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Abstract

Despite increasing interest in using Artificial Intelligence (AI) and Machine
Learning (ML) models for drug development, effectively interpreting their pre-
dictions remains a challenge, which limits their impact on clinical decisions. We
address this issue by providing a practical guide to SHapley Additive exPlana-
tions (SHAP), a popular feature-based interpretability method, which can be
seamlessly integrated into supervised ML models to gain a deeper understanding
of their predictions, thereby enhancing their transparency and trustworthiness.
This tutorial focuses on the application of SHAP analysis to standard ML black-
box models for regression and classification problems. We provide an overview
of various visualization plots and their interpretation, available software for im-
plementing SHAP, and highlight best practices, as well as special considerations,
when dealing with binary endpoints and time-series models. To enhance the
reader's understanding for the method, we also apply it to inherently explainable
regression models. Finally, we discuss the limitations and ongoing advancements
aimed at tackling the current drawbacks of the method.

The use of Artificial Intelligence (AI) and Machine
Learning (ML) models in drug discovery and develop-
ment offers great potential."™* Several ML models have
been developed for predicting the absorption, distribu-
tion, metabolism, and excretion (ADME) properties of
small molecules,”® pharmacokinetic-pharmacodynamic
modeling,7’8 understanding exposure-response rela-
tionships,” patient subpopulation detection,'®* patient
stratification,'>'® and biomarker detection.'” To inform
clinical decisions in drug development and build trust for
these tools, it is crucial to understand how the predictors

influence the model predictions and which ones are the
most impactful.

The research area of explainable Al or interpretable ML
aims to trace the decision-making process of a ML model
and understand the key features driving its predictions.'®
Model interpretability can be achieved either by consider-
ing models that are inherently interpretable (e.g., linear,
logistic regression, decision trees) or considering post hoc
“explainability” methods that can be applied to black-box
models (e.g., neural networks, random forests, XGBoost,
gradient boosting machines). It is interesting to note that
post hoc methods can be applied to both interpretable
and black-box models, making them model-agnostic. In
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a recent perspective, Imrie et al." classified the different
model-agnostic methods according to the type of expla-
nation they provide: (1) feature-based (How relevant are
the data features to model predictions?), (2) model-based
(Can the model predictions be explained using auxiliary
meta-models?), (3) example-based (What other samples’
model predictions are similar to a particular subset of
samples?), (4) concept-based (Does the model appear to
adhere to concepts derived from domain knowledge?),
and (5) counterfactual explanations (What does the model
predict when considering synthetic samples under partic-
ular scenarios?). This tutorial provides a practical guide to
one of the most popular feature-based ML interpretability
methods: SHapley Additive exPlanations (SHAP) analysis.

SHAP analysis is a feature-based interpretability
method that has gained popularity thanks to its versatil-
ity which provides local and global explanations. It also
provides values that are easy to interpret and can be eas-
ily implemented thanks to its easy-to-use packages that
implement this method. Several publications in this field
have used this methodology, and some of them have
started to highlight some important considerations on its
use.9,10,20—23

In this tutorial, we first briefly review the game-
theoretical background of Shapley values, and their
connection to SHAP analysis, and give remarks on the
calculation of SHAP values. Then we describe the datasets
used for this tutorial along with the supervised learning
problems that we considered to exhibit the SHAP meth-
odology. Next, we discuss the implementation and prac-
tical considerations of SHAP value analysis: visualization
plots, special considerations when applying SHAP to clas-
sification endpoints, special considerations when dealing
with time-series models, and available software to per-
form the analysis. Subsequently, we walk through a SHAP
analysis in common statistical frameworks (linear regres-
sion and logistic regression) and present how to apply this
analysis to the most common ML frameworks (random
forest, XGBoost, neural networks) for both a regression
and classification problem in Python. Furthermore, the
application of SHAP analysis to time-dependent models is
demonstrated. Finally, we summarize the limitations and
mention other extensions that should be considered for
this popular technique.

THEORETICAL BACKGROUND OF
SHAP ANALYSIS

Mathematical background

SHAP analysis is rooted in Shapley values, a concept
from collaborative game theory. Shapley values provide

a fair distribution of a payout among players in a collab-
orative game where players work together for a common
goal, even if the players may have contributed unequally.
We will use the example of combination drug therapy
and calculate the contribution of each drug on the re-
sponse to illustrate the concepts. Let's assume Drug A,
Drug B, and Drug C, when administered together, have
a response rate of 90%. The individual drugs' response
rates are:

Drug A: 40%
Drug B: 50%
Drug C: 60%

Let's assume we also know the response rates of the
two-drug combinations, or in the language of game the-
ory, coalitions of two (subsets of the group of size 2):

Drug A and Drug B: 70%
Drug A and Drug C: 65%
Drug B and Drug C: 80%

Given the single drug and dual combination response
rates, what would be the fair individual drug contribution
to the triple combination response rate of 90%?

In 1953, Lloyd Shapley** defined a set of properties
that a fair measurement of contribution in a collaborative
game should fulfill:

« Efficiency: The sum of all players’ contributions must
equal the payout (90% in our example).

« Symmetry: If two players contribute the same to all coa-
litions (subsets of players), they should receive an equal
payout. (e.g., a generic of Drug A would be assumed to
work the same as Drug A in all coalitions).

« Additivity: In a game with multiple subgames, each
having a separate payout, the contribution of a player
to the combined game is equal to the sum of contribu-
tions to each individual subgame. (e.g., if there are two
subpopulations of patients, then Drug A's contribution
to the total population would equal the sum of the con-
tributions to each of the subpopulations).

« Null player: If a player doesn't contribute to any coali-
tions, their share of the payout is 0. (e.g., if a drug does
not add responders in any combination, it is assigned no
contribution).

Lloyd Shapley derived a mathematical formula of the
values ¢; that satisfies these properties and proved that
these values are the only ones capable of satisfying all
these properties. These values are the so-called Shapley
values. Considering a payout, V, each player j is assigned
a Shapley value, ¢, that corresponds to their fair share of



GUIDE TO SHAP ANALYSIS IN DRUG DEVELOPMENT

| 30f15

the payout based on their individual contribution. The
mathematical formula for ¢; is the following:

[SI!(IN|—]S|-1)! .
o= 3 BB (s i) -ves)
SCN\{j}

where S is a coalition, N is the set of all players,
(V(SU{j}) = V(S)) quantifies the marginal contribution
of player j to coalition S, W is the weight of the

marginal contribution and )’
SCN\{}

sums over all possible

coalitions without j. The weights are the inverse of the num-
ber of coalitions of size |S| excluding player j.

Shapley values can be interpreted as the weighted aver-
age of a player's marginal contributions across all possible
coalitions.

Let's calculate the Shapley values for the combina-
tion therapy example. First, for each drug we consider
all the possible coalitions that can be created without
that specific drug. For example, for Drug A, these coa-
litions are: one coalition of size 0: { @}, two coalitions
of size 1: {B}, {C} and one coalition of size two: {B,C}
. We calculate the marginal contribution when adding
Drug A to each of these coalitions and use Formula 1
to calculate its SHAP value. We then do the same for
Drug B and Drug C. In Table 1 we include these cal-
culations along with each drug's marginal contri-
bution and their corresponding Shapley values. The
sum of all Shapley values equals the total response:
20.83%+33.33% + 35.83% =90%.

Connection between Shapley values and
SHAP analysis

The use of Shapley values for ML interpretability was first
introduced by Strumbelj and Kononenko in 2010.° The
authors showed how Shapley values can be used to fairly
quantify the contribution of features in a ML model. The
method was then popularized and extended by Lundberg

ASCPT

et al.?° to the so-called SHAP analysis. In their paper, the

authors were able to show how Shapley values unified
other feature-based interpretability methods and provided
an open-source package that sparked a widespread adop-
tion of the method.

The connection between Shapley values and SHAP
analysis can be understood by considering the poten-
tial model features (covariates) as “players” in a col-
laborative game: working together to determine each
individual predicted value. Table 2 illustrates the ter-
minology from game theory and ML that establishes
this connection. For each term in game theory, we
also include (in parenthesis) the equivalent term for
our combination therapy example. By establishing this
link, SHAP values inherit all the properties of Shapley
values, such as efficiency, symmetry, additivity, and
null player. Consequently, SHAP values provide a fair
and unbiased measure of each feature's contribution to
the predicted value of each sample. To provide more
clarity to the reader, Table S1 establishes a connection
between the terminology used in ML and the corre-
sponding terminology in statistics.

From the efficiency property, a property of SHAP val-
ues that is crucial for their interpretation can be derived:
consider the prediction for a sample i, f(i). The SHAP val-
ues for all features j of sample i, ¢;;, satisfy the following
formula:

f) = b+ > &
features
Model prediction =~ Average Sum of all SHAP
for sample i prediction values for sample i

()

This means that for a given sample i, the SHAP values
assigned to each feature describe the extent to which that
feature contributed to the difference between the individ-
ual prediction of this sample from the average model pre-
diction. A derivation of this formula from the efficiency
axiom is presented in Molnar et al.”’

TABLE 1 Marginal contributions for drug combination example illustrating calculation of Shapley values.

Coalition size Drug A's marginal

of S contributions

0 V(A) - V(@)=40

1 V(B,A) - V(B)=70-50=20
V(C,A) - V(C)=65-60=5

2 V (B,C,A) - V(B,C)=90-80=10

Shapley values 240+ 220+ £5+ 10 =20.83%

Drug B's marginal contributions
V(B) - V(@)=50

V(A,B) - V(A)=70-40=30

V(C,B) - V(C)=80-60=20
V(A,C,B) - V(A,C) =90-65=25
350+ 230+ 20 + 25 = 33.33%

Drug C's marginal contributions
V(C) - V(@)=60

V(A,C) - V(A)=65-40=25

V(B,C) - V(B)=80-50=30
V(A,B,C) - V(A,B)=90-70=20
360+ 225+ 230+ 120 = 35.83%
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Game theory

Players (drugs) Features

Payout (response rate)
known as sample

Marginal Contribution (response each drug
delivers when considered in a possible
combination)

Shapley value of player j (fair individual
contribution of drug j for the triple
combination response rate)

Machine learning

SHAP value of feature j

TABLE 2 Linking the terminology
from game theory and ML for Shapley
values.

Model prediction of an observation,

Value of the feature for the specific sample

Calculation of SHAP values

Typically, using Formula 1 to calculate SHAP values
for feature contributions of a ML model prediction
is too computationally expensive; therefore, differ-
ent implementation and approximation methods have
been considered to efficiently calculate SHAP values
for common ML models. An exception to this rule are
tree-based models, for example, XGBoost, random for-
est, LightGBM, CatBoost, for which it is possible to ef-
ficiently calculate the exact SHAP values by exploiting
the tree structure of models.*®

For neural network-based models, approximation
methods can leverage the computational graph or ex-
ploit the model differentiability to calculate the SHAP
values. In the popular Python package SHAP, examples
of such approaches are implemented in DeepExplainer
and GradientExplainer. Finally, an approximation
method that can be applied to any supervised model,
(i.e., a model-agnostic method) is the kernel SHAP
method. Kernel SHAP approximates the Shapley values
by using a weighted sampling approach. One needs to
define a representative subset of the dataset often called
background dataset (which should capture the range
and distribution of the features in the dataset) from
which subsets of features are sampled. A kernel func-
tion is applied to compute the contributions of these
subsets to the prediction. These contributions are then
weighted based on the number of times each feature ap-
pears in the subsets. By repeating this process multiple
times, Kernel SHAP provides an estimate of the Shapley
values.

TUTORIAL DATASETS

To introduce the SHAP methodology and allow the reader
to reproduce our tutorial we utilized both public datasets
and in-silico datasets.

To illustrate the use of SHAP analysis in different black-
box regression models, we utilized the National Health

and Nutrition Examination Survey (NHANES).?® These
surveys are designed to assess the health and nutritional
status of US adults and children. The NHANES survey in-
cludes demographics, socioeconomic, dietary, laboratory,
and health-related questions. We create a dataset using a
subset of this survey data. We consider the features of sex,
body mass index (BMI), age, estimated number of days
over the past year that the participant drank alcoholic bev-
erages, and the number of days in a typical week that the
participant does moderate or vigorous physical activity to
predict blood pressure.

For showcasing the use of SHAP analysis in different
black-box classification models, we employed a breast
cancer diagnostic dataset. This dataset consists of features
computed from digitized images of a fine needle aspirate
of breast masses. These features describe the characteris-
tics of the cell nuclei present in the image. Based on the
features of the different samples, we are interested in clas-
sifying the tumor mass as benign or malignant. A more
detailed description of the dataset is available here.*

To show the application of SHAP values to a time-
dependent ML model, we utilized in-silico data from a
pharmacokinetic (PK) model. This PK model consisted
of a first-order absorption and linear clearance. We as-
sumed clearance exhibits interindividual variability.
Further details on the PK model and model parameters
can be found in Supporting Information. We considered
the regression problem of predicting individual clear-
ances using a Long Short-Term Memory (LSTM) model
from drug concentration-time profiles. We simulated 1000
drug concentration-time profiles during a 48-h period, as-
suming a daily infusion of 200 mg lasting for 1 h. The drug
concentration was sampled every 4 h, starting 1h after the
first dose was administered, resulting in 12 recorded con-
centrations for each simulated subject.

A description of where to find the datasets and how we
pre-process them before training the ML models is avail-
able in the Supporting Information. When training the
models, we consider a 70:30 train:test split. The code used
for performing all the SHAP analyses can be found in the
Supporting Information.
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FIGURE 1 Standard supervised ML workflow.

IMPLEMENTATION AND
PRACTICAL CONSIDERATIONS

Consider the standard supervised ML workflow depicted
in Figure 1.

SHAP analysis is part of the model interpretation phase
in a ML workflow and should be only performed if the
model demonstrates adequate performance. Therefore,
the reported SHAP values should usually be the SHAP
values that correspond to the test dataset.

As pointed out by Lu et al.,” a good practice in ML con-
sists of performing the model validation using k-fold cross-
validation. Analyzing the distributions of SHAP values
across the different folds allows us to understand if the SHAP
value trends observed in the visualization plots are consistent
across the data and not just present in a subset of the dataset.

Overview of visualization plots

Different plots can be used to visualize SHAP values, which
allow either local or global explanations and each has a
specific interpretation, purpose, advantages, and disadvan-
tages. In this section, we describe the most common plots
that are offered by the popular Python package SHAP.?**
To illustrate the use of these plots, we first trained an
XGBoost model for the blood pressure regression problem
introduced in the tutorial datasets. After assessing that the
model has an adequate fit, we used the SHAP package to
calculate the SHAP values for both the train and test data-
set. If not otherwise specified, the plots show the SHAP
values for the test dataset. In Figure 2 we show the most
common visualization plots for SHAP values. In this sec-
tion, we describe the different parts of the plots, their pur-
pose, advantages, and disadvantages. The code to create
these plots can be found in the Supporting Information.

Bar plot

The bar plot, a global explanation method, displays the
mean absolute SHAP value for each feature across all

explanations

predictions, serving as a measure of feature importance.
It quantifies, on average, the magnitude of each feature's
contribution to the model prediction; thus, it provides a
ranking of features.

An advantage of this measurement for determining
feature importance is that the SHAP values are expressed
in the same units as the model predictions making them
more intuitive. For example, in our regression example,
the average impact of the variable age on the predictions
of the model is 5.86mm Hg. To illustrate this point, we
refer to Formula 2, where we see that if the prediction is
a blood pressure (e.g., mm Hg), all SHAP values will also
have the same units, mm Hg. This contrasts with other
feature importance measurements like permutation fea-
ture importance scores. A disadvantage of this represen-
tation is the lack of nuance on the directionality of the
impact, or whether the relationship is monotonous. Also,
selecting a cut-off based on the SHAP values, to identify
the most important features, depends on domain knowl-
edge and should be determined on a case-by-case basis
and does not follow a general rule.

In Figure 2a we observe that when considering the
XGBoost model for predicting blood pressure, age appears
to be the most important feature followed by BMI and
then sex.

Beeswarm plot

The beeswarm plot provides a global overview of SHAP
values for selected features, with rows representing each
feature ranked by the mean absolute SHAP value. The in-
dividual dots in each row are the SHAP values for that par-
ticular feature in each sample of the dataset. Two properties
of the dot encode the information of the SHAP values:

« The point color indicates the feature value (e.g., age)
according to the color bar. The color bar is normalized
according to the feature range such that high feature
values appear in red and low values appear in blue. In
the case where the ML model can handle missing data
(e.g., xgboost), the point color would be shown in gray.
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FIGURE 2 Different visualization plots of SHAP values from an XGBoost model when predicting blood pressure: (a) Bar plot; (b)
Beeswarm plot; (c) A scatter plot for the feature age colored by each subject's BMI; (d) Waterfall plot for an example subject.

« The point position along the x axis is determined by
their SHAP value.

Inspection of the color distribution for each feature
along the xaxis can provide global insights into the rela-
tionship between the feature values and its SHAP values:

« From an initial inspection, can we determine the rela-
tionship between the feature values and SHAP values
for each feature? Do they all show monotonous increas-
ing/decreasing trends, for example, increasing feature
value is related to a higher prediction? Can we detect
any non-linear trends?

« Are there features whose SHAP values distribution are
alike? Do they have the same spread? How does the dis-
tribution of the SHAP values differ between the differ-
ent features?

« Are there outlier SHAP values for some features?

« Are the missing values of different features random, or
do they show an interpretation bias?

An advantage of this plot is the ability to show multiple
features at once, ranked by their impact, and at the same
time give an indication of directionality and shape of the
impact. A disadvantage is the use of color as a scale since
it can be difficult to extract the shape of a relationship
from the color differences.

In Figure 2b the beeswarm plot shows a detailed over-
view of the SHAP values for our regression example. We
observe that the feature age has a wide SHAP values range
and has much higher values than the mean absolute value
(5.86). Age appears to have a generally monotonous in-
creasing trend. Age and BMI SHAP values appear to fol-
low a similar pattern hinting toward a possible interaction.
This can be further investigated in the following plot.

Scatter plot

The scatter plot in displays the relationship between one
feature value (x axis) and the SHAP values (y axis). It
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consists of (1) the scatterplot in which each point repre-
sents the sample's feature value on the x axis and the SHAP
value on the y axis and (2) the inset gray histogram above
the x axis which displays the feature value distribution.

The distribution of the points informs us whether there
is a general trend between the feature values and SHAP
values and allows us to identify linear or non-linear rela-
tionships. It may be helpful to include trend lines to detect
which type of relationship is present. The vertical spread
of SHAP values at a fixed feature value is a sign of interac-
tion effects with other features in the model. It is import-
ant to consider the inset histogram when interpreting the
trends. A high number of samples present in a particular
part of the plot indicates that the trend in that area is sup-
ported by many samples. Conversely, when the number
of samples is limited, it is important to be cautious and
refrain from overinterpreting the trend.

Scatter plots may be colored according to another fea-
ture's value, by either coloring according to another fea-
ture value or first binning the other feature's values and
considering coloring according to the bins.” This allows
to detect interaction effects between different features.

The advantage of this visualization is the level of detail
which clearly indicates the direction, magnitude, and vari-
ability of the feature's impact on model predictions. This
comes at the price of only allowing a single feature per
figure or panel.

In Figure 2c we consider the scatter plot for the fea-
ture age colored by the subject's BMI. We observe that

@ | 7 of 15
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age above 50 generally has a positive SHAP value (higher
blood pressure) and we observe some non-linearity in the
relationship. However, we are unable to detect any inter-
actions between the feature age and BMI.

An extension of this plot can be considered when doing
k-fold cross-validation such that the points are colored to
the different folds they belong to, and the plot is faceted by
the train-test status. Trend lines can also be included per
fold. This plot then allows us to corroborate if trends are
consistent across different subsets of data.

In Figure 3, we consider this extension of the scatter
plot for the feature age. We performed a fivefold cross-
validation and calculated the SHAP values for each fold
for the test and the train dataset. We can observe that the
trend of the SHAP values for age is consistent across the
folds and across the train-test split. This demonstrates that
the feature impact is stable and trustworthy.

Waterfall plot

A waterfall plot is used to visualize the predicted SHAP
values of a single sample showing all features. The pre-
dicted value for this specific sample is given in the plot
title.

The model features are located along the y axis, and
the value of that feature for that specific sample is de-
noted in gray. The SHAP value corresponding to each
feature for this specific sample is written in the main

Consistent trends across all folds of the
cross-validation shows that
the SHAP values and model fit are robust

Test Consistent trend between Train
50 train and test shows that
the model generalizes well ¢
40 ®
® a & @
30 ' 4
-
(]
> ¢ Fold
< 20 e |
& 2
o
< 10 3
n 4
5
0
-10
-20
10 20 30 40 50 60 70 8010 20 30 40 50 60 70 80

Age

Age

FIGURE 3 Scatter plot of SHAP values for feature age faceted by train-test status when considering cross-validation. The trends across
the different folds are depicted in different lines corresponding to the fold.
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panel within an arrow for each row or feature. The row
is red (blue) if the SHAP value increases (decreases) the
prediction f(x;) in comparison to the expected or average
prediction.

This type of plot provides a local interpretation since it
focuses on a single sample. This is useful when analyzing
model outliers, SHAP values outliers, or specific subjects
of interest.

In Figure 2d, we show the waterfall plot for an ex-
ample subject. We can see that BMI is the feature that
affects the difference between its model-predicted
blood pressure the most when compared to the average
prediction.

More references on other plots like heatmap plots,
force-plots, decision plots, violin plots, stacked force-plots,
interaction plots, to name a few and their interpretation
can be found in other publications.*”*"*

Binary endpoints

For classification ML models, special care needs to be
taken when calculating SHAP values. Using SHAP for
explaining a classification model prediction can be set
up in two ways: (1) explaining the predicted probabili-
ties or (2) explaining the predicted log-odds for each
sample belonging to that class. Explaining probabilities
makes it easier to identify the contribution of features
to the prediction; however, explaining the predicted
log-odds can provide a clearer picture of the relation-
ship between the model features, making the log-odds
sometimes easier to interpret. This can be due to non-
linear interactions and implicit interactions. It is worth
considering both explanations.

To illustrate the application of SHAP analysis for clas-
sification models, we trained an XGBoost model using the
breast cancer diagnostic dataset. After assessing that the
model has an adequate fit, we used the SHAP package to
calculate the SHAP values for the test dataset. In Figure 4
we show the bar plot, beeswarm plot, and the scatter plot
for the most important feature (concave points).** On the
left plots, we display the SHAP values when explaining the
predicted probabilities, while on the right, we present the
corresponding SHAP values when explaining predicted
log-odds.

When comparing the SHAP plots for explaining the
predicted probabilities and predicted log-odds, the result
is quite similar. Both bar plots (Figure 4a,b) show that
the feature concave points has the highest mean abso-
lute SHAP value followed by area and texture. Note the
different values of the SHAP values in probabilities (con-
cave points have a mean absolute SHAP value of 0.26)
and in log-odds (has a mean absolute SHAP value of

3.81). This signifies that concave points are the most in-
fluential feature in classifying the breast mass as benign
or malignant. The beeswarm plots (Figure 4c,d) can give
a better overview of the relationship between the feature
values and its SHAP values. Both beeswarm plots reveal
a positive relationship for concave points, area, texture,
and concavity which means the higher the feature value,
the higher the probability or log-odds. For the feature
area, we can see that some samples with a middle fea-
ture value (purple) are associated with the highest SHAP
values, indicating that the relationship is not linear. For
a closer look at the relationship between a feature's val-
ues and the model's predicted outcomes, we consider
the scatter plots. Figure 4e,f shows the scatter plots for
the most important feature: concave points. Both scat-
ter plots show an increase in SHAP values for increasing
concave points up to 0.09. After that, increasing feature
values the SHAP values are mostly flat, especially for
predicting log-odds. In addition, at a feature value of
0.05, the model switches from predicting lower to higher
probabilities or log-odds.

SHAP for time-dependent ML models

The use of SHAP analysis for time-dependent is a chal-
lenging34’35 and currently an active area of research.
Traditionally, researchers have performed SHAP analysis
of a ML model prediction that considers time-dependent
data by crafting features that capture the time-dependent
aspects of the data and subsequently treating the problem
as standard classification or regression models.

We consider the time-series in-silico data created from
the PK model described in the tutorial dataset section.
The drug concentration over time of this model is shown
in Figure 5a for an example subject. The samples are la-
beled according to the cycle they belong to and the time
since last dose (TSLD). Each concentration is denoted by
Ceycle,rsp- We trained a LSTM model to the simulated data
and calculated the SHAP values using GradientExplainer.
In Figure 5, we show different visualization plots of the
SHAP values from this model. In Figure 5b, we can see
that the most important features to predict the individ-
ual clearances are Cj 4 followed by C, 13 and Cj ;5. The
beeswarm plot in Figure 5c shows a monotonous decreas-
ing trend for the concentrations in the elimination phase
except for the first concentrations after ¢, (i.e., Cy s and
C1.5). The scatter plot in Figure 5d,e show that SHAP val-
ues for the drug concentrations with the same TSLD for
the different cycles follow the same trend. The scatter plot
Figure 5f shows that the SHAP values for the first drug
concentration at cycle 1 have a monotonous increasing
trend as expected.
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Software

For Python, the most popular package that implements
SHAP analysis is the SHAP package that is compatible
with standard ML packages such as keras, tensorflow,
scikit-learn, and pytorch. For R and specifically XGBoost
there is the package SHAPforxgboost™ available in CRAN.
The shapper package is also available in R and it is a R
wrapper of the SHAP Python library.*’

EXAMPLES

In this section, we include the results of performing SHAP
analyses for popular ML black-box models for classifica-
tion and regression problems, specifically, we consider
XGBoost,*® random forest, and neural networks (multi-
layer perceptron model).

To further demystify how to interpret SHAP analyses
on black-box models, we apply this methodology to linear
regression and logistic regression models using in-silico

concave points

concave points

data. This will help the reader gain intuition on how to
interpret the different visualization plots within a familiar
framework.

For both black-box models and interpretable mod-
els, we provide the Python code in the Supplementary
Information for performing the SHAP analysis.

Common ML frameworks

We considered XGBoost, random forest, and a neural
network model as regression models and trained them
using the regression dataset. In Figure 6, we can see
the bar plot, the beeswarm plot, and the scatter plot of
the SHAP values of the variable age for the test data-
set of the fitted models. When comparing the bar plots
(Figure 6a,c,e), we observe that for all three models, age
has the highest mean absolute SHAP value. However,
for the XGBoost and the neural network, BMI has the
second-highest value, followed by sex. In contrast, for
the random forest model, sex has the second-highest
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mean absolute SHAP values, followed by BMI. The
beeswarm plots (Figure 6b,d,f) are also comparable be-
tween all three models. They show a positive relation-
ship between age and BMI which means the higher the
feature value, the higher the outcome. Especially for the
neural network we can see the smooth color gradient
that transitions from blue to red indicating that the posi-
tive relationship is nearly monotonous. For the random
forest and XGBoost model, some mixed colors are vis-
ible around the SHAP value of 0. The categorical feature,
sex, clearly shows a negative relationship for all three
models. The beeswarm plot doesn't show a clear trend
for AlcoholYear or PhysActiveDays, especially for the
random forest model and neural network.

We considered XGBoost, random forest, and a neural
network model as classification models and trained them

C1l1

using the breast cancer diagnostic dataset. In Figure S1,
we can see the different visualization plots for the SHAP
values for explaining the predicted probabilities for the
different models. We can see that XGBoost and random
forest ranked the different features according to the mean
absolute SHAP value very similarly. This contrasts with
the neural network model that only has positive mean
absolute SHAP values for three features: area, perimeter,
and texture. XGBoost and random forest have better and
similar classification metrics in comparison to the neural
network model (See Table S2 for accuracy metrics for all
classification models). The beeswarm plots of XGBoost
and random forest indicate a positive relationship for con-
cave points, area, texture, and concavity. The feature pe-
rimeter has a negative relationship in the neural network
model compared to random forest.
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FIGURE 6 Visualizations plots for (a) (b) Hih
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Common statistical frameworks
Linear regression

We first simulate 2000 observations from a linear model
(3) by considering two predictors x; and x, that follow an
uniform distribution, that is, x;,x, ~ Ujg 105

y = bO + b1x1 + b2X2

(3)
where by = —10,b; =6andb, = — 3.

Now we assume the data generation process to be un-
known and fit the generated data using a linear regression
model.

For a linear regression model with no interaction
terms, such as the one presented here, it can be shown

that SHAP values for feature x; correspond to

¢ =bj(x — E(x)) @
where b is its corresponding linear coefficent and E (xj) cor-
responds to the expected sample mean of the correspond-
ing feature. The derivation of this formula can be found in
Chapter 7 of the book by Christopher Molnar.*

When considering the in-silico dataset we obtain
E(x,)=5.05 and E(x,)=4.99 for the test dataset which
are close to the theoretical mean of 5 of the underlying
distribution. Based on the conditions used to simulate the

mean(|SHAP value|) SHAP value (impact on model output)

in-silico data, the SHAP values for a pair of model features
(x1,X,) are:

¢ =6x; —30.3=6(x; —5.05) and ¢, = — 3x, +14.97 = — 3(x, —4.99)
(5)

By considering kernelSHAP for estimating the SHAP
values of this model, we can observe that the SHAP val-
ues are described by these formulas. In Figure S2, we
show the different visualization plots that were consid-
ered for the SHAP values of this particular model. The bar
plot in Figure S2A shows that the feature x; has a higher
mean absolute SHAP value than feature x,, as expected.
Therefore, we can see that measuring the feature impor-
tance, based on the mean absolute SHAP values, matches
to the intepretation that we can perform on this linear re-
gression model.

When analyzing the beeswarm plot in Figure S2B, we
can observe the general trends of the SHAP values for the
two features of the linear regression model. The distribu-
tion of the SHAP values corresponding to the feature x; has
a wider spread compared to the distribution of the SHAP
values of feature x,. This is expected since the absolute
value of b, is twice the absolute value of b,. Furthermore, in
the beeswarm plot, we can observe there is a monotonous
increasing relationship between feature x; and its SHAP
values (blue to red) and a decreasing negative relationship
between feature x, and its SHAP values (red to blue).
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When inspecting the scatter plots for each feature
(Figure S2C,D), we can see that the SHAP values for
features x; and x, follow the formulas given in Formula
5. The waterfall plots of Figure S2E,F for two particu-
lar instances satisfy the formula given in Formula 4.
Figure S2E shows that the feature values for this sam-
ple are x; = 7.05 and x, = 0.614. The SHAP value corre-
sponding to feature x; is 11.07 which means that this
feature increases the prediction f (x,-) in comparison to
the average prediction. Feature x, increases the predic-
tion with a SHAP value of 12.55. Finally, the predicted
value for this specific sample is f(x;) =6.839+11.07+1
2.55=30.459.

Logistic regression

We first simulate data from a logistic regression model by
considering two predictors x; and x, that follow a uniform
distribution, that is, x;,x, ~ Ujo.10p We then define a linear
model:

where b, = 10, b; =2 and b, = — 6. We then consider the
transformation to the probability space

1
T 1+ exp( — log_odds) %

p

Using these probabilities we perform 2000 Bernoulli

samples, that is, {(x;;,%,;, yi)}izgi)o where y; is the out-
come of Bernoulli trials considering the probabily p; given
by Formula 7.

We fit the resultant data using a logistic regression
model and the estimated parameters match those of the
model used to generate the data. Figure S3 illustrates the
different visualization plots of SHAP values from a logistic
regression, explaining the predicted probabilities and the
predicted log-odds, side by side.

When comparing the bar plots we can see that feature
X, has a higher mean absolute SHAP value in compari-
son to feature x; which signifies that feature x, is a more
influential feature than feature x; (Figure S3A,B). This
intepretation can also obtained in the classical way when
inspecting the coefficient of features x; and x,.

When comparing the beeswarm plots of the SHAP
values of the logistic regression model, we can observe a
non-uniform distribution for the SHAP values when ex-
plaining the predicted probabilities. This is in contrast
to the uniform distribution of the SHAP values for both
feature x; and x, when explaining the predicted log-odds.
These observations can be seen in Figure S3C,D.

If we inspect the scatter plots for feature x,, we no-
tice that when explaining the predicted probabilities the
relationship between the features and the SHAP values
is non-linear (Figure S3E). When explaining the pre-
dicted log-odds, the relationship is linear (Figure S3F) as
expected.

Generally, we also observe that the different visualiza-
tion plots for the SHAP values of the predicted log-odds
are similar to the visualization plots for the SHAP values
of the linear regression. This is expected since in the log-
odds scale the predictors follow a linear regression model.

FINAL REMARKS

In this tutorial, we provided a brief overview of the theo-
retical background of SHAP analysis, including Shapley
values and their connection to SHAP analysis. We dis-
cussed the implementation and practical considerations of
SHAP analysis, including visualization plots, special con-
siderations for classification and time-series models, and
available software. We showed the application of SHAP
analysis to standard interpretable models and popular ML
frameworks, both for regression and classification prob-
lems, as well as time-dependent models. We conclude by
summarizing the limitations and potential extensions of
this widely used technique.

While SHAP analysis is a powerful feature-based in-
terpretability technique with numerous benefits, it is
important to acknowledge its limitations and explore
extensions for a comprehensive interpretability analysis
of a ML model. Although the SHAP method does not as-
sume feature independence, some of the approximation
methods used to calculate the SHAP values (e.g., ker-
nelSHAP) do assume it. In almost any real application
this will not be the case, therefore, the reader needs to
be careful when including features that are strongly cor-
related. A pre-processing step of analyzing the data and
being aware of this situation can help to avoid situations
where the model gives inaccurate predictions or give pre-
dictions that are at odds with domain knowledge of the
topic. For both regression and classification problems,
we performed this pre-processing step. For the regression
models, we did not include weight or height as predictors
since we included BMI as a predictor. For the classifica-
tion models in the original dataset, the dataset for each
breast mass' characteristics included the mean, standard
deviation, highest and lowest values, and we only con-
sidered the mean values as predictors. An extension of
kernelSHAP has recently been introduced® that takes
into account the correlation between features. A Python
package based on this extension was recently released*
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as well as an R package.*' Feature engineering and selec-
tion can also help address the issue beforehand, enabling
the use of the standard methodology. Other SHAP ap-
proximation methods like TreeSHAP explicitly consider
feature dependence within the model structure.

Another limitation worth mentioning is that SHAP
analysis does not quantify the importance of predictors
in the real-world problem, but rather their importance to
the model's predictions. SHAP values do not show how
the features contribute to the observations, but rather
how the features contribute to the models’ predictions for
the observations. Especially in the presence of model bias
or in case of overfitting, this difference is important and
should always be considered when interpreting SHAP
values.

In this tutorial, we focused on SHAP analysis for super-
vised ML models that considered tabular data. However,
SHAP analysis can also be applied to other ML models****
relevant in drug development and one can also consider
other type of data (e.g., electrocardiogram data,** MRI
data*’). A deeper dive into these other topics is neces-
sary to understand the special considerations that need
to be taken into account in each case. Also, this tutorial
mostly focused on SHAP analysis; however, there exist
other feature-based explainability methods with advan-
tages and disadvantages in comparison to SHAP analysis
such as LIME,* integrated gradients,"”” and permutation
feature importance.”® Considering these alternatives may
be worthwhile to address some of the SHAP limitations.
Also, as the authors in Imrie et al.'” mentioned, ML in-
terpretability has mostly focused on feature-based models;
however, to fully understand a black-box model and pro-
vide explanations to the different stakeholders in clinical
pharmacology, it is also important to embrace and com-
bine other types of model-agnostic interpretation meth-
ods. In this tutorial, we also showed an example of how to
perform SHAP analysis on a time-dependent ML model.
However, there are several limitations to this approach.
First, aggregating SHAP values over multiple time points
canresultin theloss of temporal information. Additionally,
understanding the time-dependent impact of a feature
can be difficult as its importance may vary over time. For
the specific example shown, the SHAP values might not
accurately capture the internal mechanisms of LSTM
models, which are used to handle temporal dependencies.
When considering feature engineering to account for time
dependence, the chosen approach may not effectively cap-
ture time dynamics. Nevertheless, recent advancements
have introduced new methodologies that incorporate the
time-dependent structure*** into the SHAP calculation.
In particular, there are new packages available for SHAP
calculation for deriving time-dependent explanation of
ML survival models.**

ASCPT

The use of ML models in drug development is expected
to continue growing and to become an integral part of this
industry. In light of this, it is important to adopt ML in-
terpretability methods to enhance the transparency and
trustworthiness of black-box model predictions. This tu-
torial aims to offer a small yet meaningful step toward ad-
dressing this objective.
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