to specialty cakes. Due to having
different end-use purposes, wheat varieties have been developed according to specific
industry standards to achieve desirable qualities. For bread wheat, traits such as high
protein content (i.e., percent protein in flour), and protein quality (i.e., gluten quality and
ratios of subunits) are thus of high breeding priority aside from grain yield.

The US is projected to have 19.2 million hectares of wheat planted in 2022, of which
71% (i.e., 13.6 million hectares) are projected to be winter wheat [1]. The Southern Great
Plain is one of the major winter wheat producing areas, estimated to account for 50% of
the total acreage. Hence, retaining and improving high-quality winter wheat varieties
adapted to this area is vital to the US wheat and food industry. Hard red winter wheat is
used for bread making, for which traits such as percent protein are vital to the success of
any released variety. Recent reports on grain crops have shown that grain nitrogen and
starch content can be impacted by altering the activities of genes involved in processes such
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as storage compound biosynthesis or transport of metabolites such as sugar and amino
acids [2–4], or transcription factors controlling biosynthesis and transport [5,6]. Impactful
grain quality genes or candidates are often identified via genetic mapping approaches such
as QTL mapping and Genome-Wide Association Study (GWAS). Recent advances in high-
throughput sequencing made it possible to identify polymorphisms among cultivars at
unprecedented density, contributing to an acceleration of marker-based selection strategies
(e.g., genome selection, marker-assisted selection) in breeding programs. However, these
techniques that rely on linkage associations lack the ability to identify important regulators
that might either lack variation within a limited population (e.g., bi-parental population) or
have weaker statistical sensibility due to having a complex population structure, such as
being a minor allele or population-specific allele in GWAS. Gene network analysis recently
became a method of choice for identifying such candidate regulator genes, mainly due to
the ever-increasing availability of high-throughput transcriptome data [7–9]. Correlation
network among gene expression as well as the studies of causative genes involved in
complex phenotypes reveal that genes that have higher interconnectivity within and among
the network (often called “hub” genes) are likely to have a large regulatory effect, and
therefore a large impact on the phenotypes [10–14]. Thus, utilization of this powerful new
tool would aid the effort in identifying central genes crucial to the overall network that can
also be potential targets for selection.

In this study, two popular winter wheat varieties (i.e., cv. TAM 111 and cv. TAM 112)
were selected due to their superior grain quality, yield, and local popularity. TAM 111 and
TAM 112 are genetically related (<40% by pedigree) [15]. Both cultivars are known for their
excellent drought resistance ability, and that ability has since been dissected by Reddy et al.
and Chu et al. in their transcriptome studies. TAM 112 grains also have a higher percent
protein content than TAM 111 at maturity [15,16]. This variation in grain protein content is
partly explained by QTLs identified by Dhakal et al. [17]; however, the potential causative
mechanism that resulted in the difference in the grain protein content is still unclear.
To fill this knowledge gap from a molecular level, we analyzed the transcriptome from
grains collected from TAM 111 and TAM 112 at 5 days after flowering (DAF), and 14 DAF
representing early and mid-grain developmental stages, respectively. We have identified
differentially expressed genes (DEGs) and their related biological pathways via gene-
ontology analysis (GO). The GO enrichment suggests that TAM 111 has a developmental
emphasis on starch metabolic pathways, whereas TAM 112 seems to be more active in
amino acid metabolism and transporter activities in the mid-grain developmental stage.
This GO term-based hypothesis was verified via elemental analysis. Lastly, by utilizing
graphical least absolute shrinkage and selection operator (GLASSO) in addition to the
gene network analysis, we generated a list of potential key regulators that might explain
the transcriptomic differences between TAM 111 and TAM 112 during early to middle
grain development, which in turn is likely contributing to the final phenotypic variation in
grain characteristics.

2. Results and Discussion
2.1. RNAseq Data Structure

To identify the DEGs between cultivars TAM 111 and TAM 112, RNAseq experiments
were performed. Kernels at 5 and 14 days DAF were harvested, representing early and
mid-grain filling stages, respectively. The raw reads were mapped to the IWGSC v1.1
wheat genome (Chinese spring, Ensembl, release 49). Approximately, 32 to 40 million reads
per sample were mapped to the genome, ranging between 76.9 and 83.2% of total reads
mapped, respectively (Table S1).

A total of 66,502 genes had a significant expression, defined as TPM > 0.5 in at least
one sample. In total, 60,416 and 63,952 genes were significantly expressed in 5 and 14 DAF,
respectively, among which 58,825 genes were found to be significantly expressed in both
datasets. Principle component analysis of variance-normalized read counts of the top
500 most variable genes showed that biological replicates cluster together (Figure 1). The
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two developmental stages (5 DAF and 14 DAF) separated along the principal component
PC1 which accounted for 84% of the variance, whereas PC2 separated the two cultivars,
accounting for 10% of the variance. Taken together the result indicated that the effect of the
developmental stage (i.e., difference between 5 and 14 DAF) is greater than the genotypic
difference (i.e., TAM 111 vs. TAM 112).
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Figure 1. Principle component analysis plot of all samples. Red dots: 14 days after flowering (DAF)
samples from TAM111, Green dots: 5 DAF samples from TAM111, teal dots: 14 DAF samples from
TAM112, purple dots: 5 DAF samples from TAM112.

2.2. DEGs between TAM 111 and TAM 112 at Each Time Points Show Different
Pathways Over-Represented

To compare the transcriptome of two cultivars at each of the time points sampled,
DEGs were identified. A total of 2629 (1414 and 1215 genes upregulated in TAM 111 and
TAM 112, respectively) and 9368 (4868 and 4500 genes upregulated in TAM 111 and TAM
112, respectively) DEGs for 5 and 14 DAF were identified, respectively (Table 1). Comparing
the two time points revealed 1937 DEGs as being common at both time points, whereas
692 and 7431 genes were unique to either of the 5 or 14 DAF comparisons, respectively
(Table 1). To further explore the variation, DEGs between 5 and 14 DAF within each
cultivar were identified using the same criteria described in material and methods. For
TAM 111, a total of 14,745 genes (6370 and 8375 genes significantly higher at 5 and 14
DAF, respectively) were developmentally controlled, while in TAM 112 13,061 genes (5481
and 7580 genes significantly higher at 5 and 14 DAF, respectively) were developmentally
controlled. Comparing the cultivars transitioning from 5 DAF to 14 DAF, 8044 genes
were developmentally regulated in both cultivars, while TAM 111 and TAM 112 each had
6701 and 5017 cultivar-specific DEGs (i.e., total DEGs minus shared DEGs), respectively
(Table 1B). The numbers agree with the PCA prediction that the developmental stage
caused more significant gene expression changes than cultivar-specific changes at a given
developmental stage.

Next, to identify the biological pathways over-represented in DEGs between the
cultivars and the developmental stages, GO enrichment analysis was conducted using
Shiny-GO v0.76 [18]. Comparing the DEGs identified between cultivars at 5 DAF, processes
related to DNA structure organization such as chromatin assembly (GO:0031497) and DNA
packaging (GO:0006323) were enriched in genes expressed higher in TAM 111 over TAM
112 (Figure S1A), whereas processes related to transports (GO:0070588) and peptidase
regulation (GO:0010466) were identified as enriched in the genes expressed higher in
TAM 112 over TAM 111 (Figure S1B). At 14 DAF, pathways related to starch biosynthesis
(GO:0019252 and GO:0005982) were enriched in the genes expressed higher in TAM 111
compared to TAM 112 (Figure 2A). Processes such as chromatin assembly and other DNA
organization processes, over-represented in TAM 111 at 5 DAF-comparison were also
enriched in TAM 111 at 14 DAF. In contrast, protein and amino acid metabolic processes
(e.g., GO:1902222, GO:0009074, GO:0009063), as well as ion and cellular transport (e.g.,
GO:0055085 and GO:0006813), were enriched in the genes expressed higher in TAM 112
at 14 DAF (Figure 2B). GO enrichment analyses were also conducted within each cultivar
transitioning from 5 to 14 DAF (Figure S2A–D). In TAM 111, when comparing 5 DAF to
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14 DAF, genes showing higher expression on 5 DAF are enriched in pathways related
to DNA organization (e.g., GO:0006323, GO:0031497, GO:0006334) whereas genes with
a higher expression on 14 DAF are enriched in starch synthesis related pathways (e.g.,
GO:0019252, GO:0005977, GO:0005978). For TAM 112, DEGs that are up-regulated in 5
DAF are highly similar to that of TAM 111, pathways such as DNA organization were
highly enriched; however, DEGs up-regulated at 14 DAF are enriched in pathways related
to amide (GO:0042886) and peptide transport (GO:0015833), as well as amino acid catabolic
processes (GO:0009063). Lastly, common DEGs shared by both cultivars when comparing
5 to 14 DAF were analyzed (Figure S3). Biological pathways expected to be enriched at
the mid-filling stage, such as membrane transport (GO:0055085), carbohydrate metabolism
(GO:0005975), and cell wall genesis (GO:0044036 and GO:0071554), were detected as well as
processes such as plastid transition (GO:0032544) and photosynthesis (GO:0009765). Given
that both cultivars showed greening and exhibited a larger seed size at 14 DAF compared
to 5 DAF during sample collection, these enrichments supported the physical observation.
The overall GO-analysis indicates that the major differences detected between the cultivars
at 14 DAF (i.e., TAM 111 being enriched in starch metabolism and TAM 112 being enriched
in transporter activities) are also some of the key transitional changes happening from 5
DAF to 14 DAF for the respective cultivars (i.e., starch metabolism and transporter activities
are induced at 14 DAF in TAM 111 and TAM 112, respectively), and that transcriptome data
pattern is in accordance with the physical observation in the case of shared genes between
the two cultivars transitioning from 5 DAF to 14 DAF.

Table 1. DEG statistics of TAM111 vs. TAM112 (A) and 5 DAF vs. 14 DAF (B). DEGs were identified
using the criteria |−log2| > 1, and Adj. p < 0.01. The numbers indicate the number of genes
identified. Shared row indicates the numbers of identical DEGs between the two time points (top) or
the cultivars (bottom).

A. DEG Analysis of TAM111 vs. TAM112

Total DEGs Upregulated in
TAM111

Upregulated in
TAM112

5 DAF 2629 1414 1215

14 DAF 9368 4868 4500

Shared 1937 1081 856

B. DEG Analysis of 5 vs. 14 DAF

Total DEGs Upregulated in 5
DAF

Upregulated in 14
DAF

In TAM111 14,745 6370 8375

In TAM112 13,061 5481 7580

Shared 8044 3248 4754

Following the trend identified in the GO analysis, we hypothesized that pathways
involved in carbon (C)—and nitrogen (N)—containing storage molecules are different
between the cultivars; starch synthesis was more active in TAM 111 compared to TAM 112
at 14 DAF whereas genes involved in N transport and metabolism were more active in
TAM 112. To test this hypothesis, elemental analysis was conducted using 5 and 14 DAF
grains from both cultivars. As expected, carbon content increased significantly from 5 DAF
to 14 DAF for both cultivars. The two cultivars are not statistically different for percent
carbon at both DAFs (Figure 3A); however, TAM 112 had a significantly higher percent N
content at 14 DAF in comparison to TAM 111 (1.80% and 1.88%, respectively, Figure 3B).
This higher percentage in grain nitrogen also caused TAM 112 to have a statistically lower
C:N ratio versus TAM 111 (23.71:1 vs. 22.84:1, respectively, Figure 3C). These results point
to the possible regulatory variation between TAM 111 and TAM 112 regarding nitrogen
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or amino acid accumulation at 14 DAF. The predicted higher activity of starch synthesis
in TAM111 did not seem to raise the C content per dry seed weight. Partitioning of C
between the major components (starch, cell walls and free sugars) changes developmentally
and varies among the cultivars. For example, previous studies showed that starch:sugar
ratio increases dramatically from early- to mid-grain filling, with starch content sharply
increasing while the sugar content decreasing [19]. Similarly, the partitioning of C to starch
at 14 DAF might be different between TAM 111 and 112.
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Taken together, the comparison between the cultivars and time points shows that
activities related to grain filling at 14 DAF are different between TAM 111 and TAM 112.
In particular, the balance between starch and protein accumulation might be different
in TAM 111 and TAM 112, with TAM 112 having a higher capacity for N accumulation.
Corroborating with these results from the bioinformatic analysis, the C/N ratio of TAM
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111 and TAM 112 grains at 14 DAF was also significantly different at 14 DAF, while 5 DAF
was not.

2.3. Gene Network Analysis to Identify Modules Enriched in DEGs

The results above suggest differences in pathways activated during grain filling of
TAM 111 and TAM 112. With the goal of identifying regulatory elements responsible
for genotype-specific expression patterns, we first identified the DEGs belonging to the
biological pathways enriched in the genotypes (e.g., starch synthesis in TAM 111). However,
DEGs do not generate a comprehensive list of possible associated genes within a pathway
and thus might limit or bias the analysis. Therefore, we reasoned that by overlaying
the expression patterns found from our study onto the gene networks obtained using
publicly available grain expression data from multiple cultivars, we will be able to capture
additional genes that are generally coregulated with the DEGs found in our study. In other
words, this process will put the DEGs in the context of larger regulatory networks activated
during the grain development that are shared among different cultivars. Additionally,
using additional datasets improves the accuracy of the network analysis [19,20].

To construct a reliable gene network in developing wheat grains, publicly available
RNAseq data from non-stressed grain tissues (n = 118) was used for Weighted Gene
Correlation Network Analysis (WGCNA) [20,21]. The network accounted for batch (i.e.,
samples from each study) variation but not for the developmental stage (i.e., DAF), and thus
the resulting modules were representative of biological activities correlated not only to gene
expression similarity but also to the developmental stages. A total of 102 modules were
detected, to which 52,506 genes were assigned (Table S2). The resulting modules clustered
according to the expression patterns among tissue types (i.e., whole grain, endosperm,
and embryo) and developmental stages (e.g., milk grain stage, soft dough, dough, etc.)
as expected (Figure 4A). To identify the modules that have significant variation between
TAM 111 and TAM 112, the expression of genes belonging to each module identified
in the WGCNA analysis above were used to calculate the eigengene that represents the
overall trend of module expression in TAM 111 and TAM 112 (Figure 4B). By visualizing
the relative expression shifts, major clusters of modules could be identified where either
cultivar (TAM 111 or TAM 112) shows a significantly higher expression compared to the
other. Focusing on 14 DAF, at which stage we observed N content difference between the
cultivars (Figure 3), we identified five clusters of modules (three were termed TAM 111
A–C, and the other two termed TAM 112 A and B) (Figure S4).

To identify the biological significance of these groups of modules, genes belonging to
the modules labeled TAM 111A-C and TAM 112A-B were extracted and then analyzed indi-
vidually using Shiny-GO. TAM 111 region A showed significant enrichment in pathways
related to DNA organization (e.g., GO:0006334, GO:0031497, GO:0034728, etc. Figure S5A),
while region B showed significant enrichment in starch metabolism (GO:0005982) related
pathways such as amylopectin (GO:0010021 and GO:2000896) and glycogen metabolism
(GO:0005978 and GO:0005977) (Figure S5B). Interestingly, region C had enrichments in
stress-related pathways such as heat-stress (GO:0009408) and response to hydrogen per-
oxide (GO:0042542) as well as regulation of peptidase-related pathways (GO:0052547
and GO:0010466, Figure S5C). TAM 112 region A was enriched in pathways related to
phosphatidylinositol (GO:0046488) and glycerophospholipid (GO:0006650) metabolism,
DNA repair (GO:0006281), and intracellular transport (GO:0046907), whereas region B
was enriched in pathways related to protein transport and localization (GO:0015031,
GO:0033365, GO:0034613, etc.), amide transport (GO:0042886), as well as intracellular
transport (GO:0046907) (Figure S5D–E). These data agree with the pathways identified
with the DEG analysis; groups such as TAM 111A, TAM 111B, and TAM 112 B are highly
enriched in biological pathways that were identified to be more active in the respective
cultivar (Figure 2). This indicates that the gene network constructed adequately described
and clustered genes, and was capable of reflecting shifts in biological activities specific to
TAM 111 and TAM 112.
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(A)

(B)

Figure 4. Gene modules constructed from WGCNA using publicly available grain RNAseq data.
(A): Expression pattern of eigengenes representing each module. Modules are clustered by tissue
type and developmental stages (colored rectangles on the left). (B): Expression pattern of module
genes in TAM111 and TAM112. Modules are clustered by genotype and DPA, indicated by colored
rectangles on the left. Hierarchical clustering has been performed to identify modules with similar
expression patterns.

2.4. Transcription Factors Identified by GLASSO to Be Central to Starch Synthesis

Transcription factors have been identified as central regulators for grain traits in
other grain crops, such as rice and maize [22–24]. Thus, to identify candidate TFs that are
responsible for the difference in networks between TAM 111 and TAM 112, GLASSO was
implemented to identify TFs that show high connectivity specifically in one of the two
cultivars. To do this, the genes belonging to each individual group that was differentially
regulated among the two cultivars (i.e., TAM 111 A-C and TAM 112 A and B, Figure S4)
were combined with the list of high-confidence TFs from the wheat genome [21,25] and was
used for conducting the GLASSO analysis. The resulting networks specific to TAM 111 vs.
TAM 112 were compared, and the genes were ranked according to the absolute difference
in the number of edges between the two networks. The genes with higher connectivity in
TAM 111 indicate that the top genes were highly consistent (e.g., TracesCS7B02G248300,
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TraesCS7D02G344400, and TraesCS5A02G245900) regardless of which subset we used
(Table 2A–C). The genes with higher connectivity in TAM 112 network also had some
commonly shared genes (e.g., TraesCS4A02G231300 and TraesCS4A02G131000) with high
connectivity in both regions (Table 3A,B).

Table 2. Top 10 transcription factors identified from GLASSO using the module groups expressed
higher in TAM111. (A–C) represents regions from TAM111 shown in Figure S4. Lists are sorted by
the difference in the number of edges between the two cultivars.

A. GLASSO TAM111A

Gene Transcription
Factor Family Edges in TAM111 Edges in TAM112 Difference

TraesCS7B02G248300 Nuclear Factor-Y 208 36 172

TraesCS5B02G043100 MYB-related 39 0 39

TraesCS5A02G245900 NAC 48 20 28

TraesCS7D02G196300 NAC 35 12 23

TraesCS7B02G056300 NAC 33 12 21

TraesCS7A02G336700 Nuclear Factor-Y 46 26 20

TraesCS3A02G368700 MYB-related 23 3 20

TraesCS7B02G100300 NAC 37 19 18

TraesCS7D02G344400 Nuclear Factor-Y 58 41 17

TraesCS5D02G161000 C2C2_Dof 26 9 17

B. GLASSO TAM111B

Gene Transcription
Factor Family Edges in TAM111 Edges in TAM112 Difference

TraesCS7B02G248300 Nuclear Factor-Y 343 16 327

TraesCS7D02G344400 Nuclear Factor-Y 125 16 109

TraesCS7A02G336700 Nuclear Factor-Y 97 9 88

TraesCS5B02G043100 MYB-related 68 0 68

TraesCS7D02G216600 CCAAT_Dr1 36 9 27

TraesCS5A02G155900 C2C2_Dof 40 21 19

TraesCS2D02G234000 MYB-related 22 5 17

TraesCS7A02G194700 NAC 55 39 16

TraesCS5B02G154100 C2C2_Dof 35 19 16

TraesCS4B02G299000 MYB-related 18 2 16

C. GLASSO TAM111C

Gene Transcription
Factor Family Edges in TAM111 Edges in TAM112 Difference

TraesCS7B02G248300 Nuclear Factor-Y 448 39 409

TraesCS5B02G043100 MYB-related 80 0 80

TraesCS5A02G245900 NAC 43 8 35

TraesCS3A02G077900 NAC 35 6 29

TraesCS7D02G154200 NAC 34 8 26

TraesCS7B02G056300 NAC 32 10 22

TraesCS7A02G569300 NAC 23 1 22

TraesCS7B02G489500 NAC 30 10 20

TraesCS7D02G344400 Nuclear Factor-Y 69 52 17

TraesCS7A02G336700 Nuclear Factor-Y 47 30 17
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Table 3. (A,B) Top 10 transcription factors identified from GLASSO using the module groups
expressed higher in TAM112. (A,B) represents regions from TAM112 in Figure S4. Lists are sorted by
the difference in the number of edges between the two cultivars.

A. GLASSO TAM112A

Gene Transcription
Factor Family Edges in TAM111 Edges in TAM112 Difference

TraesCS4A02G231300 HD-Zip_IV 96 2325 2229

TraesCS1B02G256000 AP2/EREBP 63 258 195

TraesCS3A02G325800 HD-Zip_IV 3 214 211

TraesCS2A02G389400 HD-Zip_I_II 2 172 170

TraesCS4A02G131000 NAC 11 140 129

TraesCS1D02G244500 AP2/EREBP 60 116 56

TraesCS1A02G244800 AP2/EREBP 60 109 49

TraesCS3B02G354900 HD-Zip_IV 3 97 94

TraesCS7B02G112400 MYB-related 68 88 20

TraesCS4A02G263300 bHLH 51 85 34

B. GLASSO TAM112B

Gene Transcription
Factor Family Edges in TAM111 Edges in TAM112 Difference

TraesCS4A02G231300 HD-Zip_IV 104 253 149

TraesCS2A02G389400 HD-Zip_I_II 3 68 65

TraesCS5A02G155900 C2C2_Dof 31 83 52

TraesCS4A02G131000 NAC 10 60 50

TraesCS3A02G325800 HD-Zip_IV 3 52 49

TraesCS7A02G189200 NAC 20 55 35

TraesCS2B02G119100 NAC 4 39 35

TraesCS3B02G354900 HD-Zip_IV 1 36 35

TraesCS4A02G006100 MYB-related 13 46 33

TraesCS4D02G051600 bHLH 25 52 27

Notably, three homeologs of TFs belonging to Nuclear Factor-Y (NF-Y) family (TraesCS
7A02G336700, TraesCS7B02G248300, and TraesCS7D02G344400) consistently ranked as
highly connected in TAM 111 compared to TAM 112, and are the closest homolog to
OsYC11 and OsYC12 (Figure S6). Previous studies have shown that OsNF-YC11 and 12
are associated with OsNF-YB1 and OsbHLH144 to regulate grain filling and endosperm
development [26]. OsNF-YC complex was described to directly bind to the starch synthesis
genes in rice in developing grains and that OsbHLH144 determines the complex stability of
OsNF-YC [23]. A similar triad between NF-YB, NF-YC and bHLH genes might be involved
in the upregulation of starch synthesis, and might be more active in TAM 111. In our
RNA data set, one of the three NF-YC genes (TraesCS7A02G336700) was differentially
expressed between TAM 111 and TAM 112. Whether the variation in the activities of starch
biosysnthesis genes observed in TAM 111 and TAM 112 was influenced by a pathway
involving NF-YC, NF-YB, and bHLH system described in rice remains to be seen.

In TAM 112, there are also several TFs shared between the two regions, especially
the homeodomain-leucine zipper (HD-Zip) TF family. TraesCS4A02G231300 (TaHDZ30A),
TraesCS3A02G325800/TraesCS3B02G354900 (TaHDZ29A and B), and TraesCS2A02G389400
(TaHDZ7A) belong to the HD-Zip TF family’s clade IV (δ), IV (ζ), and I (γ), respectively [27].
Many of the plant HD-Zip transcription factors characterized so far are involved in develop-
mental processes and environmental stress responses, especially drought stress through ABA
signaling [28–32]. High connectivity of HD-Zip in our dataset seems to suggest that some HD-
Zip members might also be a part of the regular grain development process associated with
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ABA or other hormones. The GLASSO analysis of TAM 112-A also identified three home-
ologs of TaDREB5 (i.e., Traes1A02G244800/TraesCS1B02G256000/TraesCS1D02G244500).
TaDREB5 is induced by drought and ABA, and its close homolog TaDREB3 improves drought
resistance in overexpression lines in Arabidopsis [33]. Previous work showed that TAM 112
consistently shows higher ABA responses not only in drought environments but also during
regular development in comparison to TAM 111 [15,16]. Hence, the differential connectivity
for ABA- and drought-responsive TFs between TAM 111 and TAM 112 seems to corroborate
the previous results. Further investigation is required to examine whether the differential
response to ABA between the cultivars underlines the grain phenotype differences between
the cultivars.

3. Materials and Methods
3.1. Plant Materials

Wheat (Triticum aestivum cv. TAM 111 and TAM 112) plants were grown under field
condition described in our previous experiment [34]. Grains from 5 Days after flowering
(DAF), and 14 DAF were collected and stored in −80 ◦C for total RNA extraction.

3.2. RNA Extraction and Sequencing

Total RNA extraction was performed using a modified method from Li and Trick [35],
then cleaned using Qiagen® (Germantown, MD, USA) RNeasy Plant Kit. Each sample
consists of total RNA extract from several similar sized developing grains collected from
the same inflorescence. The processed total RNA was sent to Genomic and Bioinformatics
Service, Texas A&M AgriLife, Texas A&M University for poly-A selection, cDNA library
construction, and sequencing. mRNA was isolated using a Nextflex® Poly-A Selection
kit (Perkin Elmer, Waltham, MA, USA). cDNA libraries were generated using a Nextflex®

Rapid Directional RNA kit. The libraries of three highest quality samples per cultivar (i.e.,
TAM 111 and TAM 112) per DAF (i.e., 5 DAF and 14 DAF), a total of 12 separate samples
were sequenced on a NovaSeq 6000 using an S4 flow cell with 100 nucleotide paired-end
reads (Illumina, San Diego, CA, USA), approximately 50 million paired reads per sample.

3.3. RNAseq Data Processing

Initial quality assessment was monitored via FASTQC tool (0.11.9-Java-11) [36]. Adapters
were trimmed via Cutadapt (2.8-GCCcore-8.3.0-Python-3.7.4) [37], then quality trimming
was performed using Trimmomatic (0.39-Java-11) in pair-end mode (LEADING:5, TRAIL-
ING:5, SLIDINGWINDOW:4:15, MINLEN:30) [38]. The resulting PE and SE files were
mapped using HISAT2 (2.1.0-intel-2017b) against the wheat genome (IWGSC RefSeq assem-
bly v1.0) [39], then sorted by SAMtools (1.9-intel-2018b) into BAM files [40]. Raw counts
were produced by Subread (1.6.2-Linux-x86_64) using function “FeatureCounts” with the
wheat genome annotation (IWGSC RefSeq annotation v1.1) [41].

3.4. Differential Expressed Genes (DEG) and Gene Ontology Enrichment (GO) Analysis

The raw count data mentioned above was fed into R package and analyzed using the
following factored design to account for genotype-specific development effects: ~genotype
+ day + genotype:day, with TAM 111 and day 5 selected as reference factors [42]. The
analysis was to compare between cultivars on DAF 5 and DAF 14 (i.e., TAM 111 vs. TAM
112, at 5 DAF and 14 DAF), then within cultivar from 5 DAF to 14 DAF (i.e., TAM 111
5 DAF vs. 14 DAF, and TAM 112 5 DAF vs. 14 DAF). DEG were declared based on the
criteria of having an absolute value of log2Foldchange > 1 corrected by R-package ‘ashr’
and adjusted p-value < 0.01 corrected by R-package ‘IHW’ [43]. GO analysis was performed
by using ShinyGO v.0.76 [18] with an FDR cutoff of 0.05 and minimum pathway size of 10
and maximum size of 2000.
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3.5. Constructing Gene Network Analysis

In order to establish the networks of co-expressed genes in grains, publicly available
RNAseq data sets from non-stressed grain tissues (n = 118) [20,21] were quasi-mapped to
the gene models (IWGSC v1.1). The list of datasets used can be found in Supplemental Table
S3. High confidence genes with TPM expression >0.5 in at least one sample were selected to
construct the network. Variance stabilizing transformation (vst) from DESeq2 was used to
minimize the effects of sequencing depth between studies. Batch effects were first removed
using ‘removeBatchEffect’ function from the R-package ‘Limma’ [44], then the effects of
variables other than developmental stage and grain layer were removed using ‘ComBat’
function from the ‘sva’ package. Next, signed hybrid networks were constructed using
WGCNA [45]. Maximum block size of 95,000 genes was used to cover all high confidence
genes in a single block for maximum accuracy of module assignment. The modules with
more than 85% similarity were merged using parameter mergeCutHeight = 0.15, resulting
in a total of 102 modules which contained 52,506 unique genes. Lastly, the hierarchical
clustering was improved using the ‘km2gcn’ package [46].

3.6. GLASSO Analysis

The clusters of modules identified using WGCNA were used to create gene network
graphs using function ‘fgl’ from R package ‘JGL’ [47] with penalties: lambda1 = 1 and
lambda2 = 0 to focus only on differential edges between TAM 111 and TAM 112. The data
was variance stabilized using function ‘rlog’ from DESeq2 before using it for GLASSO
analysis. Full results of GLASSO analyses are presented in Supplemental Tables S4–S8.

3.7. Phytogenic Tree Analysis of NF-YC and NF-YB

Wheat NF-YC and YB genes have been mined from IWGSC RefSeq annotation v1.1
using protein BLAST, with an e-value cutoff at 1 × 10−4. Protein sequences were aligned
with MUSCLE program [48], with the UPGMA (unweighted pair group method with
arithmetic mean) method and 100 iterations, gap open penalty −2.9, extend penalty 0, and
hydrophobicity multiplier 1.2. The alignment was used to build a phylogenetic tree using
MEGA X program [49], using maximum likelihood method with the nearest-neighbor-
Interchange inference option and the bootstrap value of 1000.

3.8. C and N Analysis of Wheat Grains

Wheat grains at 5 and 14 DAF were lyophilized and milled. The total C and N
content was measured in a total combustion elemental analyzer (Vario EL Cube, Elementar
Americas Inc., Ronkonkoma, NY, USA).

4. Conclusions

In this study, we have utilized the transcriptome data to identify two separate sets
of hub TFs with consistently high connectivity in the respective, TAM 111 and TAM 112
modules of genes. The TFs associated with TAM 111 are highly homologous to the known
TFs involved in starch synthesis activation in rice, while TAM 112-upregulated TFs are
related to ABA and other hormone-associated biological pathways. The changes in either
pathway offer potential to influence grain protein content either directly by upregulating
amino acid metabolism and transport, or indirectly by influencing the starch content and
therefore grain weight and relative protein percentage, as previously documented [50].
Thus our study has provided a list of potential targets for breeders to explore and leads
for future studies that would verify their binding as well as their specific impact on grain
development.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232012660/s1.
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