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INTRODUCTION

The use of Artificial Intelligence (AI) and Machine 
Learning (ML) models in drug discovery and develop-
ment offers great potential.1–4 Several ML models have 
been developed for predicting the absorption, distribu-
tion, metabolism, and excretion (ADME) properties of 
small molecules,5,6 pharmacokinetic-pharmacodynamic 
modeling,7,8 understanding exposure-response rela-
tionships,9 patient subpopulation detection,10–14 patient 
stratification,15,16 and biomarker detection.17 To inform 
clinical decisions in drug development and build trust for 
these tools, it is crucial to understand how the predictors 

influence the model predictions and which ones are the 
most impactful.

The research area of explainable AI or interpretable ML 
aims to trace the decision-making process of a ML model 
and understand the key features driving its predictions.18 
Model interpretability can be achieved either by consider-
ing models that are inherently interpretable (e.g., linear, 
logistic regression, decision trees) or considering post hoc 
“explainability” methods that can be applied to black-box 
models (e.g., neural networks, random forests, XGBoost, 
gradient boosting machines). It is interesting to note that 
post hoc methods can be applied to both interpretable 
and black-box models, making them model-agnostic. In 
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a recent perspective, Imrie et al.19 classified the different 
model-agnostic methods according to the type of expla-
nation they provide: (1) feature-based (How relevant are 
the data features to model predictions?), (2) model-based 
(Can the model predictions be explained using auxiliary 
meta-models?), (3) example-based (What other samples' 
model predictions are similar to a particular subset of 
samples?), (4) concept-based (Does the model appear to 
adhere to concepts derived from domain knowledge?), 
and (5) counterfactual explanations (What does the model 
predict when considering synthetic samples under partic-
ular scenarios?). This tutorial provides a practical guide to 
one of the most popular feature-based ML interpretability 
methods: SHapley Additive exPlanations (SHAP) analysis.

SHAP analysis is a feature-based interpretability 
method that has gained popularity thanks to its versatil-
ity which provides local and global explanations. It also 
provides values that are easy to interpret and can be eas-
ily implemented thanks to its easy-to-use packages that 
implement this method. Several publications in this field 
have used this methodology, and some of them have 
started to highlight some important considerations on its 
use.9,10,20–23

In this tutorial, we first briefly review the game-
theoretical background of Shapley values, and their 
connection to SHAP analysis, and give remarks on the 
calculation of SHAP values. Then we describe the datasets 
used for this tutorial along with the supervised learning 
problems that we considered to exhibit the SHAP meth-
odology. Next, we discuss the implementation and prac-
tical considerations of SHAP value analysis: visualization 
plots, special considerations when applying SHAP to clas-
sification endpoints, special considerations when dealing 
with time-series models, and available software to per-
form the analysis. Subsequently, we walk through a SHAP 
analysis in common statistical frameworks (linear regres-
sion and logistic regression) and present how to apply this 
analysis to the most common ML frameworks (random 
forest, XGBoost, neural networks) for both a regression 
and classification problem in Python. Furthermore, the 
application of SHAP analysis to time-dependent models is 
demonstrated. Finally, we summarize the limitations and 
mention other extensions that should be considered for 
this popular technique.

THEORETICAL BACKGROUND OF 
SHAP ANALYSIS

Mathematical background

SHAP analysis is rooted in Shapley values, a concept 
from collaborative game theory. Shapley values provide 

a fair distribution of a payout among players in a collab-
orative game where players work together for a common 
goal, even if the players may have contributed unequally. 
We will use the example of combination drug therapy 
and calculate the contribution of each drug on the re-
sponse to illustrate the concepts. Let's assume Drug A, 
Drug B, and Drug C, when administered together, have 
a response rate of 90%. The individual drugs' response 
rates are:

Drug A: 40%
Drug B: 50%
Drug C: 60%

Let's assume we also know the response rates of the 
two-drug combinations, or in the language of game the-
ory, coalitions of two (subsets of the group of size 2):

Drug A and Drug B: 70%
Drug A and Drug C: 65%
Drug B and Drug C: 80%

Given the single drug and dual combination response 
rates, what would be the fair individual drug contribution 
to the triple combination response rate of 90%?

In 1953, Lloyd Shapley24 defined a set of properties 
that a fair measurement of contribution in a collaborative 
game should fulfill:

•	 Efficiency: The sum of all players' contributions must 
equal the payout (90% in our example).

•	 Symmetry: If two players contribute the same to all coa-
litions (subsets of players), they should receive an equal 
payout. (e.g., a generic of Drug A would be assumed to 
work the same as Drug A in all coalitions).

•	 Additivity: In a game with multiple subgames, each 
having a separate payout, the contribution of a player 
to the combined game is equal to the sum of contribu-
tions to each individual subgame. (e.g., if there are two 
subpopulations of patients, then Drug A's contribution 
to the total population would equal the sum of the con-
tributions to each of the subpopulations).

•	 Null player: If a player doesn't contribute to any coali-
tions, their share of the payout is 0. (e.g., if a drug does 
not add responders in any combination, it is assigned no 
contribution).

Lloyd Shapley derived a mathematical formula of the 
values �j that satisfies these properties and proved that 
these values are the only ones capable of satisfying all 
these properties. These values are the so-called Shapley 
values. Considering a payout, V , each player j is assigned 
a Shapley value, �j, that corresponds to their fair share of 
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the payout based on their individual contribution. The 
mathematical formula for �j is the following:

where S is a coalition, N is the set of all players, �
V
�
S
⋃

{j}
�
− V (S)

�
 quantifies the marginal contribution 

of player j to coalition S, |S| ! (|N |− |S|−1) !
∣N ∣ !

 is the weight of the 

marginal contribution and 
∑

S⊆N �{j}
 sums over all possible 

coalitions without j. The weights are the inverse of the num-
ber of coalitions of size |S| excluding player j.

Shapley values can be interpreted as the weighted aver-
age of a player's marginal contributions across all possible 
coalitions.

Let's calculate the Shapley values for the combina-
tion therapy example. First, for each drug we consider 
all the possible coalitions that can be created without 
that specific drug. For example, for Drug A, these coa-
litions are: one coalition of size 0: {⊘}, two coalitions 
of size 1: {B}, {C} and one coalition of size two: {B,C}
. We calculate the marginal contribution when adding 
Drug A to each of these coalitions and use Formula 1 
to calculate its SHAP value. We then do the same for 
Drug B and Drug C. In Table  1 we include these cal-
culations along with each drug's marginal contri-
bution and their corresponding Shapley values. The 
sum of all Shapley values equals the total response: 
20.83% + 33.33% + 35.83% = 90%.

Connection between Shapley values and 
SHAP analysis

The use of Shapley values for ML interpretability was first 
introduced by Štrumbelj and Kononenko in 2010.25 The 
authors showed how Shapley values can be used to fairly 
quantify the contribution of features in a ML model. The 
method was then popularized and extended by Lundberg 

et al.26 to the so-called SHAP analysis. In their paper, the 
authors were able to show how Shapley values unified 
other feature-based interpretability methods and provided 
an open-source package that sparked a widespread adop-
tion of the method.

The connection between Shapley values and SHAP 
analysis can be understood by considering the poten-
tial model features (covariates) as “players” in a col-
laborative game: working together to determine each 
individual predicted value. Table  2 illustrates the ter-
minology from game theory and ML that establishes 
this connection. For each term in game theory, we 
also include (in parenthesis) the equivalent term for 
our combination therapy example. By establishing this 
link, SHAP values inherit all the properties of Shapley 
values, such as efficiency, symmetry, additivity, and 
null player. Consequently, SHAP values provide a fair 
and unbiased measure of each feature's contribution to 
the predicted value of each sample. To provide more 
clarity to the reader, Table S1 establishes a connection 
between the terminology used in ML and the corre-
sponding terminology in statistics.

From the efficiency property, a property of SHAP val-
ues that is crucial for their interpretation can be derived: 
consider the prediction for a sample i, f (i). The SHAP val-
ues for all features j of sample i, �i,j, satisfy the following 
formula:

This means that for a given sample i, the SHAP values 
assigned to each feature describe the extent to which that 
feature contributed to the difference between the individ-
ual prediction of this sample from the average model pre-
diction. A derivation of this formula from the efficiency 
axiom is presented in Molnar et al.27

(1)𝜙j=
∑

S⊆N�{j}

|S|!(|N |− |S|−1)!
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(
V
(
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{j}
)
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)

(2)

f (i) = �o +
∑

features

�i,j

Model prediction

for sample i

Average

prediction

Sum of all SHAP

values for sample i

T A B L E  1   Marginal contributions for drug combination example illustrating calculation of Shapley values.

Coalition size 
of S

Drug A's marginal 
contributions Drug B's marginal contributions Drug C's marginal contributions

0 V(A) – V(⊘) = 40 V(B) – V(⊘) = 50 V(C) – V(⊘) = 60

1 V(B,A) – V(B) = 70–50 = 20 V(A,B) – V(A) = 70–40 = 30 V(A,C) – V(A) = 65–40 = 25

V(C,A) – V(C) = 65–60 = 5 V(C,B) – V(C) = 80–60 = 20 V(B,C) – V(B) = 80–50 = 30

2 V (B,C,A) – V(B,C) = 90–80 = 10 V(A,C,B) – V(A,C) = 90–65 = 25 V(A,B,C) – V(A,B) = 90–70 = 20

Shapley values 1

3
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6
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1

6
5 +
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3
10 = 20.83%

1
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1
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30 +
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1
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6
25 +
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6
30 +
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3
20 = 35.83%
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Calculation of SHAP values

Typically, using Formula 1 to calculate SHAP values 
for feature contributions of a ML model prediction 
is too computationally expensive; therefore, differ-
ent implementation and approximation methods have 
been considered to efficiently calculate SHAP values 
for common ML models. An exception to this rule are 
tree-based models, for example, XGBoost, random for-
est, LightGBM, CatBoost, for which it is possible to ef-
ficiently calculate the exact SHAP values by exploiting 
the tree structure of models.28

For neural network-based models, approximation 
methods can leverage the computational graph or ex-
ploit the model differentiability to calculate the SHAP 
values. In the popular Python package SHAP, examples 
of such approaches are implemented in DeepExplainer 
and GradientExplainer. Finally, an approximation 
method that can be applied to any supervised model, 
(i.e., a model-agnostic method) is the kernel SHAP 
method. Kernel SHAP approximates the Shapley values 
by using a weighted sampling approach. One needs to 
define a representative subset of the dataset often called 
background dataset (which should capture the range 
and distribution of the features in the dataset) from 
which subsets of features are sampled. A kernel func-
tion is applied to compute the contributions of these 
subsets to the prediction. These contributions are then 
weighted based on the number of times each feature ap-
pears in the subsets. By repeating this process multiple 
times, Kernel SHAP provides an estimate of the Shapley 
values.

TUTORIAL DATASETS

To introduce the SHAP methodology and allow the reader 
to reproduce our tutorial we utilized both public datasets 
and in-silico datasets.

To illustrate the use of SHAP analysis in different black-
box regression models, we utilized the National Health 

and Nutrition Examination Survey (NHANES).29 These 
surveys are designed to assess the health and nutritional 
status of US adults and children. The NHANES survey in-
cludes demographics, socioeconomic, dietary, laboratory, 
and health-related questions. We create a dataset using a 
subset of this survey data. We consider the features of sex, 
body mass index (BMI), age, estimated number of days 
over the past year that the participant drank alcoholic bev-
erages, and the number of days in a typical week that the 
participant does moderate or vigorous physical activity to 
predict blood pressure.

For showcasing the use of SHAP analysis in different 
black-box classification models, we employed a breast 
cancer diagnostic dataset. This dataset consists of features 
computed from digitized images of a fine needle aspirate 
of breast masses. These features describe the characteris-
tics of the cell nuclei present in the image. Based on the 
features of the different samples, we are interested in clas-
sifying the tumor mass as benign or malignant. A more 
detailed description of the dataset is available here.30

To show the application of SHAP values to a time-
dependent ML model, we utilized in-silico data from a 
pharmacokinetic (PK) model. This PK model consisted 
of a first-order absorption and linear clearance. We as-
sumed clearance exhibits interindividual variability. 
Further details on the PK model and model parameters 
can be found in Supporting Information. We considered 
the regression problem of predicting individual clear-
ances using a Long Short-Term Memory (LSTM) model 
from drug concentration-time profiles. We simulated 1000 
drug concentration-time profiles during a 48-h period, as-
suming a daily infusion of 200 mg lasting for 1 h. The drug 
concentration was sampled every 4 h, starting 1 h after the 
first dose was administered, resulting in 12 recorded con-
centrations for each simulated subject.

A description of where to find the datasets and how we 
pre-process them before training the ML models is avail-
able in the Supporting Information. When training the 
models, we consider a 70:30 train:test split. The code used 
for performing all the SHAP analyses can be found in the 
Supporting Information.

Game theory Machine learning

Players (drugs) Features

Payout (response rate) Model prediction of an observation, 
known as sample

Marginal Contribution (response each drug 
delivers when considered in a possible 
combination)

Value of the feature for the specific sample

Shapley value of player j (fair individual 
contribution of drug j for the triple 
combination response rate)

SHAP value of feature j

T A B L E  2   Linking the terminology 
from game theory and ML for Shapley 
values.
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IMPLEMENTATION AND 
PRACTICAL CONSIDERATIONS

Consider the standard supervised ML workflow depicted 
in Figure 1.

SHAP analysis is part of the model interpretation phase 
in a ML workflow and should be only performed if the 
model demonstrates adequate performance. Therefore, 
the reported SHAP values should usually be the SHAP 
values that correspond to the test dataset.

As pointed out by Lu et al.,23 a good practice in ML con-
sists of performing the model validation using k-fold cross-
validation. Analyzing the distributions of SHAP values 
across the different folds allows us to understand if the SHAP 
value trends observed in the visualization plots are consistent 
across the data and not just present in a subset of the dataset.

Overview of visualization plots

Different plots can be used to visualize SHAP values, which 
allow either local or global explanations and each has a 
specific interpretation, purpose, advantages, and disadvan-
tages. In this section, we describe the most common plots 
that are offered by the popular Python package SHAP.26,28

To illustrate the use of these plots, we first trained an 
XGBoost model for the blood pressure regression problem 
introduced in the tutorial datasets. After assessing that the 
model has an adequate fit, we used the SHAP package to 
calculate the SHAP values for both the train and test data-
set. If not otherwise specified, the plots show the SHAP 
values for the test dataset. In Figure 2 we show the most 
common visualization plots for SHAP values. In this sec-
tion, we describe the different parts of the plots, their pur-
pose, advantages, and disadvantages. The code to create 
these plots can be found in the Supporting Information.

Bar plot

The bar plot, a global explanation method, displays the 
mean absolute SHAP value for each feature across all 

predictions, serving as a measure of feature importance. 
It quantifies, on average, the magnitude of each feature's 
contribution to the model prediction; thus, it provides a 
ranking of features.

An advantage of this measurement for determining 
feature importance is that the SHAP values are expressed 
in the same units as the model predictions making them 
more intuitive. For example, in our regression example, 
the average impact of the variable age on the predictions 
of the model is 5.86 mm Hg. To illustrate this point, we 
refer to Formula 2, where we see that if the prediction is 
a blood pressure (e.g., mm Hg), all SHAP values will also 
have the same units, mm Hg. This contrasts with other 
feature importance measurements like permutation fea-
ture importance scores. A disadvantage of this represen-
tation is the lack of nuance on the directionality of the 
impact, or whether the relationship is monotonous. Also, 
selecting a cut-off based on the SHAP values, to identify 
the most important features, depends on domain knowl-
edge and should be determined on a case-by-case basis 
and does not follow a general rule.

In Figure  2a we observe that when considering the 
XGBoost model for predicting blood pressure, age appears 
to be the most important feature followed by BMI and 
then sex.

Beeswarm plot

The beeswarm plot provides a global overview of SHAP 
values for selected features, with rows representing each 
feature ranked by the mean absolute SHAP value. The in-
dividual dots in each row are the SHAP values for that par-
ticular feature in each sample of the dataset. Two properties 
of the dot encode the information of the SHAP values:

•	 The point color indicates the feature value (e.g., age) 
according to the color bar. The color bar is normalized 
according to the feature range such that high feature 
values appear in red and low values appear in blue. In 
the case where the ML model can handle missing data 
(e.g., xgboost), the point color would be shown in gray.

F I G U R E  1   Standard supervised ML workflow.
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•	 The point position along the x axis is determined by 
their SHAP value.

Inspection of the color distribution for each feature 
along the xaxis can provide global insights into the rela-
tionship between the feature values and its SHAP values:

•	 From an initial inspection, can we determine the rela-
tionship between the feature values and SHAP values 
for each feature? Do they all show monotonous increas-
ing/decreasing trends, for example, increasing feature 
value is related to a higher prediction? Can we detect 
any non-linear trends?

•	 Are there features whose SHAP values distribution are 
alike? Do they have the same spread? How does the dis-
tribution of the SHAP values differ between the differ-
ent features?

•	 Are there outlier SHAP values for some features?
•	 Are the missing values of different features random, or 

do they show an interpretation bias?

An advantage of this plot is the ability to show multiple 
features at once, ranked by their impact, and at the same 
time give an indication of directionality and shape of the 
impact. A disadvantage is the use of color as a scale since 
it can be difficult to extract the shape of a relationship 
from the color differences.

In Figure 2b the beeswarm plot shows a detailed over-
view of the SHAP values for our regression example. We 
observe that the feature age has a wide SHAP values range 
and has much higher values than the mean absolute value 
(5.86). Age appears to have a generally monotonous in-
creasing trend. Age and BMI SHAP values appear to fol-
low a similar pattern hinting toward a possible interaction. 
This can be further investigated in the following plot.

Scatter plot

The scatter plot in displays the relationship between one 
feature value (x axis) and the SHAP values (y axis). It 

F I G U R E  2   Different visualization plots of SHAP values from an XGBoost model when predicting blood pressure: (a) Bar plot; (b) 
Beeswarm plot; (c) A scatter plot for the feature age colored by each subject's BMI; (d) Waterfall plot for an example subject.
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consists of (1) the scatterplot in which each point repre-
sents the sample's feature value on the x axis and the SHAP 
value on the y axis and (2) the inset gray histogram above 
the x axis which displays the feature value distribution.

The distribution of the points informs us whether there 
is a general trend between the feature values and SHAP 
values and allows us to identify linear or non-linear rela-
tionships. It may be helpful to include trend lines to detect 
which type of relationship is present. The vertical spread 
of SHAP values at a fixed feature value is a sign of interac-
tion effects with other features in the model. It is import-
ant to consider the inset histogram when interpreting the 
trends. A high number of samples present in a particular 
part of the plot indicates that the trend in that area is sup-
ported by many samples. Conversely, when the number 
of samples is limited, it is important to be cautious and 
refrain from overinterpreting the trend.

Scatter plots may be colored according to another fea-
ture's value, by either coloring according to another fea-
ture value or first binning the other feature's values and 
considering coloring according to the bins.23 This allows 
to detect interaction effects between different features.

The advantage of this visualization is the level of detail 
which clearly indicates the direction, magnitude, and vari-
ability of the feature's impact on model predictions. This 
comes at the price of only allowing a single feature per 
figure or panel.

In Figure  2c we consider the scatter plot for the fea-
ture age colored by the subject's BMI. We observe that 

age above 50 generally has a positive SHAP value (higher 
blood pressure) and we observe some non-linearity in the 
relationship. However, we are unable to detect any inter-
actions between the feature age and BMI.

An extension of this plot can be considered when doing 
k-fold cross-validation such that the points are colored to 
the different folds they belong to, and the plot is faceted by 
the train-test status. Trend lines can also be included per 
fold. This plot then allows us to corroborate if trends are 
consistent across different subsets of data.

In Figure 3, we consider this extension of the scatter 
plot for the feature age. We performed a fivefold cross-
validation and calculated the SHAP values for each fold 
for the test and the train dataset. We can observe that the 
trend of the SHAP values for age is consistent across the 
folds and across the train-test split. This demonstrates that 
the feature impact is stable and trustworthy.

Waterfall plot

A waterfall plot is used to visualize the predicted SHAP 
values of a single sample showing all features. The pre-
dicted value for this specific sample is given in the plot 
title.

The model features are located along the y axis, and 
the value of that feature for that specific sample is de-
noted in gray. The SHAP value corresponding to each 
feature for this specific sample is written in the main 

F I G U R E  3   Scatter plot of SHAP values for feature age faceted by train-test status when considering cross-validation. The trends across 
the different folds are depicted in different lines corresponding to the fold.
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panel within an arrow for each row or feature. The row 
is red (blue) if the SHAP value increases (decreases) the 
prediction f(xi) in comparison to the expected or average 
prediction.

This type of plot provides a local interpretation since it 
focuses on a single sample. This is useful when analyzing 
model outliers, SHAP values outliers, or specific subjects 
of interest.

In Figure  2d, we show the waterfall plot for an ex-
ample subject. We can see that BMI is the feature that 
affects the difference between its model-predicted 
blood pressure the most when compared to the average 
prediction.

More references on other plots like heatmap plots, 
force-plots, decision plots, violin plots, stacked force-plots, 
interaction plots, to name a few and their interpretation 
can be found in other publications.27,31,32

Binary endpoints

For classification ML models, special care needs to be 
taken when calculating SHAP values. Using SHAP for 
explaining a classification model prediction can be set 
up in two ways: (1) explaining the predicted probabili-
ties or (2) explaining the predicted log-odds for each 
sample belonging to that class. Explaining probabilities 
makes it easier to identify the contribution of features 
to the prediction; however, explaining the predicted 
log-odds can provide a clearer picture of the relation-
ship between the model features, making the log-odds 
sometimes easier to interpret. This can be due to non-
linear interactions and implicit interactions. It is worth 
considering both explanations.

To illustrate the application of SHAP analysis for clas-
sification models, we trained an XGBoost model using the 
breast cancer diagnostic dataset. After assessing that the 
model has an adequate fit, we used the SHAP package to 
calculate the SHAP values for the test dataset. In Figure 4 
we show the bar plot, beeswarm plot, and the scatter plot 
for the most important feature (concave points).33 On the 
left plots, we display the SHAP values when explaining the 
predicted probabilities, while on the right, we present the 
corresponding SHAP values when explaining predicted 
log-odds.

When comparing the SHAP plots for explaining the 
predicted probabilities and predicted log-odds, the result 
is quite similar. Both bar plots (Figure 4a,b) show that 
the feature concave points has the highest mean abso-
lute SHAP value followed by area and texture. Note the 
different values of the SHAP values in probabilities (con-
cave points have a mean absolute SHAP value of 0.26) 
and in log-odds (has a mean absolute SHAP value of 

3.81). This signifies that concave points are the most in-
fluential feature in classifying the breast mass as benign 
or malignant. The beeswarm plots (Figure 4c,d) can give 
a better overview of the relationship between the feature 
values and its SHAP values. Both beeswarm plots reveal 
a positive relationship for concave points, area, texture, 
and concavity which means the higher the feature value, 
the higher the probability or log-odds. For the feature 
area, we can see that some samples with a middle fea-
ture value (purple) are associated with the highest SHAP 
values, indicating that the relationship is not linear. For 
a closer look at the relationship between a feature's val-
ues and the model's predicted outcomes, we consider 
the scatter plots. Figure 4e,f shows the scatter plots for 
the most important feature: concave points. Both scat-
ter plots show an increase in SHAP values for increasing 
concave points up to 0.09. After that, increasing feature 
values the SHAP values are mostly flat, especially for 
predicting log-odds. In addition, at a feature value of 
0.05, the model switches from predicting lower to higher 
probabilities or log-odds.

SHAP for time-dependent ML models

The use of SHAP analysis for time-dependent is a chal-
lenging34,35 and currently an active area of research. 
Traditionally, researchers have performed SHAP analysis 
of a ML model prediction that considers time-dependent 
data by crafting features that capture the time-dependent 
aspects of the data and subsequently treating the problem 
as standard classification or regression models.

We consider the time-series in-silico data created from 
the PK model described in the tutorial dataset section. 
The drug concentration over time of this model is shown 
in Figure 5a for an example subject. The samples are la-
beled according to the cycle they belong to and the time 
since last dose (TSLD). Each concentration is denoted by 
Ccycle,TSLD. We trained a LSTM model to the simulated data 
and calculated the SHAP values using GradientExplainer. 
In Figure 5, we show different visualization plots of the 
SHAP values from this model. In Figure  5b, we can see 
that the most important features to predict the individ-
ual clearances are C1,9 followed by C1,13 and C1,17. The 
beeswarm plot in Figure 5c shows a monotonous decreas-
ing trend for the concentrations in the elimination phase 
except for the first concentrations after tmax (i.e., C0,5 and 
C1,5). The scatter plot in Figure 5d,e show that SHAP val-
ues for the drug concentrations with the same TSLD for 
the different cycles follow the same trend. The scatter plot 
Figure 5f shows that the SHAP values for the first drug 
concentration at cycle 1 have a monotonous increasing 
trend as expected.
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Software

For Python, the most popular package that implements 
SHAP analysis is the SHAP package that is compatible 
with standard ML packages such as keras, tensorflow, 
scikit-learn, and pytorch. For R and specifically XGBoost 
there is the package SHAPforxgboost36 available in CRAN. 
The shapper package is also available in R and it is a R 
wrapper of the SHAP Python library.37

EXAMPLES

In this section, we include the results of performing SHAP 
analyses for popular ML black-box models for classifica-
tion and regression problems, specifically, we consider 
XGBoost,36 random forest, and neural networks (multi-
layer perceptron model).

To further demystify how to interpret SHAP analyses 
on black-box models, we apply this methodology to linear 
regression and logistic regression models using in-silico 

data. This will help the reader gain intuition on how to 
interpret the different visualization plots within a familiar 
framework.

For both black-box models and interpretable mod-
els, we provide the Python code in the Supplementary 
Information for performing the SHAP analysis.

Common ML frameworks

We considered XGBoost, random forest, and a neural 
network model as regression models and trained them 
using the regression dataset. In Figure  6, we can see 
the bar plot, the beeswarm plot, and the scatter plot of 
the SHAP values of the variable age for the test data-
set of the fitted models. When comparing the bar plots 
(Figure 6a,c,e), we observe that for all three models, age 
has the highest mean absolute SHAP value. However, 
for the XGBoost and the neural network, BMI has the 
second-highest value, followed by sex. In contrast, for 
the random forest model, sex has the second-highest 

F I G U R E  4   Visualization plots of 
SHAP values derived from an XGBoost 
model for a classification problem, 
explaining the predicted probabilities 
(a,c,e) and the predicted log-odds (b,d,f).
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mean absolute SHAP values, followed by BMI. The 
beeswarm plots (Figure 6b,d,f) are also comparable be-
tween all three models. They show a positive relation-
ship between age and BMI which means the higher the 
feature value, the higher the outcome. Especially for the 
neural network we can see the smooth color gradient 
that transitions from blue to red indicating that the posi-
tive relationship is nearly monotonous. For the random 
forest and XGBoost model, some mixed colors are vis-
ible around the SHAP value of 0. The categorical feature, 
sex, clearly shows a negative relationship for all three 
models. The beeswarm plot doesn't show a clear trend 
for AlcoholYear or PhysActiveDays, especially for the 
random forest model and neural network.

We considered XGBoost, random forest, and a neural 
network model as classification models and trained them 

using the breast cancer diagnostic dataset. In Figure S1, 
we can see the different visualization plots for the SHAP 
values for explaining the predicted probabilities for the 
different models. We can see that XGBoost and random 
forest ranked the different features according to the mean 
absolute SHAP value very similarly. This contrasts with 
the neural network model that only has positive mean 
absolute SHAP values for three features: area, perimeter, 
and texture. XGBoost and random forest have better and 
similar classification metrics in comparison to the neural 
network model (See Table S2 for accuracy metrics for all 
classification models). The beeswarm plots of XGBoost 
and random forest indicate a positive relationship for con-
cave points, area, texture, and concavity. The feature pe-
rimeter has a negative relationship in the neural network 
model compared to random forest.

F I G U R E  5   (a) Example time-course 
of the PK model considered to model drug 
concentration. Different visualization 
plots for the SHAP values explaining 
the predictions of individual clearances 
are depicted; (b) Bar plot; (c) Beeswarm 
plot; (d–f) Scatter plots of SHAP values 
corresponding to concentration at 
different times.
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Common statistical frameworks

Linear regression

We first simulate 2000 observations from a linear model 
(3) by considering two predictors x1 and x2 that follow an 
uniform distribution, that is, x1, x2 ∼ U[0,10]:

where b0 = − 10, b1 = 6 and b2 = − 3.
Now we assume the data generation process to be un-

known and fit the generated data using a linear regression 
model.

For a linear regression model with no interaction 
terms, such as the one presented here, it can be shown 
that SHAP values for feature xj correspond to

where bj is its corresponding linear coefficent and �
(
xj
)
 cor-

responds to the expected sample mean of the correspond-
ing feature. The derivation of this formula can be found in 
Chapter 7 of the book by Christopher Molnar.38

When considering the in-silico dataset we obtain 
�
(
x1
)
 = 5.05 and �

(
x2
)
 = 4.99 for the test dataset which 

are close to the theoretical mean of 5 of the underlying 
distribution. Based on the conditions used to simulate the 

in-silico data, the SHAP values for a pair of model features (
x1, x2

)
 are:

By considering kernelSHAP for estimating the SHAP 
values of this model, we can observe that the SHAP val-
ues are described by these formulas. In Figure  S2, we 
show the different visualization plots that were consid-
ered for the SHAP values of this particular model. The bar 
plot in Figure S2A shows that the feature x1 has a higher 
mean absolute SHAP value than feature x2, as expected. 
Therefore, we can see that measuring the feature impor-
tance, based on the mean absolute SHAP values, matches 
to the intepretation that we can perform on this linear re-
gression model.

When analyzing the beeswarm plot in Figure S2B, we 
can observe the general trends of the SHAP values for the 
two features of the linear regression model. The distribu-
tion of the SHAP values corresponding to the feature x1 has 
a wider spread compared to the distribution of the SHAP 
values of feature x2. This is expected since the absolute 
value of b1 is twice the absolute value of b2. Furthermore, in 
the beeswarm plot, we can observe there is a monotonous 
increasing relationship between feature x1 and its SHAP 
values (blue to red) and a decreasing negative relationship 
between feature x2 and its SHAP values (red to blue).

(3)y = b0 + b1x1 + b2x2

(4)�j = bj
(
xj − �

(
xj
))

(5)
�1 = 6x1 − 30.3 = 6

(
x1 − 5.05

)
and �2 = − 3x2 + 14.97 = − 3

(
x2 − 4.99

)

F I G U R E  6   Visualizations plots for 
SHAP values of different ML regression 
models; (a,c,e) Bar plots; (b,d,f) Beeswarm 
plots.
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When inspecting the scatter plots for each feature 
(Figure  S2C,D), we can see that the SHAP values for 
features x1 and x2 follow the formulas given in Formula 
5. The waterfall plots of Figure  S2E,F for two particu-
lar instances satisfy the formula given in Formula 4. 
Figure S2E shows that the feature values for this sam-
ple are x1 = 7.05 and x2 = 0.614. The SHAP value corre-
sponding to feature x1 is 11.07 which means that this 
feature increases the prediction f

(
xi
)
 in comparison to 

the average prediction. Feature x2 increases the predic-
tion with a SHAP value of 12.55. Finally, the predicted 
value for this specific sample is f

(
xi
)
 = 6.839 + 11.07 + 1

2.55 = 30.459.

Logistic regression

We first simulate data from a logistic regression model by 
considering two predictors x1 and x2 that follow a uniform 
distribution, that is, x1, x2 ∼ U[0,10], we then define a linear 
model:

where b0 = 10, b1 = 2 and b2 = − 6. We then consider the 
transformation to the probability space

Using these probabilities we perform 2000 Bernoulli 

samples, that is, 
{(
x1,i, x2,i, yi

)}2000
i=1

 where yi is the out-
come of Bernoulli trials considering the probabily pi given 
by Formula 7.

We fit the resultant data using a logistic regression 
model and the estimated parameters match those of the 
model used to generate the data. Figure S3 illustrates the 
different visualization plots of SHAP values from a logistic 
regression, explaining the predicted probabilities and the 
predicted log-odds, side by side.

When comparing the bar plots we can see that feature 
x2 has a higher mean absolute SHAP value in compari-
son to feature x1 which signifies that feature x2 is a more 
influential feature than feature x1 (Figure  S3A,B). This 
intepretation can also obtained in the classical way when 
inspecting the coefficient of features x1 and x2.

When comparing the beeswarm plots of the SHAP 
values of the logistic regression model, we can observe a 
non-uniform distribution for the SHAP values when ex-
plaining the predicted probabilities. This is in contrast 
to the uniform distribution of the SHAP values for both 
feature x1 and x2 when explaining the predicted log-odds. 
These observations can be seen in Figure S3C,D.

If we inspect the scatter plots for feature x2, we no-
tice that when explaining the predicted probabilities the 
relationship between the features and the SHAP values 
is non-linear (Figure  S3E). When explaining the pre-
dicted log-odds, the relationship is linear (Figure S3F) as 
expected.

Generally, we also observe that the different visualiza-
tion plots for the SHAP values of the predicted log-odds 
are similar to the visualization plots for the SHAP values 
of the linear regression. This is expected since in the log-
odds scale the predictors follow a linear regression model.

FINAL REMARKS

In this tutorial, we provided a brief overview of the theo-
retical background of SHAP analysis, including Shapley 
values and their connection to SHAP analysis. We dis-
cussed the implementation and practical considerations of 
SHAP analysis, including visualization plots, special con-
siderations for classification and time-series models, and 
available software. We showed the application of SHAP 
analysis to standard interpretable models and popular ML 
frameworks, both for regression and classification prob-
lems, as well as time-dependent models. We conclude by 
summarizing the limitations and potential extensions of 
this widely used technique.

While SHAP analysis is a powerful feature-based in-
terpretability technique with numerous benefits, it is 
important to acknowledge its limitations and explore 
extensions for a comprehensive interpretability analysis 
of a ML model. Although the SHAP method does not as-
sume feature independence, some of the approximation 
methods used to calculate the SHAP values (e.g., ker-
nelSHAP) do assume it. In almost any real application 
this will not be the case, therefore, the reader needs to 
be careful when including features that are strongly cor-
related. A pre-processing step of analyzing the data and 
being aware of this situation can help to avoid situations 
where the model gives inaccurate predictions or give pre-
dictions that are at odds with domain knowledge of the 
topic. For both regression and classification problems, 
we performed this pre-processing step. For the regression 
models, we did not include weight or height as predictors 
since we included BMI as a predictor. For the classifica-
tion models in the original dataset, the dataset for each 
breast mass' characteristics included the mean, standard 
deviation, highest and lowest values, and we only con-
sidered the mean values as predictors. An extension of 
kernelSHAP has recently been introduced39 that takes 
into account the correlation between features. A Python 
package based on this extension was recently released40 

(6)log_odds = b0 + b1x1 + b2x2

(7)p =
1

1 + exp( − log_odds)
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as well as an R package.41 Feature engineering and selec-
tion can also help address the issue beforehand, enabling 
the use of the standard methodology. Other SHAP ap-
proximation methods like TreeSHAP explicitly consider 
feature dependence within the model structure.

Another limitation worth mentioning is that SHAP 
analysis does not quantify the importance of predictors 
in the real-world problem, but rather their importance to 
the model's predictions. SHAP values do not show how 
the features contribute to the observations, but rather 
how the features contribute to the models' predictions for 
the observations. Especially in the presence of model bias 
or in case of overfitting, this difference is important and 
should always be considered when interpreting SHAP 
values.

In this tutorial, we focused on SHAP analysis for super-
vised ML models that considered tabular data. However, 
SHAP analysis can also be applied to other ML models42,43 
relevant in drug development and one can also consider 
other type of data (e.g., electrocardiogram data,44 MRI 
data45). A deeper dive into these other topics is neces-
sary to understand the special considerations that need 
to be taken into account in each case. Also, this tutorial 
mostly focused on SHAP analysis; however, there exist 
other feature-based explainability methods with advan-
tages and disadvantages in comparison to SHAP analysis 
such as LIME,46 integrated gradients,47 and permutation 
feature importance.48 Considering these alternatives may 
be worthwhile to address some of the SHAP limitations. 
Also, as the authors in Imrie et al.19 mentioned, ML in-
terpretability has mostly focused on feature-based models; 
however, to fully understand a black-box model and pro-
vide explanations to the different stakeholders in clinical 
pharmacology, it is also important to embrace and com-
bine other types of model-agnostic interpretation meth-
ods. In this tutorial, we also showed an example of how to 
perform SHAP analysis on a time-dependent ML model. 
However, there are several limitations to this approach. 
First, aggregating SHAP values over multiple time points 
can result in the loss of temporal information. Additionally, 
understanding the time-dependent impact of a feature 
can be difficult as its importance may vary over time. For 
the specific example shown, the SHAP values might not 
accurately capture the internal mechanisms of LSTM 
models, which are used to handle temporal dependencies. 
When considering feature engineering to account for time 
dependence, the chosen approach may not effectively cap-
ture time dynamics. Nevertheless, recent advancements 
have introduced new methodologies that incorporate the 
time-dependent structure49,50 into the SHAP calculation. 
In particular, there are new packages available for SHAP 
calculation for deriving time-dependent explanation of 
ML survival models.42

The use of ML models in drug development is expected 
to continue growing and to become an integral part of this 
industry. In light of this, it is important to adopt ML in-
terpretability methods to enhance the transparency and 
trustworthiness of black-box model predictions. This tu-
torial aims to offer a small yet meaningful step toward ad-
dressing this objective.
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