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In solid tumors, as the tumor grows and the disease progresses, hypoxic regions are often
generated, but in contrast to most normal cells which cannot survive under these
conditions, tumour cells adapt to hypoxia by HIF-driven mechanisms. Hypoxia can
further promote cancer development by generating an immunosuppressive
environment within the tumour mass, which allows tumour cells to escape the immune
system recognition. This is achieved by recruiting immunosuppressive cells and by
upregulating molecules which block immune cell activation. Hypoxia can also confer
resistance to antitumor therapies by inducing the expression of membrane proteins that
increase drug efflux or by inhibiting the apoptosis of treated cells. In addition, tumor cells
require an active interferon (IFN) signalling pathway for the success of many anticancer
therapies, such as radiotherapy or chemotherapy. Therefore, hypoxic effects on this
pathway needs to be addressed for a successful treatment.
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INTRODUCTION

As oxygen cannot diffuse more than 200mm from the closest capillary, poorly vascularized tumors
or tumors that grow quick suffer from hypoxia and nutrient starvation. Hypoxia is linked to the
hallmarks of cancer as it promotes tumor survival by inducing the switch to glycolytic metabolism,
enhancing resistance to apoptosis and promoting escape from the immune system attack, among
others (1). Hypoxia generates an immunosuppressive environment by avoiding the establishment
and activity of immune effector cells and also by attracting immunosuppressive cells.

In addition, hypoxia is also involved in the regulation of specific cell signalling pathways required
for the success of several anticancer therapies, such as the interferon pathway. Therefore, a better
understanding of this pathway is necessary for therapy purposes.
INTERFERONS

Interferons (IFNs) comprise a family of cytokines first described in 1957 (2). The name was
originally due to their ability to inhibit viral replication within cells. However, IFNs mediate a broad
range of processes, not just antiviral action (3).

Based on the receptor through which they signal, IFNs are classified as one of three types: type I,
type II and type III (4). In humans and mice, there are 17 different type I IFNs including 13 IFNa
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subtypes, IFNb, IFNϵ, IFNk and IFNw. In contrast, type II IFNs
consist of a single member, IFNg, and type III IFNs consists of 4
IFNl subtypes. Nevertheless, all IFNs are involved in the innate
response against pathogenic infection upon detection of
microbial products, known as pathogen-associated molecular
patterns (PAMPs), such as genetic material, viral glycoproteins
or bacterial lipopolysaccharides (LPS), via pattern-recognition
receptors (PRRs) (5–7), leading to production and secretion of
IFNs to activate an immune response against the infection in
multiple cell types. These cytokines can exert direct antimicrobial
response by inhibiting pathogen replication and inducing cell
death of infected cells or can act in a paracrine manner in non-
infected adjacent cells promoting them to produce an array of
genes called interferon-stimulated genes (ISGs) to prevent
pathogen spread (Figure 1) (9).
THE IFN PATHWAY

The PRRs are located in various cellular compartments and detect
different components of the pathogen during the course of the
infection, and they are classified into cytosolic PRRs or
Frontiers in Immunology | www.frontiersin.org 2
transmembrane PRRs. Cytosolic PRRs include the ubiquitously-
expressed retinoic acid-inducible gene I (RIG-I) and melanoma
differentiation-associated gene 5 (MDA5) for double-strand RNA
(dsRNA) sensing. The cyclic GMP-AMP (cGAMP) synthase
(cGAS), DExD/Hbox helicase 41 (DDX41), DNA-dependent
activator of IFN-regulatory factors (DAI, also known as ZBP1)
and interferon-g-inducible factor 16 (IFI16) provide for double-
strand DNA (dsDNA) sensing. In contrast, transmembrane PRRs
comprised of Toll-like receptor (TLR) family members are limited
to specialized cells such as macrophages and DC.

Cytosolic PRRs
RIG-I and MDA5 are both caspase recruitment domain
(CARD)-containing RNA helicases able to recognize dsRNA.
RIG-I is activated by short dsRNA molecules, whereas MDA5
recognizes long (>2kb) dsRNAs. Both dsRNA forms can arise
from the genetic material of a dsRNA virus, or alternatively can
be generated by single-strand RNA (ssRNA) viral replication in
the cell (10, 11). Interaction of either of the PRRs with viral RNA
induces unwinding of the dsRNA and conformational changes to
RIG-I and MDA5 that expose the CARD-containing domains,
which in turn interact with the CARD-containing domain of
FIGURE 1 | Diagram of the type I IFN pathway [modified from (8)].
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IFNb promoter stimulator-1 (IPS-1) (12), also known as
mitochondrial antiviral-signalling protein (MAVS), which is
located in the mitochondrial membrane (Figure 1). This leads
to TANK binding kinase 1 (TBK1) activation via TRAF3 and to
inducible IkB kinase (Ikk) activation via TRAF6. TBK1 is
essential for the phosphorylation of IRF3 and IRF7 (13, 14),
whereas the contribution of Ikk to the cytosolic pathway is
minor, although it also phosphorylates IRF3 and IRF7 (15). After
being phosphorylated, IRF3 and IRF7 form homo and
heterodimers which will induce the expression of chemokines,
inflammatory cytokines and IFNb after their translocation to the
nucleus (16–18).

Importantly, various other receptors have been described to
be involved in dsDNA sensing in the cytosol. For example, the
dsDNA sensor cGAS undergoes conformational changes after
binding to dsDNA, inducing its catalytic activity to generate the
second messenger cGAMP, which will bind to and activate the
stimulator of interferon genes (STING) adaptor protein that
resides in the endoplasmic reticulum of the cell (19, 20). On the
other hand, once dsDNA is bound, DDX41 (21), IFI16 (22) and
DAI (23) can directly bind to STING, which in turn translocates
to signalling compartments via the Golgi apparatus (24), where it
associates with TBK1 and activates IRF3 by phosphorylation
(25). NF-kB is also activated by dsDNA sensing, and appears to
collaborate with IRF3 to induce type I IFN gene expression (26).

However, it has recently been described that STING exerts
antiviral response activities independent of type I IFNs. Two
independent studies showed that mice harbouring serine 365-to-
alanine (S365A) mutation in the C-terminal tail (CTT) of STING
were protected against Herpes Simplex Virus (HSV)-1 infection,
despite lacking a functional STING-IFN response (27, 28). This
suggests that STING can control pathogenic infection through
IFN-independent mechanisms.

Transmembrane PRRs
TLR family members offer a broad coverage to detect almost
every pathogen, as they can recognize many different forms of
genetic material and also extracellular components, leading to
IFN pathway activation. For instance, TLR3 recognizes dsRNA,
whilst TLR7 and TLR8 detect ssRNA (29) and TLR9 identifies
unmethylated CpG islands (30), in addition to TLR4 that binds
to LPS present in the membrane of Gram-negative bacteria (31).
TLRs that bind genetic material are located in the endosomal
compartment, whereas TLR4 signals from the cell surface, but
also from the endosomes. Upon recognition of foreign material,
TLRs recruit adaptor proteins through their Toll-IL-1 receptor
(TIR) domain, such as myeloid differentiation primary response
gene 88 (MyD88), TIR domain-containing adaptor protein
(TIRAP), TIR domain containing adaptor-inducing IFN
(TRIF) and the TRIF-related adaptor molecule (TRAM) (32).
Signalling can be categorized into two pathways: MyD88
pathway (signals coming from TRL4, TRL7, TLR8 and TLR9)
or TRIF pathway (after TLR3 and TLR4 activation) (33).

After the activation of their specific adaptors, cytosolic and
membrane PRR pathways converge to promote the
phosphorylation of IRF3 and IRF7, which will dimerize and
Frontiers in Immunology | www.frontiersin.org 3
translocate to the nucleus to induce the expression of type I IFN
genes (15).
TYPE I IFN SIGNALLING

Type I IFNs initiate their signalling via binding to IFNa receptor
(IFNAR), expressed on the surface of all nucleated cells. All type I
IFNs bind to this heterodimeric receptor formed by the subunits
IFNAR1 and IFNAR2 (4). IFNAR1 is considered the ‘signal
transduction’ chain, whereas IFNAR2 is more likely to be the
high affinity binding chain of the receptor. On engagement, the
intracellular domains of IFNAR1 and IFNAR2 move together, as
do their associated signalling adaptors, tyrosine kinase 2 (TKY2)
and Janus kinase 1 (JAK1) (4). TKY2 and JAK1 are then
activated by reciprocal phosphorylation (34), and they
phosphorylate tyrosine residues on the receptor that will act as
docking sites for the signal transducer and activator of
transcription (STAT) proteins (35). Recruited STAT proteins
are phosphorylated by JAK and other kinases, leading to their
dissociation from the receptor, activation and dimerization (35).

The canonical signalling cascade involves STAT1 and STAT2.
These two transcription factors form a ternary complex called
interferon-stimulated gene factor 3 (ISGF3) with interferon-
regulatory factor 9 (IRF9). ISGF3 complex translocate to the
nucleus, where it binds to a DNA sequence motif known as
interferon-stimulated response elements (ISREs) (35). In
addition to ISGF3, type I IFNs also promote the formation of
STAT1 and STAT3 homo or heterodimers. In this case, the
dimers bind to a different sequence called gamma-activated
sequence (GAS) (36). STAT2/IRF9 complex, in the absence of
STAT1, can also be generated (37). Moreover, type I IFNs can
activate downstream signalling through STAT-independent
pathways such as p38 and extracellular signal regulated kinase
(ERK) (3). All these pathways will finally activate the
transcription of ISGs involved in different mechanisms to
restrain pathogens.

Most ISG-encoded proteins contribute to immune-stimulatory
and antiviral effects. Moreover, PRRs, JAKs and STATs are also
ISGs, therefore reinforcing IFN signalling. Some ISGs, such as
IFIT proteins, IRF9, MX1 or MX2 have direct antiviral activity
(38). While various ISGs function as chemo-attractants to
lymphocytes and monocytes, others have pro-apoptotic effects,
such as TRAILS, Fas/FasL or ISG12.
ACUTE VS. CHRONIC IFN RESPONSE

Cells have a tight regulation of IFN-induced immune responses.
Whereas an intact IFN signalling is required for acute antiviral
activity, it needs to be weakened to avoid tissue damage. It is
therefore not surprising that cellular responses to IFNs vary
during the course of the infection. Cells can modulate the
magnitude of the response firstly at receptor level, by
generating a truncated form of the receptor incapable of
signalling (39) or by ubiquitinating, endocytosing and later
February 2022 | Volume 13 | Article 821816
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degrading the receptor in the lysosomes (40). The level of
endocytosis and receptor degradation correlates with the
degree of signal (41). High IFNAR1 levels in the cell
membrane and high and tight binding of type I IFNs to the
receptor will strongly promote IFNAR1 degradation, whereas
low type I IFN concentration or low affinity IFN binding will not
have such a marked effect on the receptor levels.

Furthermore, the signal transduction TYK2/JAK1-STAT axis
is a potential target for some dephosphorylation proteins known
as suppressors of cytokine signalling (SOCS) (42, 43).
Unrestricted type I IFN signalling, due to a lack of SOCS1,
induced inflammation and was potentially lethal in mice (44).
Moreover, epigenetic modification of JAK1 (45) or STAT
ubiquitination (46) makes cells unresponsive to IFNa.

Finally, several ISGs control the magnitude of the IFN
response. USP18 is involved in the negative regulation of the
IFN signalling by decreasing the stability of IFN-IFNAR binding
(47) or removing ISG15 from its substrates (48). IFIT1
overexpression resulted in the inhibition of IRF3 activation,
NF-kB activation and IFNb production (49). While the
interferon-inducible isoform of Adenosine Deaminase Acting
on RNA (ADAR-p150) edits RNA duplexes in self mRNAs by
deaminating adenosines into inosines to prevent aberrant
activation of the IFN pathway (50).

However, if the IFN signalling persists, it acquires
immunosuppressive features. This chronic IFN response is
detected in various autoimmune diseases, such as systemic
lupus erythematosus (SLE), Sjogren’s syndrome, systemic
sclerosis or rheumatoid arthritis, as well as in patients with
chronic infections such as hepatitis C virus (HCV) and HIV
(51). Type I IFN pathogenic role in autoimmune diseases is
thought to be due to the promotion of antigen presentation, to
enhance lymphocyte responses and to the induction of
chemokines. Besides, some immune cells express high levels of
the signal transducer molecules (52).

On the other hand, IFNs can also have a protective role in
autoimmune diseases by suppressing the generation and activity of
inflammatory cytokines, inhibiting pathogenic cell proliferation or
limiting T cell responses (53). In addition, type I IFNs can also
induce the expression of suppressive molecules such as IL-10 or the
immune checkpoint inhibitor molecule programmed cell death
ligand 1 (PD-L1), which if exceed the pro-inflammatory cytokine
levels, will abrogate the clearance of the viral infection (54, 55).
Therefore, under chronic viral or bacterial infection, type I IFN
signalling acquires an immunosuppressive role, probably to limit
the toxicity caused by persistent infection. As type I IFNs can exert
both deleterious and protective effects in autoimmune diseases, it is
likely that IFN responses change over the course of the infection or
disease, activating or suppressing the immune response. This is
critical in the consideration of the role of IFNs in cancer.
IFNs AND CANCER

Type I IFNs can be produced in the absence of infection, such as
in the presence of DNA from apoptotic cells (56), non-removed
nucleic acids (57) and autoimmune disease antibodies (58).
Frontiers in Immunology | www.frontiersin.org 4
In 1909 Paul Ehrlich first proposed that the immune system
could recognize and eliminate tumor cells (59). However, this
was not widely accepted and given the name of ‘cancer
immunosurveillance’ until the late 50s (60, 61). The first
experiments to test this hypothesis in the 1970s were not
successful as they were carried out on mice that were only
partially immunodeficient and the knowledge about the
immune system was limited (62). In the 1990s, endogenous
IFNg was demonstrated to protect the host against
transplanted, chemically induced and spontaneous tumor
growth (63–65). Experiments with mice lacking the
recombinase activating gene (RAG)-2, and thus lacking
lymphocytes T, B and natural killer (NK) T cells, further
demonstrated that tumor development in mice was controlled
by the immune system, as RAG-2 deficient mice were more
sensitive to MCA-induced sarcomas (66).

Nevertheless, it was noted that tumor formation still occurs in
individuals that are immunocompetent, suggesting that tumor
cells are able to escape the immune system pressure (67). This idea
arose from the observation that tumors from immunocompetent
and immunodeficient hosts have different immunogenic
properties (68). Tumors developed in mice with an intact
immune system formed progressively growing tumors when
transplanted into immunocompetent recipients, whereas tumors
originated in the absence of an immune systemwere rejected when
transplanted into immunocompetent hosts, but grew in
immunodeficient hosts (66, 69). This suggested that the immune
system performs an ‘editing’ process on tumor cells. It can
eliminate highly immunogenic tumor cells, but less
immunogenic cells can escape the deletion phase and generate
tumors poorly recognized by the immune system (68). Therefore,
the immune system provides protection against tumor
development, but it can also promote tumor growth by selecting
tumor cells with low immunogenicity. This dual effect made to
refine the cancer immunosurveillance hypothesis, which was
further renamed as ‘cancer immunoediting’ (66, 67).

Cancer Immunoediting
The editing process that the immune system performs in tumors
can be divided into three phases: elimination, equilibrium and
escape (67). Tumor cells and immune cells interact during the
whole process of tumor formation and these interactions are
mediated by endogenously produced type I and type II IFNs.

Elimination Phase
The elimination phase, also termed protection, is the first step in
the cancer immunoediting. If successfully performed, it will
eradicate the developing tumor and the immunoediting
process will not progress to subsequent phases (68).

In this phase, both the innate and adaptive immune system
recognize cancer cells and kill them. The antitumor immune
response starts when cells of the innate immune system detect
that a tumor is growing. As a result, the disruption of the tissue
surrounding the tumor generates pro-inflammatory molecules
that together with chemokines secreted by tumor cells act as
danger signals for the immune system (70). Once immune cells
reach the tumor mass, they need to distinguish between normal
February 2022 | Volume 13 | Article 821816
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self-cells and transformed self-cells. This is achieved by
recognizing tumor-cell-expressed ligands for the NK cell
receptor Natural killer group 2 member D (NKG2D), which
are induced by genotoxic stress, the generated inflammation or
the transformation process itself (71), or tumor-specific antigens
presented by antigen presenting cells (72).

This recognition process leads to chemokine and cytokine
production at the tumor site. Released IFNs induce the
production of more chemokines, which will attract more
immune cells to the tumor and will in turn produce more
cytokines, and therefore the signal will be amplified (68). The
massive release of molecules will activate different processes,
including antiproliferative (73), pro-apoptotic (74) and
angiostatic (75) processes to kill tumor cells. The main two cell
populations recruited by type I IFNs are NK cells and cytotoxic T
cells (CTLs). As tumor cell death generates tumor-cell antigens,
the adaptive immune system will start to take part in the
immunoediting process.

Equilibrium Phase
This is a subclinical phase in which the tumor persists, but it is
prevented from expanding due to the presence of the immune
system. It is probably the longest phase, and can even take years to
occur in humans (76). The immune system is able to contain any
tumor cell variant that has not been killed in the previous phase, but
it is not able to completely remove the tumor. Furthermore, during
this phase, new tumor cell variants arise that display reduced
immunogenicity (i.e. more resistant to the immune attack) (68).

Escape Phase
The escape phase is the tumor progression phase. It is the result of
immune exhaustion or inhibition, or the consequence of the
emerged new cell population’s ability to bypass the immune
pressure. Tumor cells can impede an antitumor immune
response either through the production of immunosuppressive
cytokines (TGFb and IL-10) or via T cells with immunosuppressive
activities (Treg cells) (68). New tumor cells might have also been
submitted to alterations that make them unrecognizable by
immune cells or that allow them to avoid immune destruction
(64). These poorly immunogenic cells will be able to grow and
generate a clinically detectable tumor (68, 77).

Apart from the host’s ability to produce IFNs, tumor cell
responsiveness to IFNs is also important for a successful
antitumor immune response. Tumor cells insensitive to IFNg
due to a mutant IFNg receptor (IFNGR1), grew more
aggressively when transplanted into a wild type host (63), but
when those cells were made responsive again by complementation
with a wild type IFNGR1, they became highly immunogenic and
failed to form tumors in the recipients (64). Similarly, it was
observed that several highly immunogenic and poorly tumorigenic
sarcomas from RAG-2 deficient mice were converted into poorly
immunogenic, and thus highly tumorigenic, when rendered
insensitive to IFNg (66). These observations suggest that IFNg
production both by tumor cells and tumor host is relevant for an
adequate immunosurveillance.

Although type I IFNs were thought to be mainly antiviral
agents, their importance as immunomodulators has become
Frontiers in Immunology | www.frontiersin.org 5
clear. In the 1960s, it was demonstrated that tumor-bearing
mice had a better outcome when treated with type I IFNs (78,
79). Although these studies showed the antitumor potential of
type I IFNs, it was not until 1981 when the role of endogenously
produced type I IFNs was assessed. When mice challenged with
tumor cells were treated with serum containing anti-IFN specific
antibodies, they developed bigger tumors and had decreased
survival comparing to mice treated with control serum (80, 81).
In a similar way, endogenously produced type I IFN was required
to protect the host against transplanted and primary carcinogen-
induced tumor growth (82). This study also showed that in
contrast to IFNg, type I IFNs do not require tumor cell
responsiveness to exert the antitumor immune response. In
spite of being insensitive to IFNa/b, 4 of 11 IFNAR1-deficient
MCA-induced sarcomas were rejected when transplanted into
wild type recipients (82). Moreover, some IFNAR1-deficient
sarcomas that grew in wild type recipients were not converted
into highly immunogenic, non-growing tumors when IFNAR1
expression was restored. Besides, sarcoma cells from mice
lacking IFNAR1 and IFNGR1 were only rejected when
sensitivity to IFNg was restored, not to type I IFN. On the
other hand, IFNa/b sensitivity in hematopoietic cells of the host
was required for an antitumor immune response (82).

IFNs and Anticancer Therapies
Type I IFNs are key components in the success of many of the
current anticancer modalities including radiotherapy,
chemotherapy, immunotherapy and oncolytic viruses (83),
through promotion of direct (tumor cell inhibition) and
indirect (antitumor immune response) effects. Indirect effects,
recently termed ‘immunogenic cell death’ (ICD), arise as a
consequence of the release of nucleic acids or proteins from
dying tumor cells that can activate immune cells (84).

Regarding radiotherapy, type I IFN production by myeloid
cells and IFN detection by tumor cells after radiotherapy was
essential to eradicate the tumor in a mouse melanoma model, as
mice lacking IFNAR1 were unresponsive to IFNb (85). Similarly,
radiation-induced type I IFNs recruited lymphocytes at the
tumor site and exogenously administrated IFNa enhanced
radiotherapy efficacy (86). Furthermore, radiation-mediated
antitumor immunity in immunogenic tumors requires a
functional cytosolic DNA-sensing pathway in dendritic cells
(DC), which subsequently triggers a type I IFN signalling
response in those cells essential for CTLs activation (87).

As with radiotherapy, the anticancer effects of chemotherapy,
which were long thought to be mediated only by direct tumor cell
killing, are now realized to be due in part to the induction of ICD,
thereby involving the immune system in the process. Injection of
mice with tumor cells pretreated with doxorubicin prevented in
vivo tumor growth in immune competent mice only, although
the mechanism was not elucidated at that time (88).
Chemotherapeutic agents used in the clinic such as
anthracyclines (e.g. doxorubicin, epirubicin, mitoxantrone),
radiomimetics (bleomycin) or platinum analogues (oxaliplatin)
induce ICD, via IFN signalling (89). For successful treatment,
anthracyclines must be able to induce the release of type I IFNs in
both tumor and immune cells so that an antitumor adaptive
February 2022 | Volume 13 | Article 821816
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immune response against tumor-cell antigens can be activated
(90). This study also showed that IFNAR1 expression in cancer
cells is important for the activity of anthracyclines, as
administration of an IFNAR1 neutralizing antibody abolished
the therapeutic activity of the drugs. Moreover, a type I IFN-
related gene signature in patients with breast carcinoma treated
with anthracycline-based chemotherapy was able to predict
clinical responses to the treatment (90). As an example,
chemotherapy upregulated the levels of MX1 and its high
levels were associated with better overall survival in
those patients.

Immunotherapy has become a major treatment modality in
the last few years, because of the development of immune
checkpoint inhibitors (ICIs). By blocking immune checkpoints,
the level of T cell activation can be controlled, thus avoiding
excessive inflammation and promoting self-tolerance (91). The
two main targets are CTLA-4 and PD-1 expressed by activated T
cells, and PD-L1 in tumors and inflammatory cells. CTLA-4
controls T cell activation by competing with its homologous T
cell costimulatory receptor (CD28) in the binding to their
ligands. Both molecules bind to CD80 and CD86 (also called
B7-1 and B7-2) expressed by antigen-presenting cells, but CTLA-
4 transmits an inhibitory signal to T cells, whereas CD28
transmits a stimulatory signal. Thus full activation of T cells
requires binding of CD28 to CD80 and CD86, but in tumors,
CTLA-4 is frequently upregulated, as a consequence of T cell
exhaustion due to long time exposure to tumor cells (91).
Similarly to CTLA-4, PD-1 regulates T cell activation by
binding to PD-L1 and PD-L2 expressed in infiltrating
inflammatory cells and tumor cells. Cancer cells overexpress
PD-L1 which blocks T cell activation and finally dampens the
antitumor immune response (92). In this regard, antibodies
against immune checkpoint modulators restore the effector T
cell functions and the antitumor immune response.

Despite existing approved monoclonal antibodies targeting
CTLA-4, PD-1 and PD-L1 for the treatment of lung cancer, RCC
and melanoma, amongst many others, the percentage of patients
responding remains modest, although for those responding it is
of major importance (93, 94). These therapies rely on the
increase of immune responses, and given the importance of
type I IFNs in the maturation, survival and activation of most
immune cells (82), it is likely that a functional IFN pathway is
necessary to achieve success with these therapies. Consistent with
this idea, Zaretsky et al. demonstrated that melanoma patients
who relapsed after treatment with the PD-1 inhibitor
pembrolizumab, had loss-of-function mutations in genes
encoding JAK1 and JAK2 (95). Similarly, defects in IFNg
signalling led to resistance to PD-1 and CTLA-4 blockage (96),
and lung tumors resistant to anti-PD-1 therapy presented
mutations in IFNAR2 and IFNg signalling pathway (97). In
addition, a transcriptome study analyzing advanced melanoma
patients treated with nivolumab (anti-PD-1) alone or combined
with ipilimumab (anti-CTLA-4) showed high T cell infiltration
and IFNg signalling signatures in patients clinically responding
to the therapy. In addition, in vitro studies showed that IFNg
exposure led to similar transcriptome responses unless IFNGR
Frontiers in Immunology | www.frontiersin.org 6
was altered (98). This study further supports that a functional
IFN signalling and a potent antitumor T cell response are critical
for the success of immune checkpoint therapies.

However, another study reported that IFN signalling in
cancer cells and immune cells had to oppose each other to
stablish a regulatory relationship (99). They showed that whereas
inhibition of tumor IFNg signalling led to reduced ISG
expression in tumor cells, it increased ISG levels in immune
cells by enhancing IFNg production by exhausted T cells.

Oncolytic virus therapy is based on the ability of modified
virus to specifically target tumor cells, whilst not affecting healthy
cells. In contrast to other therapies, oncolytic virus therapy
requires a defective IFN signalling to succeed, since viruses are
susceptible to IFN-mediated antiviral activity. HSV could destroy
murine breast tumor cells unable to produce and respond to
IFNs (100). In the same way, cancer cell sensitivity to Vesicular
stomatitis virus (VSV) induced cell death was increased after
knocking down or blocking IFNAR (101), IRF5 and IRF7 (102),
thus providing evidence for the requirement of a defective
IFN pathway.

On the other hand, the induction of type I IFNs during
combined adoptive cell therapy and oncolytic virus therapy led
to an autoimmune response, as blocking both IFNa and IFNb
completely abrogated the autoimmune side effect without affecting
the antitumor efficacy of the treatment (103). This study showed
that although a functional type I IFN is required for the success of
many therapies, it is also important to control the magnitude of
the response, as immunotherapy-induced type I IFN secretion can
have a pathogenic role inducing autoimmune toxicity.
CANCER HYPOXIA

One of the main characteristics of solid tumors is hypoxia.
During tumor growth, an oxygen concentration gradient is
generated within the tumor mass, as oxygen can only diffuse
100-180µm from the closest capillary, whereby internal cells
become oxygen deprived otherwise known as hypoxia. In
response to the stress generated by oxygen deprivation, cells
activate several adaptive responses to match oxygen supply with
their energetic demands, most of them driven by the hypoxia-
inducible transcription factors (HIFs). Although first identified
as a regulator of erythropoietin (EPO) production (104), HIFs
are now recognized as the key modulators of the hypoxic
response. These transcription factors function as heterodimers
formed by an oxygen sensitive a subunit (HIF1a, HIF2a and
HIF3a) and a stably expressed b subunit (HIF1b), also named
aryl hydrocarbon receptor nuclear translocator (ARNT) (105).

HIFa is tightly regulated by oxygen-independent (iron, a-
ketoglutarate and ascorbate) and oxygen-dependent
mechanisms. Under normal oxygen tension (i.e. normoxia),
prolyl hydroxylase domain enzymes (PHDs) hydroxylate HIFa
subunits at conserved proline residues, allowing the binding of
the von Hippel Lindau (VHL) E3 ubiquitin ligase complex which
will polyubiquitinate HIFa targeting it for proteasomal
degradation (106, 107). HIFa can also be hydroxylated in an
February 2022 | Volume 13 | Article 821816
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asparagine residue by Factor Inhibiting HIF (FIH), which will
avoid HIF interaction with the coactivators required for the
transactivation of the target genes (108, 109). Under hypoxia
however, PHDs and FIH are not active, HIFa is stabilized and
can translocate to the nucleus and dimerize with HIF1b. This
heterodimer will bind to specific DNA domains called ‘hypoxia
response elements’ (HRE) of target genes and will activate their
expression. HIF activation in hypoxic cells promotes tumor
progression, as they activate genes involved in cell
proliferation, angiogenesis, apoptosis, metabolism, DNA
damage response, ECM remodeling, cell migration and
invasion and evasion of the immune system.
HYPOXIA AND THE IMMUNE SYSTEM

Hypoxia generates an immunosuppressive microenvironment
within the tumor by impeding the homing of immune effector
cells (T cells and NK cells), by blocking their activity and by
recruiting immunosuppressive cells, such as myeloid-derived
suppressor cells (MDSC), tumor-associated macrophages
(TAM) and Treg cells.

MDSC induce T cell anergy, block CD8+ T cell activity and
promote Treg cell proliferation (110). Hypoxia can further
promote MDSC differentiation to TAM (111). On the other
hand, TAM infiltrating hypoxic tumor regions are associated
with an M2 immune evasive phenotype (112), as they suppress T
cell function (113). Moreover, it is well known that hypoxia
significantly reduces lymphocyte proliferation directly (114), and
it was observed in vivo that when hypoxic areas were reduced in
tumors, immune cell infiltration increased (115, 116). In
addition, hypoxia can also inhibit T cell proliferation by
upregulating Treg cells (117).

Apart from the specific effect of hypoxia on immune cells,
hypoxic cells can evade innate immune system by expressing
specific molecules, such as the ‘don’t eat me signal’ CD47
molecule (118), or the immune checkpoint inhibitor molecules
PD-L1 and CTLA-4 (119, 120), which will bind to macrophages
and effector T cells and block their activity. Furthermore, under
hypoxic conditions, PD-L1 expression is also upregulated in
MDSC (121). Similarly, major histocompatibility complex class I
chain related (MIC) molecules, one family of NKG2D receptor
ligands are upregulated in many tumor cells (122). This would
effectively lead to NK and T cell mediated immunosurveillance.
However, hypoxic cancer cells secrete MIC ligands (soluble MIC)
to downregulate and degrade NKG2D receptor on T cells and
avoid immune activity (117).

As a consequence of the metabolic switch to glycolysis that
tumor cells undergo under hypoxic conditions, lactic acid levels in
the extracellular media increase considerably. Recent data highlights
the role of lactate as a ‘signalling molecule’ promoting the escape of
the immune surveillance of hypoxic tumor cells (123). Lactate can
attenuate the cytotoxic activity of CTLs (124) and NK cells (125),
and recruit MDSC to the tumor (125). Furthermore, glucose-
deprived T cells, due to the high glucose uptake by cancer cells,
have lower antitumor effector functions (126, 127).
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On the other hand, hypoxia upregulates the expression of CD39
and CD73, enzymes involved adenosine metabolism, on tumor
cells, as well as A2A adenosine receptor (A2AR) on immune cells
(128). Extracellular adenosine signals through A2AR on immune
cells and inhibits their activity (129). Additionally, Treg cells express
high levels of CD39 and CD73 and they are able to produce and
secrete adenosine, contributing to immune evasion (130).

Altogether this shows that hypoxia generates an
immunosuppressive environment within the tumor mass, by
recruiting immunosuppressive cells and by upregulating the
expression of molecules involved in immune system evasion. In view
of the role of IFNs in the regulation of these cells, the specific effects of
hypoxia on IFN regulation and signalling are reviewed below.
HYPOXIC REGULATION OF THE
IFN RESPONSE

Regarding the type I IFN pathway, hypoxia induces damage to
mitochondria and makes these organelles release damage associated
molecular patterns (DAMPs), such as mitochondrial DNA
(mtDNA), able to trigger an immune response (131). However,
hypoxia downregulates the cytosolic dsDNA sensor cGAS, thus
reducing STING activation and the consequent type I IFN response,
via increasing the levels of miR-25 and miR-93 (132). This allows
hypoxic tumor cells to evade the immune responses induced by
DAMPs, and promotes the establishment of an immunosuppressive
tumor microenvironment. In addition, hypoxia downregulated the
levels of the dsRNA sensors RIG-I and MDA5, in addition to other
members of the pathway, via a HIF-independent reduction in
chromatin accessibility (8). Similarly, 2% hypoxia reduced RIG-I
and MDA5 protein expression in malignant cells in a HIF1a-
dependent manner, even after treating the cells with the type I IFN
activator 5’-triphosphate RNA (3pRNA), whereas non-malignant or
primary cells presented similar levels (133). Moreover, the high
lactate levels found in hypoxic tumors inhibit type I IFN signalling
via binding to MAVS adaptor protein (134). Besides, hypoxic
inhibition of type I IFN production and less cellular responses to
these cytokines in hypoxia cooperate to suppress immune responses
under low oxygen conditions. The negative effect of tumor hypoxia
on radiotherapy efficacy is partially due to hypoxic inhibition of
IFNg production and the impairment of hypoxic cells to response to
IFNg (135). Using murine tumor cells lines, Murthy et al. observed
that hypoxia inhibited IFNg-dependent gene expression in tumor
cells, reducing immune cell infiltration. Furthermore, CD8+ T cells
had reduced ability to proliferate and generate IFNg under hypoxic
conditions, but reoxygenation restored the cytokine-producing
capacity of these cells.

Altogether these studies show that hypoxia is impairing the
type I IFN response and therefore the effector immune cell
responses in tumors. Moreover, IFNg and IFNa (to a lesser
extent) induced the transcription of prolyl hydroxylase 3
(PHD3), a HIF-inducible negative regulator of HIF
transcription factors, in human endothelial cells (136). IFNg
induced PHD3 expression via JAK/STAT1 signalling
independent of HIF1a. They also showed that pharmacological
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inhibition of PHDs suppressed the induction of IFNg-dependent
genes after IFNg treatment.

On the other side, hypoxia and IFNg synergistically work to fully
activate macrophages infiltrating hypoxic tumor regions (137), via
HIF1a and IFN regulatory factor-1 (IRF-1) interaction (138).
Activated macrophages express the inducible NOS2 and produce
NO, which will promote tumor cell apoptosis. In line with this
result, RIG-I gene presents a HRE, and RIG-I expression was found
to be upregulated in human muscle cells under hypoxic conditions
(139) as well as in kidneys of hypoxic mice (140). Supporting the
contribution of hypoxia to IFN signalling, HIF1a lacking mouse
embryonic fibroblast expressed lower levels of IFNb1 upon infection
with the DNA virus murine gamma herpesvirus 68 (MHV68),
whereas the levels of IFNa4 and IFNa6 remained unchanged (141).
Similarly, transcript levels of the IFN-stimulated gene OAS1b were
also reduced. This study supports that hypoxic regulation of the type
I IFN pathway is not always dependent on HIF1a, as previously
described (8). Another study showed that CD4+ T cell stimulation
under hypoxic conditions augmented the secretion of effector
cytokines, especially IFNg, and that hypoxic effects on IFNg
secretion were not dependent on HIF1a deficiency (142).
Furthermore, human mesenchymal stromal cells (MSCs) contain
immunosuppressive characteristics which makes them promising
candidates for treating immune disorders, however, they require
specific signals to acquire this phenotype. Wobma et al. found that
combination of IFNg and hypoxia priming produces more
immunosuppressive MSCs than when either cue is used alone.
They showed that IFNg induced the expression of several
immunosuppressive proteins while hypoxia switched MSCs to
glycolysis, causing the production of the T cell inhibitor
lactate (143).

All these studies demonstrate that although there is a general
negative effect of hypoxia on the IFN response, there are also
conditions in which hypoxia has a positive effect, contributing to
and enhancing the IFN signalling.

In regard to infectious diseases, it has been described that
respiratory viruses such as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and influenza A encode antagonists
of the IFN response (144). Recent clinical studies have shown that
COVID-19 patients present low IFN levels and that this correlates
with severe infection. It has been described that COVID-19 infected
patients present hypoxic monocytes unable to produce type I IFNs
after activation by the alarmin HMGB1, as HIF1a acted as a direct
transcriptional repressor of IRF5 and IRF3 (145).

On the other hand, a study from 1993 showed that oxygen
tension greatly affects the response to IFNa and IFNg in vitro.
Under hypoxic conditions, the cytopathogenicity of vesicular
stomatitis virus (VSV) was reduced, whereas the antiviral effects
of the IFNs were increased. These results suggested that hypoxia
is a possible host defense system against viral infection, via
potentiating the effects of the IFNs produced at the site of
infection (146). Similar results were obtained more recently,
showing that elevated HIF activity confers resistance to VSV
mediated cytotoxicity, as inhibition of HIF increased cellular
sensitivity to infection and CoCl2 treatment to mimic hypoxia
promoted resistance (147). They also detected that HIF
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promoted IFNb expression, among other antiviral genes, upon
viral infection. These results suggest that in contrast to tumor
hypoxia where the IFN signalling is suppressed, upon viral
infection, hypoxic regions protect the host and help clearing
up the infectious agent.
TRANSLATIONAL IMPACT

The aim of immunotherapy is to increase the number and
functionality of antitumor effector cells, and ICIs are becoming
the primary treatment modality in this regard. However, only a
subset of tumor types responds to these treatments (93, 94), and
this is mainly due to the tumor and the tumor microenvironment
generated immunosuppression. As mentioned before, tumors
possess different mechanisms to generate an immunosuppressive
environment, such as recruiting immunosuppressive cells or
express specific molecules, in addition to the well-described
effect of hypoxia. Therapeutic approaches that modulate tumor
hypoxia have been shown to improve immunotherapy response.

One of the strategies to improve T-cell function is to reverse
tumor hypoxia by reoxygenation (148). Respiratory hyperoxia
promoted effector T-cell infiltration into the tumor (115). In
addition, inhibition of oxidative phosphorylation directly
alleviated hypoxia and improved the effectiveness of anti-PD-1
therapy (149).

Another way of bypassing hypoxia-induced immunosuppression
is using hypoxia-activated prodrugs (HAPs). HAPs are agents
designed to selectively activate under hypoxic conditions by
enzymatic reduction, generating an active compound able to
kill hypoxic tumor cells. It was observed that the increased blood
vessel density after evofosfamide treatment promoted tumor
infiltration of T-cells and improved ICIs therapy (116, 150).
Similarly, metabolism of CP-506 in hypoxic regions releases
active metabolites which form DNA crosslinks leading,
ultimately, to tumor cell death. It was observed that CP-506
synergies with ICIs (151), suggesting that combination of HAPs
and ICIs is a good therapeutic approach to treat hypoxic tumors.
Moreover, most HAPs generate DNA-damaging cytotoxic
effects, but they can also be designed to release effectors against
a range of molecular targets, such as tarloxotinib, a pan-HER
inhibitor (152).

Similarly, there are some nanoparticle agents in preclinical
development, both oxygen-carrying (153) and oxygen-generating
(154), designed to increase tumor oxygenation. Zhou et al.
established a two-stage oxygen delivery system to relieve tumor
hypoxia. They found that perfluorotributylamine (PFTBA)
nanoparticles were able to inhibit platelet activation leading to an
increase in red blood cell infiltration and therefore, oxygen delivery,
to the tumor, providing an effective way to reverse tumor hypoxia
and tumor resistance to radiotherapy (155).

Modulating the cGAS-STING pathway offers another
opportunity for cancer therapy, offering more specificity than cell-
based approaches. In contrast to other pathways, the cGAS-STING
signalling is not mediated by protein-protein interactions, but
through the soluble second messenger cGAMP, synthesized by
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cGAS from ATP and GTP. It has been described that both
chemotherapeutic agents (e.g. cisplatin and etoposide) and
radiotherapy induce DNA damage, which can activate the cGAS-
STING pathway promoting immune responses and enhancing
tumor cell death (156, 157). Due to genome instability, some
tumor cells spontaneously produce cGAMP (158). Moreover,
cGAS-STING axis was essential for the antitumor effects of ICIs
(159). In this regard, several cGAS-STING agonists, including
STING-binding molecules and cGAMP derivates, have been
developed, as apart from synergize with ICIs, they can enhance
the antitumor effect of tumor vaccines, chemotherapy and
radiotherapy (160).

However, STING activation can also promote tumor growth
(161), metastasis (162) and enhance autoimmune diseases (51),
suggesting that immunotherapies need to achieve a correct balance
between stimulating an antitumor response and avoiding tumor-
promoting inflammation. In this regard, small-molecule-based
approaches have been developed to target cGAS-STING axis.
cGAS inhibitors can be classified into catalytic site inhibitors,
which bind to the active site and are competitive with ATP, GTP
or cGAMP, or inhibitors that disrupt the DNA binding of cGAS,
impeding the initiation of the signalling. STING antagonists on the
other hand, can bind to the cyclic dinucleotide (CDN)-binding
site, and therefore block STING activation, or can bind to cysteine
residues near the transmembrane domain of STING, avoiding this
way the palmitoylation and consequent activation of STING, as
these residues are palmitoylated after CDN-stimulated
activation (163).

The elevated glycolytic activity of solid tumor cells leads to an
increase in lactate, protons and carbonic acid in the extracellular
media, generating acidosis in the tumor microenvironment
(164). Acidosis, like hypoxia, contributes to drug resistance
(165) and immunosuppression (123). Therefore, four main
therapeutic approaches have been developed to correct or
avoid acidosis: 1) buffer therapy, consisting on administrating
weak bases, 2) drugs selectively active at low pH, 3) agents that
block cellular responses to acidosis, and 4) agents targeting the
pH regulatory machinery itself (166). Most of the developed
therapies against tumor acidosis target CAIX, which promotes
the passive efflux of CO2 through the plasma membrane, and it is
essentially only expressed in tumor cells (167). The
monocarboxylate transporter family (MCT) members, which
transport lactate through the plasma membrane, are potential
targets to control tumor acidosis as well, however, MCT
inhibitors are still at an early stage of development (168).

Another way of bypassing hypoxia-induced immunosuppression
is targeting the adenosinergic signalling. Inflamed and cancerous
tissue release ATP into the extracellular media, which is degraded into
adenosine by CD39/CD73. Adenosine will eventually signal through
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A2AR receptor on immune cells and block their activation and
activity. Silencing A2AR enhanced the efficacy of adoptive cell therapy
(169), similarly, A2AR blockage improved CAR-T therapy (170) and
addition of anti-PD-1 further ameliorated it (171). Preclinical models
showed that combiningA2AR antagonists with ICIs promoted tumor
regression, moreover, clinical trials also showed that A2AR antagonist
alone or in combination with ICIs resulted in better outcomes (172,
173). Similarly, small molecule inhibitors or monoclonal antibodies
against CD39 and CD73 are being developed as potential anticancer
therapies. Like A2AR blockage, anti-CD73 therapy improved ICIs
therapy in various preclinical cancer models (174) and it showed a
strong antitumor effect in clinical trials (175, 176). This is particularly
relevant to target adenosine-rich tumors.

It will be critical to link these developments to biomarkers of
expression of these targets, to classify patients for the relevant
therapies. But expression alone is not necessarily enough
depending on function-expression relationship. Finally, the
marker to be useful, needs to relate to therapeutic benefit.
Development of an accompanying diagnostic or theranostic
will help bring these new strategies to fruition, in the
selected patients.

DISCUSSION

Here we summarize hypoxic effect on tumor progression
focusing on the immune system evasion, specifically we
addressed hypoxic effects on the type I IFN pathway. Hypoxia
generated immunosuppressive environment not only affects
tumor cells, but also immune cells present in the tumor
microenvironment which can be either recruited to support
immune system evasion or inhibited to avoid their antitumor
activity. Similarly, we have shown that molecules generated in a
hypoxic environment, such as lactate or adenosine, can also
contribute to this immune evasive phenotype, and that they are
potential therapeutic targets. Moreover, targeting these
molecules, as well as targeting hypoxia, could improve the
efficacy of other therapies, e.g. immunotherapy. In this regard,
an active type I IFN signalling is necessary for many anticancer
therapies, however, the level of the IFN response needs to be
controlled to avoid an excessive activation which could lead to
detrimental effects. As with other signalling pathways, hypoxia
regulates the type I IFN signalling and its effects would need to be
considered when developing new therapeutic strategies.
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