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Abstract

Background: Successful management of chronic human immunodeficiency virus type 1 (HIV-1) infection with a
cocktail of antiretroviral medications can be negatively affected by the presence of drug resistant mutations in the
viral targets. These targets include the HIV-1 protease (PR) and reverse transcriptase (RT) proteins, for which a
number of inhibitors are available on the market and routinely prescribed. Protein mutational patterns are
associated with varying degrees of resistance to their respective inhibitors, with extremes that can range from
continued susceptibility to cross-resistance across all drugs.

Results: Here we implement statistical learning algorithms to develop structure- and sequence-based models for
systematically predicting the effects of mutations in the PR and RT proteins on resistance to each of eight and
eleven inhibitors, respectively. Employing a four-body statistical potential, mutant proteins are represented as
feature vectors whose components quantify relative environmental perturbations at amino acid residue positions in
the respective target structures upon mutation. Two approaches are implemented in developing sequence-based
models, based on use of either relative frequencies or counts of n-grams, to generate vectors for representing
mutant proteins. To the best of our knowledge, this is the first reported study on structure- and sequence-based
predictive models of HIV-1 PR and RT drug resistance developed by implementing a four-body statistical potential
and n-grams, respectively, to generate mutant attribute vectors. Performance of the learning methods is evaluated
on the basis of tenfold cross-validation, using previously assayed and publicly available in vitro data relating
mutational patterns in the targets to quantified inhibitor susceptibility changes.

Conclusion: Overall performance results are competitive with those of a previously published study utilizing a
sequence-based strategy, while our structure- and sequence-based models provide orthogonal and complementary
prediction methodologies, respectively. In a novel application, we describe a technique for identifying every
possible pair of RT inhibitors as either potentially effective together as part of a cocktail, or a combination that is to
be avoided.

Background
With the advent of highly active antiretroviral therapy
(HAART) for treating human immunodeficiency virus
type 1 (HIV-1) infection, mortality rates from acquired
immunodeficiency syndrome (AIDS) have significantly

decreased in recent years [1]. HAART encompasses a
variety of treatment strategies, each employing a distinct
combination of at least three drugs designed to inhibit
proteins essential to the viral replication cycle [2]. The
HIV-1 protease (PR) and reverse transcriptase (RT)
enzymes are critical targets of these drug cocktails, and
the U.S. Food and Drug Administration (FDA) has
approved a number of PR inhibitors (PIs) as well as
nucleoside/nucleotide and nonnucleoside RT inhibitors

* Correspondence: ivaisman@gmu.edu
Laboratory for Structural Bioinformatics, School of Systems Biology, George
Mason University, 10900 University Boulevard MS 5B3, Manassas, Virginia
20110, USA

Masso and Vaisman BMC Genomics 2013, 14(Suppl 4):S3
http://www.biomedcentral.com/1471-2164/14/S4/S3

© 2013 Masso et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:ivaisman@gmu.edu
http://creativecommons.org/licenses/by/2.0


(NRTIs and NNRTIs, respectively). Nevertheless, the
evolution of drug resistant mutations in the PR and RT
proteins poses a persistent risk to continued treatment
success. The potential for any drug resistant mutation in
either target to confer cross-resistance to other medica-
tions in the respective inhibitor class also raises a signif-
icant impediment to selecting optimal therapies.
Consequently, a systematic understanding of how alter-
native mutational patterns in these target proteins affect
susceptibility levels to their respective inhibitors is of
vital importance in providing effective, personalized
HAART regimens.
Of the three classes of HIV-1 drugs described above,

PIs and NRTIs represent competitive inhibitors designed
to bind relatively conserved active sites of the HIV-1 PR
and RT enzymes. On the other hand, NNRTIs are non-
competitive inhibitors that bind a less conserved hydro-
phobic pocket of RT near the active site (Figure 1) [3],
resulting in conformational changes to the enzyme that
prevent its polymerization activity. Amino acid substitu-
tions in the PR and RT proteins associated with drug
resistance fall into two general categories: major and

minor [4]. Major mutations are single residue replace-
ments that alone are capable of significantly decreasing
the susceptibility to one or more drugs in a particular
class, they generally occur either at positions forming
the inhibitor binding site or at nearby positions affecting
its geometry, and they frequently appear in clinical sam-
ples sequenced from patients experiencing virologic fail-
ure. Substrate binding and catalytic activity of the PR
and RT enzymes are negatively impacted by major
mutations associated with inhibitors that bind the pro-
tein active sites. Subsequently, minor mutations may
appear either to increase marginally the level of drug
resistance (accessory), or to create structural rearrange-
ments that help restore enzyme activity and improve
viral fitness (compensatory) [5]. Minor mutations may
appear either near the substrate or inhibitor binding
sites, or they may exert their effects allosterically from
structurally distant positions. A number of natural poly-
morphisms in untreated patients that may slightly
increase drug resistance are also referred to as minor
mutations.
Genotype tests are available for rapidly and inexpen-

sively discerning whether mutations already known to
be associated with inhibitor resistance are present in
HIV-1 PR and RT sequences. Relatively more time con-
suming and costly phenotype testing, on the other hand,
quantitatively measures the change in susceptibility of a
mutant PR or RT target protein to an inhibitor relative
to that of a drug-sensitive control. Hence, a number of
algorithmic approaches have been developed over the
past decade for the prediction of phenotype from geno-
type [6-10], including models trained using statistical
machine learning techniques [11-13]. Studies have alter-
natively focused on structure-based prediction of resis-
tance patterns, using approaches as varied as molecular
modeling [14,15], fitness evolution [16], molecular
dynamics simulations [17], and statistical learning
[18-21]. Additionally, recent efforts have evaluated the
inclusion of clinical data based on known patient out-
comes as supplementary attributes [22,23].
Employing a sequence-based approach, Rhee et al.

[24] previously applied five statistical learning methods
to sets of HIV-1 PR and RT mutants available from the
Stanford University HIV Drug Resistance Database [25]
in order to systematically develop predictive models of
resistance to each of 16 inhibitors. The goal of the pre-
sent study is to implement distinct structure and
sequence based approaches, previously not considered
in this arena, and to apply four learning methods (ran-
dom forest, RF; support vector machine, SVM; reduced-
error pruned tree regression, REPTree; and support vec-
tor regression, SVR), in order to develop and compare a
comprehensive set of predictive models of PR and RT
resistance to 19 antiretroviral drugs (8 PIs, 8 NRTIs,

Figure 1 Y181C mutant of HIV-1 RT in complex with the NNRTI
nevirapine. Shown are residues of the catalytic p66 subunit of RT
that are within 5 angstroms of the inhibitor. Major mutations
associated with nevirapine resistance occur at positions K103, V106,
Y181, Y188, and G190; minor mutations occur at L100, K101, and
several additional positions that are more distant from the inhibitor
binding site. The diagram is based on atomic coordinates provided
by Protein Data Bank (PDB) accession code 1jlb.
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and 3 NNRTIs). For model training and testing we rely
on updated versions of the same datasets from the Stan-
ford Database as those that were employed in the key
study of Rhee et al. [24].
As detailed in the Methods, our structure-based tech-

nique involves threading of mutant amino acid
sequences onto native PR and RT structures obtained
from the Protein Data Bank (PDB) [26], as well as appli-
cation of a computational mutagenesis methodology
incorporating a four-body, knowledge-based, statistical
potential energy function [27]. For each PR or RT muta-
tional pattern, this approach allows us to quantify both
an overall change in protein sequence-structure compat-
ibility relative to wild-type (residual score) as well as
ensuing environmental perturbations (EC scores) at all
constituent amino acid positions in the target protein
structure, the latter of which define attributes for a fea-
ture vector representation of the mutant. Our perfor-
mance measures are similar to those reported by the
Stanford group in Rhee et al. [24], despite the relatively
smaller sizes of our training sets, with both techniques
representing orthogonal prediction strategies. Lastly, we
summarize results of complementary sequence-based
models that utilize previously unexplored attributes for
mutant PR and RT feature vectors obtained through
two applications of n-grams (subsequences of size n),
which we refer to as relative frequency and counts
methods [28].

Results and discussion
Inhibitor datasets
Brand names and abbreviations for the inhibitors under
consideration are provided in Table 1 (adapted from
[28]), along with the distribution of sensitive (S), inter-
mediate (I), and resistant (R) susceptibilities for each
corresponding dataset of mutants. Sixteen of our 19
inhibitor datasets overlap with those of the sequence-
based study by the Stanford group (Table 2 in [24];
inhibitors TPV, ddC, and FTC were not included in
that study), though the total number of mutants in
each of our datasets is substantially lower since we
exclude all isolates displaying electrophoretic mixtures
of amino acids at any HIV-1 PR or RT sequence posi-
tion, whereas Rhee et al. only excluded isolates with
mixtures occurring at nonpolymorphic drug resistance
positions in those proteins. Despite absolute size differ-
ences between comparable pairs of inhibitor datasets in
our work and in the study by the Stanford group, the
distribution of mutants across each of the three drug
susceptibility categories over these 16 pairs of datasets
are highly correlated (concordance correlation coeffi-
cients [29]: S, rc = 0.86; I, rc = 0.90; and R, rc = 0.96),
suggesting similarly stratified datasets in both studies.

Structure-function relationships
Implementation of our computational mutagenesis tech-
nique as detailed in the Methods allowed for the calcula-
tion of residual scores for all the HIV-1 PR and RT
mutants, which we used to obtain a mean residual score
by susceptibility category (S/I/R) within each of the 19
inhibitor datasets. For a given susceptibility category, the
overall average was determined for the associated mean
residual scores over all 19 inhibitor datasets (Figure 2,
All), as well as separate averages only over those datasets
that belong to each inhibitor class (Figure 2, PIs/NRTIs/
NNRTIs). A clear trend based on these data is evident in
Figure 2, whereby mean residual scores decrease with
increasing resistance. Given the quantitative definition of
a mutant residual score and its interpretation, the results
suggest that PR and RT mutants having increasingly det-
rimental effects on protein sequence-structure compat-
ibility are also those that are more likely to be associated
with a greater degree of drug resistance.

Structure-based mutant attributes and statistical
learning techniques
Following a procedure similar to that described in Rhee
et al. [24], HIV-1 PR or RT mutants comprising the

Table 1 Distribution of mutant HIV-1 isolates by inhibitor
susceptibility

Isolate Phenotypes (%) a

Drug S I R Total

Protease Inhibitors

Amprenavir (APV) 63 26 11 495

Atazanavir (ATV) 49 29 22 200

Indinavir (IDV) 53 26 21 502

Lopinavir (LPV) 46 22 32 320

Nelfinavir (NFV) 39 28 33 526

Ritonavir (RTV) 50 20 30 473

Saquinavir (SQV) 61 18 21 509

Tipranavir (TPV) 78 11 11 47

Nucleoside/Nucleotide RT Inhibitors

Lamivudine (3TC) 29 18 53 244

Abacavir (ABC) 28 45 27 237

Zidovudine (AZT) 50 23 27 240

Stavudine (d4T) 53 36 11 242

Zalcitabine (ddC) 39 52 9 161

Didanosine (ddI) 51 43 6 243

Emtricitabine (FTC) 31 13 56 52

Tenofovir (TDF) 65 25 10 167

Nonnucleoside RT Inhibitors

Delavirdine (DLV) 53 20 27 304

Efavirenz (EFV) 53 22 25 296

Nevirapine (NVP) 43 11 46 307
a S, sensitive; I, intermediate; R, resistant. Category thresholds are discussed in
Methods.
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inhibitor datasets are represented as training sets of fea-
ture vectors for the learning algorithms based on three
distinct sets of attributes as components (Table 2,
adapted and modified from [24]). The first approach
makes use of the entire residual profile (EC scores at all
99 PR or 543 RT positions, All) for each mutant. Next,
we consider mutant feature vectors whose components
consist of the EC scores only at PR or RT positions for
which residue substitutions occur that, according to an
expert panel (International Antiviral Society - USA,
IAS), are associated with drug resistance [4,30]. Finally,
we evaluate the utility of mutant feature vectors whose
components consist of the EC scores at PR or RT posi-
tions for which residue substitutions occur that are sig-
nificantly more common in treated versus untreated
individuals (nonpolymorphic treatment-selected muta-
tions, TSM) [31].
Implementations of two classification [random forest

(RF) and support vector machine (SVM)] and two
regression [reduced-error pruned tree (REPTree) regres-
sion and support vector regression (SVR)] statistical
learning methods are used in conjunction with each of
the three representations of our 19 inhibitor datasets of
HIV-1 PR and RT mutants as described in the previous
paragraph. For a given inhibitor dataset of mutants, the
RF and SVM methods predict the susceptibility of each
mutant to that inhibitor as sensitive (S), intermediate
(I), or resistant (R). On the other hand, the regression

methods predict for each PR or RT mutant a numerical
value for the change in susceptibility to the inhibitor
relative to that of a drug-sensitive, wild-type protein;
subsequently, these predicted values are used for classi-
fying the mutants based on category thresholds.

Structure-based classification and regression summaries
Mean prediction accuracies (4 learning methods ×
3 attribute datasets each) are equivalent for the PIs
(78.0%), NRTIs (77.2%), and NNRTIs (78.3%), with no
single inhibitor class displaying a selective advantage
over another (PIs-NRTIs, p = 0.17; PIs-NNRTIs, p =
0.40; NRTIs-NNRTIs, p = 0.15) (Table 3). Comparisons
with results reported in the sequence-based study by the
Stanford group (Table 3 in [24]: PIs, 78.2%; NRTIs,
75.9%; and NNRTIs, 83.0%) reveals statistically signifi-
cant differences for the latter two classes of inhibitors
(PIs, p = 0.45; NRTIs and NNRTIs, p < 0.05), reflecting
our prediction superiority with the NRTIs and that of
the Stanford group with the NNRTIs. Inhibitors display-
ing the highest and lowest mean accuracy, respectively
by class, in Table 3 of our study are ritonavir (82.7%)
and atazanavir (69.3%) for the PIs; emtricitabine (89.4%)
and tenofovir (69.6%) for the NRTIs; and nevirapine
(81.5%) and delavirdine (74.8%) for the NNRTIs. These
results mirror those reported by the Stanford group,
with the exception that in their work, the NRTI lamivu-
dine took the place of the newer and structurally similar

Figure 2 Elucidation of structure-function relationships in HIV-1 PR and RT. Residual scores of mutant proteins in the inhibitor datasets
quantify sequence-structure compatibility changes, whereas corresponding mutant susceptibilities to inhibitors identify functional consequences.
Results averaged over datasets comprising each inhibitor class (PIs/NRTIs/NNRTIs) separately, as well as collectively over all classes.
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emtricitabine, since data for the latter drug was not
available at the time; in our study, lamivudine displays
the second highest mean accuracy (84.8%) after emtrici-
tabine among the NRTIs.
Averaging over 19 inhibitors and three attribute data-

sets, the mean accuracies of the learning methods are
79.8% for RF, 78.3% for REPTree, 76.7% for SVM, and
76.0% for SVR. This is due to the fact that with respect
to each of the three attribute datasets individually, RF
significantly outperforms each of the other three learn-
ing methods; for example, based only on datasets using
EC scores at all positions (Table 3, “All” columns), the
mean accuracy of RF (79.9%) is significantly higher than
those of REPTree (78.6%, p < 0.01), SVR (76.4%, p <
0.01), or SVM (75.9%, p < 0.001). Classification methods
(79.6%) display higher accuracy for the NNRTIs than
regression methods (77.0%, p < 0.05); however, no such
differences are observed between the methods for the
PIs or NRTIs. Finally, averaging over all 19 inhibitors
and four learning methods, no statistically significant
differences are seen between the mean accuracies of the
TSM (77.8%), All (77.7%), and IAS (77.6%) attribute
datasets (TSM-All, p = 0.37; TSM-IAS, p = 0.24; All-
IAS, p = 0.41).
In addition to the overall prediction accuracy, we calcu-

lated the balanced error rate (BER) and the area (AUC)
under the receiver operating characteristic (ROC) curve

for the RF and SVM classification methods (Additional
file 1). Averaged over all 19 inhibitors and three attribute
datasets, the mean BER and AUC values for RF (0.29 and
0.91, respectively) are superior to those for SVM (0.31
and 0.86); however, only AUC differences are statistically
significant (p < 0.001), a result which also holds for each
attribute dataset separately. Next, averaged over all attri-
bute datasets and both learning methods, the mean BER
and AUC values for the PIs (0.31 and 0.91, respectively),
NRTIs (0.28 and 0.87), and NNRTIs (0.32 and 0.88)
reflect no statistically significant BER differences between
any pair of inhibitor classes. On the other hand, statisti-
cally significant AUC differences exist between the PIs
and each of the other inhibitor classes (PIs-NRTIs, p <
0.01; PIs-NNRTIs, p < 0. 01; NRTIs-NNRTIs, p = 0.33).
The TSM datasets yield mean BER and AUC values (0.29
and 0.90, respectively) that are superior to those of the
All (0.31 and 0.89, respectively) and IAS (0.29 and 0.88)
datasets when averaged over all 19 inhibitors and both
learning methods, though the differences are not signifi-
cant. Lastly, out-of-bag (OOB) errors associated with all
RF classifications are tabulated (Additional file 2) and dis-
play no statistically significant differences when averaged
over either the inhibitor classes or the attribute datasets.
Considering all 19 inhibitors as well as both the

REPTree and SVR regression methods, TSM datasets
display the highest overall correlation coefficients (r2)

Table 2 Sets of HIV-1 PR and RT residue positions used to construct feature vectors

Seta Description Positions

All EC scores at all residue positions in structures for HIV-1 PR
(PDB ID: 3phv) and RT (PDB ID: 1rtj, chain A)

PIs: 1 - 99
NRTIs and NNRTIs: 1 - 543

IAS EC scores only at positions for which residue substitutions
occur that are associated with drug resistance.

PIs (common to all: 10, 82, 84, 90)
APV: 32, 46, 47, 50, 54, 73, 76
ATV: 16, 20, 24, 32-34, 36, 46, 48, 50, 53, 54, 60, 62, 64, 71, 73, 85, 88, 93
IDV: 20, 24, 32, 36, 46, 54, 71, 73, 76, 77
LPV: 20, 24, 32, 33, 46, 47, 50, 53, 54, 63, 71, 73, 76
NFV: 30, 36, 46, 71, 77, 88
RTV: 20, 32, 33, 36, 46, 54, 71, 77
SQV: 24, 48, 54, 62, 71, 73, 77
TPV: 13, 20, 33, 35, 36, 43, 46, 47, 54, 58, 69, 74, 83
NRTIs (common to all: 41, 67, 70, 210, 215, 219)
3TC: 62, 65, 75, 77, 116, 151, 184
ABC: 62, 65, 74, 75, 77, 115, 116, 151, 184
AZT: 62, 75, 77, 116, 151
d4T: 62, 65, 75, 77, 116, 151
ddC: 62, 65, 69, 74, 75, 77, 116, 151, 184
ddI: 62, 65, 74, 75, 77, 116, 151
FTC: 62, 65, 75, 77, 116, 151, 184
TDF: 65
NNRTIs (common to all: 100, 103, 106, 181, 188, 190)
DLV: 230, 236
EFV: 101, 108, 225
NVP: 101, 108

TSM EC scores only at positions for which residue substitutions
occur that are significantly more common in treated
versus untreated individuals.

PIs: 10, 11, 20, 23, 24, 30, 32-35, 43, 46-48, 50, 53-55, 58, 66, 67, 71, 73, 74, 76, 79,
82, 84, 85, 88-90, 92, 95
NRTIs: 41, 43, 44, 62, 65, 67, 69, 70, 74, 75, 77, 98, 115, 116, 151, 184, 203, 208, 210,
215, 218, 219, 223, 228
NNRTIs: 100, 101, 103, 106, 108, 138, 181, 188, 190, 221, 225, 227, 230, 236, 238

a IAS, International Antiviral Society; TSM, nonpolymorphic treatment selected mutations.
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between actual and predicted relative susceptibility levels
of the constituent HIV-1 PR and RT mutants (Addi-
tional file 3), a result similarly reported by the Stanford
group (Table 6 in [24], available as online supporting
information). However, overall differences between our
three attribute datasets are minimal (averaged r2 values:
TSM, 0.71; All, 0.70; and IAS, 0.68). For the TSM data-
sets, our averaged r2 values obtained from both regres-
sion methods are 0.69 over the PIs, 0.73 over the
NRTIs, and 0.70 over the NNRTIs. Over the 19 inhibi-
tors and both regression methods, our averaged mean-
squared error (mse) values are 0.22 for TSM, 0.24 for
All, and 0.23 for IAS datasets (Additional file 3), results
which coincide with those of the Stanford group for the
TSM datasets (Table 7 in [24], available as online sup-
porting information); however with respect to the IAS
datasets, our averaged mse values are substantially lower
than those of the Stanford group (0.23 versus 0.32). For
our TSM datasets, the averaged mse values over both
regression methods vary considerably among the inhibi-
tor classes (0.27 for the PIs, 0.10 for the NRTIs, and
0.43 for the NNRTIs).

Influence of dataset size on performance of structure-
based models
Using inhibitor datasets that contain significantly fewer
mutants, our prediction accuracies are generally com-
parable to those of the sequence-based method in Rhee
et al. [24], suggesting that our structure-based attributes
encode a greater degree of information content. Aver-
aged over all 16 inhibitors common to both studies, our
datasets combined consist of fewer than half (49.9%) the
number of mutants used by the Stanford group, with a
maximum of 64.4% for the PI amprenavir and a mini-
mum of 37.7% for the NRTI abacavir.
To better understand the influence of dataset size on

model performance, we generated learning curves (Fig-
ure 3) by using the TSM attribute datasets and selecting
one representative drug from each inhibitor class: rito-
navir for the PIs, stavudine for the NRTIs, and nevira-
pine for the NNRTIs. The plots evaluate all four
learning methods and were generated by initially apply-
ing tenfold cross-validation (10-fold CV) testing to each
of 10 stratified random samples of 50 mutants (25
mutants for stavudine) selected with replacement from

Table 3 Predictive accuracy of REPTree, SVR, RF, and SVM using TSM, All, and IAS sets to construct mutant feature
vectors

REPTree SVR RF SVM

Drug TSM All IAS TSM All IAS TSM All IAS TSM All IAS DrugMean

Protease Inhibitors

APV 0.79 0.80 0.78 0.77 0.78 0.76 0.78 0.79 0.78 0.77 0.77 0.75 0.78

ATV 0.69 0.69 0.71 0.69 0.67 0.67 0.74 0.74 0.74 0.67 0.65 0.65 0.69

IDV 0.77 0.78 0.76 0.78 0.78 0.76 0.77 0.78 0.78 0.76 0.76 0.76 0.77

LPV 0.78 0.78 0.79 0.72 0.72 0.72 0.80 0.82 0.80 0.72 0.72 0.72 0.76

NFV 0.80 0.81 0.78 0.78 0.78 0.78 0.80 0.82 0.79 0.78 0.78 0.78 0.79

RTV 0.86 0.87 0.83 0.80 0.82 0.76 0.86 0.86 0.86 0.80 0.79 0.81 0.83

SQV 0.80 0.80 0.79 0.82 0.82 0.80 0.81 0.82 0.82 0.81 0.82 0.81 0.81

TPV 0.83 0.81 0.79 0.79 0.87 0.85 0.79 0.79 0.79 0.81 0.81 0.91 0.82

AVG 0.79 0.79 0.78 0.77 0.78 0.76 0.79 0.80 0.80 0.77 0.76 0.77 0.78

Nucleoside/Nucleotide RT Inhibitors

3TC 0.89 0.89 0.89 0.68 0.86 0.69 0.90 0.89 0.89 0.86 0.87 0.86 0.85

ABC 0.71 0.68 0.71 0.70 0.71 0.68 0.71 0.73 0.72 0.68 0.65 0.67 0.70

AZT 0.69 0.73 0.73 0.78 0.76 0.73 0.74 0.75 0.74 0.72 0.78 0.72 0.74

d4T 0.72 0.75 0.73 0.77 0.77 0.76 0.79 0.76 0.74 0.79 0.76 0.78 0.76

ddC 0.77 0.79 0.78 0.79 0.76 0.78 0.80 0.77 0.83 0.78 0.78 0.79 0.79

ddI 0.78 0.76 0.75 0.74 0.77 0.73 0.75 0.76 0.74 0.77 0.75 0.76 0.76

FTC 0.92 0.94 0.92 0.81 0.81 0.94 0.94 0.94 1.00 0.83 0.83 0.85 0.89

TDF 0.73 0.72 0.69 0.69 0.69 0.65 0.73 0.76 0.68 0.67 0.67 0.67 0.70

AVG 0.78 0.78 0.78 0.75 0.77 0.75 0.80 0.80 0.79 0.76 0.76 0.76 0.77

Nonnucleoside RT Inhibitors

DLV 0.74 0.71 0.75 0.76 0.70 0.76 0.76 0.75 0.74 0.78 0.74 0.78 0.75

EFV 0.79 0.79 0.79 0.79 0.75 0.74 0.85 0.81 0.84 0.78 0.74 0.76 0.79

NVP 0.83 0.83 0.83 0.82 0.69 0.79 0.85 0.84 0.86 0.83 0.76 0.85 0.82

AVG 0.79 0.78 0.79 0.79 0.71 0.76 0.82 0.80 0.81 0.80 0.75 0.80 0.78
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their respective inhibitor datasets. After calculating
mean 10-fold CV performance measures, subsequent
iterations were carried out which involved incrementing
by 50 mutants (25 for stavudine) the sizes of the
sampled subsets. The learning curves of Figure 3 suggest
that sample sizes significantly affect the performance of

the statistical learning methods, a result similar to one
reported in Rhee et al. [24].

Structure-based prediction of paired HIV-1 RT drug
effects
The reported classification and regression summary data
support the finding that TSM attribute datasets consis-
tently outperform the All and IAS datasets in predicting
mutant HIV-1 PR or RT susceptibility to inhibitors, albeit
marginally in some cases. Similar trends were reported by
the Stanford group, where they reasonably postulated that
prediction success using TSMs emerged from selective
pressure on HIV-1 to escape drug inhibition [24]. Success-
ful HAART regimens either target HIV-1 on multiple
fronts (e.g., PR and RT enzymes), or they consist of medi-
cations that display non-overlapping mutational patterns
of cross-resistance (e.g., NRTIs and NNRTIs are associated
with TSMs at disparate subsets of RT residue positions;
see Table 2). Specifically, many cocktails include a pair of
NRTIs that display incongruent patterns of selective muta-
tional pressure across the TSM positions for the class, and
these are typically combined with an NNRTI (or a PI) [2].
In addition to the potential for cross-resistance, serious
factors that may preclude the pairing of certain drugs
include antagonism, toxicity, and reduced efficacy.
An application of our structure-based approach facili-

tates the identification of potentially effective drug combi-
nations targeting HIV-1 RT. First, we represent the RT
mutants comprising each of the NRTI and NNRTI inhi-
bitor datasets as feature vectors consisting of EC score
attributes at all 39 combined TSM residue positions asso-
ciated with both inhibitor classes (Table 2: 24 and
15 TSM positions associated with NRTIs and NNRTIs,
respectively). Next, we select one inhibitor dataset of RT
mutants to train a REPTree regression model, and testing
is performed on another dataset. All possible pairs of
datasets are used as training/testing combinations, and
we report the correlation coefficients (-1 ≤ r ≤ 1) between
the actual and predicted relative susceptibility levels of
the mutants in each test set; in cases where the same
inhibitor is used for training and testing, the results
reflect the resubstitution error for that dataset (Table 4).
Positive values of r ® 1 suggest a greater likelihood of 1)
similar mutant susceptibility profiles and consequent
cross-resistance between the inhibitors representing the
training/test set pair; or 2) increased antagonism and
toxicity, or reduced efficacy with respect to concomitant
administration of both drugs. On the other hand, effec-
tive drug combinations are more likely to be associated
with training/test set pairs that yield insignificant (rela-
tively closer to zero) or negative correlations.
Given the interpretations outlined above, the data in

Table 4 reflect both the historical spectrum of clinically
prescribed drug cocktails as well as the currently

Figure 3 Relating dataset size to model performance. Learning
curves plotted for (a) ritonavir (RTV), (b) stavudine (d4T), and (c)
nevirapine (NVP) using their respective TSM attribute mutant
datasets (ACC, overall accuracy).
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recommended treatment guidelines [2]. Our comple-
mentary sequence-based (n-grams) models yield a simi-
lar table of correlations published in a recent report
[28], where a subsequent discussion detailing specifically
how those data mirror the treatment guidelines also
applies here to the structure-based results of Table 4.

Sequence-based classification and regression
summaries
As fully described in our companion study [28], the HIV-1
PR and RT mutants comprising the 19 inhibitor-specific
datasets are represented as feature vectors of sequence-
based input attributes through two types of n-grams appli-
cations, referred to as the relative frequency and the counts
methods, and these datasets are used in conjunction with
two statistical learning algorithms (REPTree regression
and RF classification). Our sequence-based results (Table 5
adapted from [28]) are in line with those of both our struc-
ture-based models as well as the sequence-based models of
the Stanford group with respect to the PI and NNRTI
classes, and similar to what was observed with our struc-
ture-based models, this n-grams approach ranks lamivu-
dine second to emtricitabine in mean accuracy among the
NRTIs. A minor discrepancy is observed, whereby our
sequence-based models rank tenofovir second lowest in
mean accuracy compared to abacavir among the NRTIs,
while both our structure-based models and the sequence-
based models of the Stanford group have these rankings
inverted. Additional performance data for our sequence-
based models and a detailed analysis of all results are pro-
vided in the aforementioned report.

Sequence contribution to n-grams prediction
As shown in [28], we examine attributes selected at
REPTree nodes for our sequence-based models in order

to identify the most information-rich HIV-1 PR and RT
residue positions used by those regression trees, thereby
leading to their predictive capability. For each inhibitor-
specific model, Table 6 (adapted from [28]) summarizes
the attributes selected for the root node (most informa-
tive) as well as for nodes at the next two levels, where an
attribute i corresponds to both sequence positions i and
i + 1 in either PR or RT based on the relative frequency
n-grams approach (n = 2). Note that all root node attri-
butes correspond to sequence positions that appear in both
the IAS and TSM drug resistance mutation sets, while the
majority (> 75%) of attributes at the next two levels of
nodes correspond to positions that either also overlap both
sets or appear exclusively in the TSM subsets.

Conclusions
We developed accurate and efficient statistical learning
models, based on innovative approaches using structure
and sequence, for systematically relating residue replace-
ments in HIV-1 PR and RT target enzymes (genotypes)
to quantified changes in susceptibility to each of 19 anti-
retroviral drugs (phenotypes). The models were trained
using datasets of previously assayed mutants with
known phenotypes that were made available from the
Stanford University HIV Drug Resistance Database [25].
For the structure-based models, mutant PR or RT pro-
teins were represented as feature vectors whose input
attributes, obtained via an in silico mutagenesis techni-
que relying on a four-body statistical potential energy
function, quantified environmental perturbations
at positions in their respective targets upon mutation
(Figure 4). Similarly, we developed sequence-based mod-
els by generating mutant attributes through two applica-
tions of n-grams, a technique previously used by other
groups in a variety of studies on proteins [32-36] though

Table 4 REPTree regression correlation coefficients (r) using TSM positions for both NRTIs and NNRTIs to construct
structure-based mutant feature vectors

NRTIs NNRTIs

Train/Test 3TC ABC AZT d4T ddC ddI FTC TDF DLV EFV NVP

NRTIs

3TC 0.99 0.71 -0.05 0.04 0.45 0.39 1.00 -0.29 -0.11 -0.16 -0.23

ABC 0.83 0.92 0.28 0.44 0.64 0.67 0.91 0.02 -0.13 -0.08 -0.17

AZT 0.07 0.39 0.90 0.75 0.17 0.28 0.34 0.63 -0.03 0.02 -0.01

d4T 0.17 0.55 0.76 0.93 0.56 0.64 0.36 0.56 -0.11 -0.04 -0.08

ddC 0.57 0.67 0.15 0.48 0.90 0.85 0.93 -0.03 -0.14 -0.14 -0.20

ddI 0.41 0.69 0.28 0.63 0.85 0.92 0.70 0.13 -0.12 -0.06 -0.12

FTC 0.94 0.67 -0.02 0.02 0.42 0.35 0.99 -0.30 -0.15 -0.19 -0.26

TDF -0.46 -0.03 0.68 0.57 -0.08 0.04 -0.41 0.86 0.04 0.09 0.10

NNRTIs

DLV -0.15 -0.12 0.08 0.01 -0.08 -0.09 -0.33 -0.01 0.89 0.60 0.68

EFV -0.09 -0.01 0.12 0.04 -0.09 -0.04 -0.13 0.04 0.64 0.93 0.79

NVP -0.13 -0.05 0.16 0.08 -0.13 -0.09 -0.21 0.03 0.63 0.72 0.93
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not in this particular realm. Our models display perfor-
mance measures that are generally competitive with
those described by Rhee et al. [24] in their seminal sys-
tematic study that utilizes a sequence-based approach.
The structure-based (sequence-based) methods reported
here represent prediction strategies that are orthogonal
(complementary) to those of Rhee et al., and both stu-
dies employ non-overlapping, information-rich attri-
butes. In a novel application, our models were used to
classify all pairs of RT inhibitors as either potentially
effective as part of an antiretroviral cocktail, or a combi-
nation that should not be concomitantly administered.

Methods
Datasets
All HIV-1 PR and RT mutational patterns and corre-
sponding drug susceptibilities were obtained from iso-
lates tabulated in the Stanford University HIV Drug
Resistance Database [25]. Here we provide a brief sum-
mary of directly relevant information, with additional
details reported by the Stanford group in Rhee et al.
[24]. We excluded all isolates with electrophoretic

evidence of multiple amino acids at one or more of the
sequence positions 1 - 99 of PR or 1 - 543 of RT, caus-
ing our pool of available isolates to be substantially
smaller than that of the Stanford group. Mutational pat-
terns in PR or RT sequences, defined as amino acid sub-
stitutions at one or more positions and exclusive of any
indels (insertions or deletions), were identified relative
to comparisons with the HIV-1 subtype B consensus
wild-type sequence. These PR and RT sequences corre-
spond to mutant proteins for which susceptibility to one
or more of their respective inhibitors were obtained
using the PhenoSense assay (Monogram Biosciences,
South San Francisco, CA) [37,38]. For each PR or RT
mutant isolate, the assay reports susceptibility to an
inhibitor as a fold change, defined as the ratio of 50%
inhibitory concentration (IC50) for the mutant relative
to that for a drug-sensitive, wild-type control.
Separate datasets were produced for the 19 HIV-1 PR

and RT inhibitors under consideration, each consisting of
all respective PR or RT mutant proteins for which fold
change susceptibility values to the particular inhibitor are
available. The mutants in each dataset were classified into
three categories (sensitive, intermediate, resistant) based
on previously reported fold change threshold values, and
all fold change values were log-transformed and standar-
dized prior to analysis [24,28,39].

Table 5 Predictive accuracy of REPTree and RF using
relative frequency and counts methods to represent
dataset sequences

Relative Frequency Counts

Drug REPTree RF REPTree RF Drug Mean

Protease Inhibitors

APV 0.81 0.80 0.80 0.80 0.80

ATV 0.74 0.75 0.76 0.76 0.75

IDV 0.78 0.80 0.75 0.80 0.78

LPV 0.80 0.82 0.80 0.81 0.81

NFV 0.80 0.80 0.79 0.82 0.80

RTV 0.87 0.86 0.87 0.84 0.86

SQV 0.80 0.79 0.80 0.80 0.80

TPV 0.75 0.79 0.75 0.81 0.78

AVG 0.79 0.80 0.79 0.81 0.80

Nucleoside/Nucleotide RT Inhibitors

3TC 0.89 0.87 0.87 0.90 0.88

ABC 0.68 0.68 0.66 0.67 0.67

AZT 0.75 0.75 0.73 0.70 0.73

d4T 0.74 0.79 0.76 0.78 0.77

ddC 0.80 0.75 0.80 0.76 0.78

ddI 0.69 0.73 0.69 0.71 0.71

FTC 0.96 0.83 0.94 0.89 0.91

TDF 0.75 0.75 0.68 0.74 0.73

AVG 0.78 0.77 0.77 0.77 0.77

Nonnucleoside RT Inhibitors

DLV 0.76 0.70 0.76 0.71 0.73

EFV 0.78 0.74 0.76 0.73 0.75

NVP 0.84 0.79 0.82 0.77 0.81

AVG 0.79 0.74 0.78 0.74 0.76

Table 6 Feature vector attribute selections by REPTree
regression models using relative frequency method

Drugs Root Nodea Level 1 Nodesa Level 2 Nodesa

PIs

APV: 10 84, 87 32, 34, 53

ATV: 54 73 32, 50

IDV: 54 45, 53 72, 83, 90

LPV: 54 45 77, 84

NFV: 10 54, 87 29, 75, 83, 90

RTV: 54 9, 84 19, 82, 84

SQV: 70 10, 83 47, 54, 90

TPV: 90 52, 56 40, 73

NRTIs

3TC: 183 64 66

ABC: 183 115, 214 64, 101, 114, 118

AZT: 67 166, 210 76, 214

d4T: 209 76, 177 66, 67

ddC: 115 134, 183 65, 117

ddI: 150 43, 61 39, 183

FTC: 183 123, 214 40

TDF: 214 34, 65 68, 227, 285

NNRTIs

DLV: 102 165, 180 69, 100, 190, 209

EFV: 102 189 99, 188

NVP: 189 103, 172 173, 180
a Regular font, both IAS and TSM sets of positions; bold, TSM set only;
underlined, neither set.
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Computational mutagenesis methodology
Structural coordinates for native HIV-1 PR and RT pro-
teins were obtained from the Protein Data Bank (PDB
accession codes: 3phv for PR; and 1rtj, chain A for RT)
[26], which were used for generating residue-based
coarse-grained representations of the proteins as collec-
tions of points in three-dimensional (3D) space, corre-
sponding to centers of mass of the constituent amino
acid residue side chains (Ca coordinates used for gly-
cine). A convex hull of space-filling, non-overlapping,
irregular tetrahedra was generated for each protein with
the Qhull [40] implementation of the Delaunay tessella-
tion algorithm, a classical computational geometry tiling
technique [41], whereby the points serve as tetrahedral
vertices (Figure 5). Hundreds of tetrahedra are typically
generated by the tessellation of an average sized protein,
each objectively identifying at its four vertices a quadru-
plet of structurally nearest neighbor residues. Assuming
an N = 20 letter amino acid alphabet, the r = 4 vertices
of each tetrahedron may correspond to any one of

distinct residue quadruplet types. Each point is gener-
ally shared as a common vertex by numerous adjacent
tetrahedra in a tessellation; hence the quadruplets
defined by these tetrahedra share a common residue. To
ensure that each tetrahedron identified an interacting
residue quadruplet, tetrahedral edges longer than 12
angstroms were removed from all protein structure tes-
sellations prior to analysis [42].
We previously developed a four-body, knowledge-

based statistical contact potential by tessellating a
diverse, representative subset of the PDB [27], consisting
of 1375 non-redundant (< 30% sequence identity), high-
resolution (≤ 2.2 angstroms) x-ray crystallographic pro-
tein structures culled using the PISCES server [43]. For
each of the 8855 distinct residue quadruplet types (i,j,k,
l), an observed relative frequency of occurrence fijkl was
calculated as the proportion of all tetrahedra collectively

Figure 4 Graphical summary of the structure-based study methodology. A structure-based approach makes use of a computational
mutagenesis methodology to generate attributes for feature vectors representing HIV-1 RT mutants. Mutants with known phenotypes (levels of
susceptibility to various inhibitor drugs) are used to train predictive classification and regression models of drug resistance.
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generated by the tessellations for which the given resi-
due quadruplet appears at the four vertices. A rate
expected by chance for the quadruplet was obtained
with the use of a multinomial reference distribution,
given by

In the above formula, an represents the proportion of
all amino acids in the tessellated proteins that are of
type n, and tn represents the number of occurrences of
amino acid n in the quadruplet. Through an application
of the inverted Boltzmann principle, the log-likelihood
score sijkl = - log (fijkl / pijkl) was used to quantify an
energy of interaction for the residue quadruplet [44].
The collection of 8855 distinct types of residue quadru-
plets and their respective scores defines the four-body
statistical potential.
Returning to the native HIV-1 PR and RT protein

structures, each constituent tetrahedron in their tessella-
tions was assigned a score equivalent to that of the resi-
due quadruplet identified at its four vertices. For each
tessellation, the sum of all tetrahedral scores defined a
total potential for the respective protein [27]. A residue
environment score was also calculated for each PR and
RT sequence position by identifying all tetrahedra that
share the corresponding point as a vertex and adding up
their scores, with the respective 99D (for PR) and 543D
(for RT) vectors of residue environment scores referred
to as protein potential profiles [27,45]. Similar results
were obtained for each PR or RT mutational pattern,
first by removing the residue identities from the vertices
of the respective protein tessellation while retaining
their sequence position numbers, then by threading the

mutant protein sequence onto those vertices and recal-
culating the tetrahedral scores. We refer to the differ-
ence between mutant and wild-type total potentials as
the mutant residual score, which quantifies the relative
change to protein sequence-structure compatibility;
their component-wise potential profile difference as the
mutant residual profile; and the individual components
of a residual profile as environmental change (EC) scores,
which collectively quantify all sequence position-specific
perturbations relative to wild-type [27].

Prediction algorithms and performance evaluation
Entire residual profiles, as well as distinct subsets of
their full complement of EC score components, were
employed as the attributes of mutant feature vectors for
structure-based models. To each inhibitor dataset, we
applied two classification [random forest (RF) [46] and
support vector machine (SVM) [47]] and two regression
[reduced-error pruned tree (REPTree) regression [48]
and support vector regression (SVR) [49]] statistical
learning methods for classifying the corresponding
mutants into one of three categories. All four algorithms
were implemented using the Weka [48] suite of machine
learning tools using default parameters, with the follow-
ing exceptions: for RF, we used forests consisting of 100
trees; for REPTree, we initially performed ten iterations
of bootstrap aggregating (bagging) [50] on each dataset;
for SVM, we fit logistic models to the outputs in order
to obtain proper probability estimates; and for both
SVM and SVR, we used a radial basis function (RBF)
kernel, we performed neither normalization nor standar-
dization of the mutant attributes, and we varied both
the complexity parameter and the RBF gamma para-
meter in order to optimize performance. For our
sequence-based models, each inhibitor-specific dataset
of mutants was represented in two distinct ways based

Figure 5 Delaunay tessellation of HIV-1 PR. (a) Ribbon and (b) ball and stick diagrams depicting the 99-residue single chain of HIV-1 PR are
based on atomic coordinates provided by PDB accession code 3phv. (c) Delaunay tessellation of HIV-1 PR is superimposed over a Ca trace of
the protein (drawn in red). The PR tessellation was generated using the center of mass coordinates of the amino acid side chains (Ca for
glycine), which are represented by the tetrahedral vertices.
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on n-grams, according to the type of input attributes
used for generating mutant feature vectors (relative fre-
quency versus counts approaches), and we specifically
focused on applying RF classification and REPTree
regression algorithms with parameters identical to those
described above.
Stratified tenfold cross-validation (10-fold CV) testing

was used to evaluate the performance of each algorithm
on each dataset. For classification models, prediction
results were reported by calculating the overall accuracy
(ACC, proportion correct), the balanced error rate (BER),
the area (AUC) under the receiver operating characteris-
tic (ROC) curve, and the RF out-of-bag (OOB) error rate.
For regression models, we reported the Pearson’s correla-
tion coefficient between actual and predicted drug sus-
ceptibility values for the dataset mutants, the mean-
squared error (mse), and the overall accuracy of mutant
classifications based on their predicted values. Statistical
significance results (p-values) were calculated based on
the use of appropriate t-tests. Additional details regarding
these evaluation metrics are available in [28].

Additional material

Additional file 1: BER and AUC performance measures associated
with RF and SVM classification, using TSM, All, and IAS sets to
construct mutant feature vectors

Additional file 2: RF classification OOB values, using TSM, All, and
IAS sets to construct mutant feature vectors

Additional file 3: r2 and mse performance measures associated with
REPTree and SVR regression, using TSM, All, and IAS sets to
construct mutant feature vectors
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