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Abstract

Background: Multi-trait genomic models in a Bayesian context can be used to estimate genomic (co)variances,
either for a complete genome or for genomic regions (e.g. per chromosome) for the purpose of multi-trait genomic
selection or to gain further insight into the genomic architecture of related traits such as mammary disease traits in
dairy cattle.

Methods: Data on progeny means of six traits related to mastitis resistance in dairy cattle (general mastitis
resistance and five pathogen-specific mastitis resistance traits) were analyzed using a bivariate Bayesian SNP-based
genomic model with a common prior distribution for the marker allele substitution effects and estimation of the
hyperparameters in this prior distribution from the progeny means data. From the Markov chain Monte Carlo
samples of the allele substitution effects, genomic (co)variances were calculated on a whole-genome level, per
chromosome, and in regions of 100 SNP on a chromosome.

Results: Genomic proportions of the total variance differed between traits. Genomic correlations were lower than
pedigree-based genetic correlations and they were highest between general mastitis and pathogen-specific traits
because of the part-whole relationship between these traits. The chromosome-wise genomic proportions of the
total variance differed between traits, with some chromosomes explaining higher or lower values than expected in
relation to chromosome size. Few chromosomes showed pleiotropic effects and only chromosome 19 had a clear
effect on all traits, indicating the presence of QTL with a general effect on mastitis resistance. The region-wise
patterns of genomic variances differed between traits. Peaks indicating QTL were identified but were not very
distinctive because a common prior for the marker effects was used. There was a clear difference in the region-wise
patterns of genomic correlation among combinations of traits, with distinctive peaks indicating the presence of
pleiotropic QTL.

Conclusions: The results show that it is possible to estimate, genome-wide and region-wise genomic (co)variances
of mastitis resistance traits in dairy cattle using multivariate genomic models.
Background
Livestock provide a great source of data to investigate
genome-wide effects on various phenotypic characteris-
tics such as infectious diseases. There are several reasons
for this, including: (1) vast amounts of phenotypic mea-
sures (milk yield in dairy cattle, litter size in pigs, daily
gain in broilers etc.) are systematically recorded in mod-
ern livestock production and in Danish dairy cattle, for
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example, phenotypic information on a variety of traits,
including clinical disease, is stored together with pedi-
grees in one central database; (2) important environmen-
tal factors, such as herd membership, affecting various
phenotypes are recorded and animals within such groups
receive rather homogeneous treatments; (3) low effective
population sizes are frequent in livestock (e.g. compared
with humans), which makes it easier to predict genetic
merit and (4) recently, routine genotyping using dense
SNP marker panels (e.g. >50 K) for thousands of animals
has been initiated in several livestock species.
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In the Nordic countries (Denmark, Finland, Norway,
and Sweden), treatment of udder infections (mastitis) in
dairy cattle is systematically recorded by veterinarians or
farmers. However, estimates of heritability of mastitis in-
cidence are low (i.e. 0.1 on the underlying continuous
scale or 0.03 on the observable scale; [1] and [2], respect-
ively). The disease can be caused by a large number of
microbial pathogens [3], which differ in pathogenesis
and reservoir. Several studies have shown that the mam-
mary immune response differs between pathogens [4,5]
suggesting that it is regulated by different genes and that
mastitis caused by different pathogens should be consid-
ered as different traits. This is supported by our previous
study [1] in which pedigree-based analyses were con-
ducted to estimate genetic correlations between mastitis
caused by different pathogens. The genetic correlations
between mastitis caused by five common mastitis patho-
gens, Staphylococcus aureus, Escherichia coli, coagulase-
negative staphylococci (CNS), Streptococcus dysgalactiae,
and Streptococcus uberis, ranged from 0.45 to 0.77, which
implies that the mammary immune system, or the phys-
ical defense system, or both, act in a pathogen-specific
manner. However, the existence of positive genetic corre-
lations also implies the presence of pleiotropic effects or
linked quantitative trait loci (QTL). Several studies have
reported different heritability estimates for pathogen-
specific mastitis traits [6-8], indicating that they may dif-
fer between traits, although some of these differences
may also be due to differences in data structure and in
the method used to estimate genetic parameters.
Genomic data are now used to infer either (1) whole-

genome effects for the purpose of, e.g., estimation of
breeding values to select superior breeding animals or
for prediction of future phenotypes such as disease risks,
or (2) effects of single genes or markers, to guide the de-
velopment of human or veterinary drugs through
improved knowledge on the biological basis of traits. Ap-
proach (1) typically involves ‘whole genome’ models that
model all SNP simultaneously, whereas approach (2)
involves Genome-Wide Association Studies (GWAS), in
which, typically, each SNP is tested individually using
univariate association tests. Here, we suggest a com-
promise between these two approaches by employing
whole-genome models in which variances and covar-
iances are partitioned by chromosome segments. We
hypothesize that this approach will capture a large por-
tion of the genetic variance, while also providing further
biological understanding of the traits in question. Inves-
tigating the effects of chromosome segments of variable
size (e.g. regions of neighboring SNP, haplotypes, gene-
networks, chromosomes) and correlations among seg-
ment effects on different traits may provide interesting
insights into the genetic and biological architecture of
disease traits such as mastitis incidence.
Statistical methods for genomic analyses typically employ
fixed prior parameters, which make them less suited to esti-
mate genomic (co)variances. Models that use a genomic re-
lationship matrix, e.g. [9], could be used to estimate (co)
variances using REML (Restricted Maximum Likelihood)
but studying (co)variances per chromosome or for several
chromosome segments would be computationally prohibi-
tive. For instance, a bivariate analysis in dairy cattle with 30
chromosomes would involve 30 genomic relationship
matrices and the simultaneous estimation of 90 variance-
covariance components. Using multivariate genomic selec-
tion methodology [10] for mastitis traits, it is possible to
build a (co)variance matrix of allele substitution effects. In
this study, we used a Bayesian SNP-based genomic model,
which was extended to estimate hyperparameters of the
prior distribution of allele substitution effects from the data.
Thereby, the method makes it possible to estimate genomic
(co)variances while remaining computationally feasible.
Results can be used to reveal genomic regions associated
with only one pathogen (pathogen-specific effects), asso-
ciated with two or more pathogens (group-specific effects),
or associated with all the pathogens (general effects). The
estimated (co)variances between the allele substitution
effects can also be used to compute various genetic para-
meters such as heritabilities and correlations; these can be
computed region-wise (e.g. per chromosome) or genome-
wide.
The objectives of this work were to (1) present a multi-

variate model for genome-wide and region-wise associ-
ation studies, (2) perform simultaneous estimation of
genomic effects (allele substitution effects) for mastitis
resistance using more than one trait, and (3) estimate
covariances between traits across the chromosomes and
across regions of various sizes.

Methods
Phenotypic data
The data comprised records of mastitis treatments and
pathogen information (results of bacteriological culturing of
milk samples) from Danish Holstein cows that calved for
the first time between January 1998 and January 2009 (col-
lection period). The data were extracted from the Danish
National Cattle Database. Mastitis is a difficult trait to
analyze due to its low heritability and a potential bias in the
treatment of cows; thus, data were edited as described in
[11]. Briefly, data from cows that had calved after March
2008 (300 days before the end of the collection period) were
removed from the dataset to reduce the bias due to censor-
ing. In addition, the following criteria were required for a
herd to be included in the dataset: age at first calving be-
tween 19 and 36 months for a cow to be included in the
data set, participating herds with at least 30 first calvings in
a given year of the collection period, and active participation
in disease recording [12]. Information on mastitis
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treatments was merged with pathogen data if the recorded
date of a pathogen was three days before to four days after
a case of mastitis was recorded on the same cow. Only the
data from daughters of genotyped bulls were included in
the present study and each bull was required to have at least
five daughters calving during the collection period, resulting
in a dataset of 200 149 daughters of 1 844 genotyped sires.

Trait definitions
General mastitis was defined as a binary trait for the period
from15 days before to 300 days after first calving, i.e. a
pheno type of “1” was assigned if a cow was treated for
mastitis during this period and “0” otherwise. Only the first
observed mastitis treatment for each cow was included. The
five most common pathogens in Danish dairy herds, i.e.
Staph. aureus, CNS, E. coli, Strep. dysgalactiae, and Strep.
uberis, were chosen to represent the pathogen-specific mas-
titis traits (also binary). The pathogen-specific traits were
defined only for treatments with pathogen information. In
contrast, the trait “general mastitis” contained all recorded
(according to trait definition) treatments of mastitis, i.e.
both treatments with and without pathogen information.

Estimation of progeny means (PM) adjusted for non-
genetic effects
For computational reasons, it was necessary to summarize
information per sire (meta-analysis) due to the small num-
ber of sires and the large number of offspring per sire, and
availability of SNP information on the sires only. Thus, PM
of the mastitis traits were estimated as daughter yield devia-
tions, as described by [13]. However, in the present study, a
sire model was used to estimate both PM and EBV; thus
PM were defined as a trait corrected for all known environ-
mental effects and averaged over records so that they con-
sisted of additive genetic and residual effects. For the
mastitis traits, a threshold-liability model [14] was applied
to estimate PM. The threshold model assumes the presence
of an underlying continuous random variable called liabil-
ity, λ. The relationship between the observed binary vari-
able, y, and the unobservable λ is

yi ¼ 0 if λi≤τ
1 if λi > τ

�

where τ is a fixed threshold and yi=1 and 0 correspond to
the presence or absence of mastitis for observation i, re-
spectively. It was assumed that λ is normally distributed
with a mean vector μ and covariance matrix R ¼ Iσ2e . Be-
cause τ and σ2

e are undetermined, they were arbitrarily set
equal to τ=0 and σ2

e = 1 such that

λ μ � N μ; Ið Þj
The probability (πi) that observation i is scored as “1”

given the model parameter vector θ, is
πi ¼ Pr yi ¼ 1jθð Þ

¼ Pr λi > 0jθð Þ
¼ 1� Pr λi≤0jθð Þ
¼ Φ μið Þ

where Φ(.) is the standard normal cumulative distribution.

The following sire model was used to describe liability
to mastitis:

λijklm ¼ YMi þ AGEj þ b1 tijklm þ hysk þ sirel þ eijklm

where
λijklm= liability to mastitis of daughter m of sire l
calving in year-month class i at calving age class j and
in herd-year-season class k;
YMi= “fixed” effect of year-month of calving (123
classes);
AGEj= “fixed” effect of calving age (17 classes);
hysk= random effect of herd-year-season (season = year
divided into quarters; 22,918 levels);
sirel= transmitting ability of sire l (8 547 levels);
b1 = “fixed” regression coefficient of λ on the length of
the period at risk;
tijklm = period at risk for daughter m of sire l, defined as
the number of days from 15 days before calving to the
date of culling or to the end of the risk period; it was
assumed that all cows with mastitis had a completed
risk period;
eijklm= residual ~N(0,1) and independent.
In matrix notation, the model for the mastitis traits

can be expressed as:

λ ¼ Xbbþ Xhhþ Zsþ e

where λ is a n× 1 vector of the underlying liabilities of
mastitis, n is the number of records for each trait, b is a
vector of “fixed” effects as described previously, h is a
vector of random herd-year-season effects, s is a vector
of random sire effects, and e is a vector of random re-
sidual effects. Xb, Xhi and Z are corresponding incidence
matrices.
A full Bayesian approach using Markov chain Monte

Carlo (MCMC) methods [15] via Gibbs sampling imple-
mented in the DMU package [16] was used to fit the
models and sample posterior PM. The PM were on the
liability scale and were estimated from the model above
as PMi ¼

P
k
TDk=n, where TDk is the trait of daughter k

on the liability scale and adjusted for all effects other
than additive genetic effects and residuals and n is the
number of daughters of bull i. Independent improper
uniform priors were assigned to each element of b. Herd
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and sire effects were assigned uninformative normal
prior distributions h � N 0; Iσ2

h

� �
and s � N 0;Aσ2

s

� �
, re-

spectively, where I is an identity matrix, A is the additive
relationship matrix, and σ2

h and σ2s are the herd and sire
variances, respectively. Independent scaled inverse chi-
square distributions were used for the unknown variance
components (σ2

h and σ2
s ), with settings so that these prior

distributions were flat. Inferences were based on 600 000
samples; the first 100 000 samples were disregarded as
burn-in, and every 10th sample was saved for post-Gibbs
analyses.
Convergence of the Gibbs chains for each model par-

ameter was ensured using a standardized time series
method of batch means [17,18].

Estimation of heritabilities of progeny means
Subsequently, genetic variances of the estimated PM were
estimated using a standard linear animal model with pedi-
gree information and REML. The PM were weighted based
on the standard errors of prediction (SEP) of the posterior
PM samples. From the estimated variances, heritabilities
for each trait PM were computed for later comparisons
with estimated genomic variances.

Weights for the association model
Standard errors of prediction of the posterior PM sam-
ples were calculated to construct weights for each trait
included in the genomic model to adjust for heteroge-
neous variances of the sire records. The weights were
computed as 1/SEP2 and scaled to achieve an average
weight of 1. The scale factor used in the present study
was the average weight per trait of the 1 844 genotyped
bulls. By scaling the weights to an average of 1, the com-
puted residual variances will be directly comparable with
the genomic (co)variances.

Marker data
The bulls selected for this study were genotyped using
the Illumina Bovine SNP50 BeadChip (Illumina, San
Diego, CA). The raw marker data were edited using the
following criteria: (1) a locus was removed from the
analyses if the minor allele frequency was less than 5%,
if the proportion of animals genotyped for this locus
was less than 95%, if the average GenCall score at the
locus was less than 60%, and if the proportion of miss-
ing marker genotypes was larger than 10%; (2) an indi-
vidual was deleted if the call rate (i.e. the overall call
rate of a sample is equal to the number of SNP receiv-
ing an AA, AB, or BB genotype call divided by the total
number of SNP on the chip) had a score below 0.85.
After editing, 1 844 bulls had daughters with mastitis
and pathogen data, and 37 862 SNP were available and
used in the analyses.
Genomic model
Genomic parameters were estimated using a Bayesian
model in which SNP effects, within a trait, were
assumed to originate from the same normal distribu-
tion. This represents the gBLUP method [9] imple-
mented with Bayesian methodology [19] and a
random walk Metropolis-Hastings algorithm to obtain
MCMC samples for variance components [20]. The
difference between the method described in [9] and
the present method is that the variances are also trea-
ted as unknown model parameters in the Bayesian
model, so that variances and SNP effects are jointly
estimated in a single model. This allows for estimation
of individual SNP effects, which allows the model to
be more easily scaled up to a multi-trait analysis.
Weighted residuals were used in the model and latent
variables were used to model the covariances between
traits within each SNP and between residuals. The bi-
variate model specification was:

PM1 ¼ 1μ1 þ
XM
i¼1

Xib1i þ v1 W�1=2
1 1þ e1

PM2 ¼ 1μ2 þ
XM
i¼1

Xib2i þ v2 W�1=2
2 1þ e2

8>>>><
>>>>:

ð1Þ

where PM1 and PM2 are vectors with PM for the two
traits on a common list of individuals, μ1 and μ2 are
the PM means of each trait, xi are vectors of coded
genotypes of the individual for i = 1, . . ., M SNPs, bki
is the random regression coefficient modeling the ef-
fect for SNP i on trait k, W is a diagonal matrix with
1/SEP2 as diagonal elements, l is a vector of latent
effects that models the correlated part of the residuals
(note the use of the same vector l for both traits), ν1
and ν2 are scale factors for the effect of the latent vec-
tor l on each trait, which can be interpreted as the
elements of the first eigenvector of the residual vari-
ance-covariance matrix (see below), and e1 and e2 are
the uncorrelated parts of the model residuals.
The genotype coding in xi was done as 2p-2, 2p-1, and

2p for homozygotes for the first allele, heterozygotes,
and homozygotes for the second allele. This is similar to
[21], except that p is the frequency of the first allele.
Such coding standardizes the means of the genotype cov-
ariates to zero, assuming Hardy-Weinberg equilibrium of
genotype frequencies, and the regression of such a geno-
type coding on the PM represents the allele substitution
effect for substituting the first coded with the second
coded allele. Covariances between the SNP effects were
also modeled using a latent variable, but this was speci-
fied as a hierarchy in the Bayesian model. In this
multi-trait model, the effects of a SNP on the two traits
were correlated; therefore the variance of marker and
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residual effects were var b1; b2ð Þ � σ2b1 σb1b2

σb1b2 σ2
b2

� �
and

var e1; e2ð Þ � σ2
e1 σe1e2

σe1e2 σ2
e2

� �
, respectively. Note that the

elements of var(b1,b2) were assumed the same across
the genome.
The distributional assumptions of the model para-

meters were:

μ1; μ2; v1; v2 � U �1; 1ð Þ
1 � N 0; Iδ21

� �
e1 � N 0; W�1

1 δ22
� �

e2 � N 0; W�1
2 δ22

� �
b1 � N u1s; t22

� �
b2 � N u2s; t22

� �
s � N 0; It21

� �
δ21; δ22; t21 ; t22 � U 0; 1ð Þ

u1;u2 � U �1; 1ð Þ

with the constraint that |ν| = 1, where ν= (ν1, ν2), |u| = 1,
where u= (u1,u2), and where N() denotes a normal distri-
bution with mean and variance parameter, U() denotes a
uniform distribution on the given interval.
The modeled residual variance-covariance structure

can be shown to be:

var
ν1W

�1=2
1 lþ e1

ν2W
�1=2
2 lþ e2

 !

¼ ν21W
�1
1 δ21 þ Iδ22 ν1ν2W

�1=2
1 W�1=2

2 δ21
ν2ν1W

�1=2
2 W�1=2

1 δ21 ν22W
�1
2 δ21 þ Iδ22

" #

¼ ν21δ
2
1 þ Iδ22 ν1ν2δ

2
1

ν2ν1δ
2
1 ν22δ

2
1 þ Iδ22

� �

� W�1 W�1=2
1 W�1=2

2

W�1=2
2 W�1=2

1 W�1
2

" #

where the first part corresponds to a special form of the
spectral decomposition of the variance-covariance matrix
R, such that it can be shown that ν= (ν1, ν2) is the first
eigenvector of R, δ22 is the second eigenvalue of R, and
δ21 estimates the difference between the first eigenvalue
and the second eigenvalue. In the same way, the vectors
of SNP effects, b, are correlated through the use of com-
mon latent vectors, s, and the variance-covariance struc-
ture for SNP effects can be shown to have a covariance
of u1u2t21 and variances u21t

2
1 þ t22 and u22t

2
1 þ t22 . Again,

(u1,u2) can be interpreted as the first eigenvector of the
variance-covariance matrix, t22 as the second eigenvalue,
and t21 as the difference between the first eigenvalue and
the second eigenvalue.
Implementation
The MCMC estimation for this model was straightfor-
ward for μ1, μ2, b1i, b2i, because these parameters have
conditional normal distributions that are independent
between traits and therefore can be updated in a “single
trait manner”. Also ν1 and ν2 have conditional normal
distributions and were updated as a regression on the
vector l. They were scaled to unity norm after sampling
to apply the constraint on |ν|. The same inverse scaling
was applied to the latent vector l, because ν and l are
multiplicative in the model. Applying the same scaling to
both ν and l is arbitrary but forces the model to uniquely
explain all the variance through l and makes parameters
identifiable. The vector of latent residual effects, l, works
across traits but its conditional distribution is also nor-
mal and derived by unifying the two trait equations into
a single equation:

~y1
~y2

� �
¼ W�1=2

1 v1
W�1=2

2 v2

" #
1½ � þ e1

e2

� �
;

where ~yk ¼ yk � μk �
P
i¼1

M
xibki

Posterior analyses
Model fit was assessed by visual inspection of model
residuals plotted against the reliability of the estimated
breeding values (EBV) for the six traits and significance
of the slope of regression line from zero was tested using
a t-test. Reliability of EBV was calculated as:

r2 ¼ 1� SEP2

σ2
s

� �� �

Posterior statistics for any function of the model para-
meters can be easily obtained when such a function is
computed on the primary MCMC samples of the model
parameters. This was applied to compute direct genomic
breeding values (DGV) of individuals and genomic and
residual (co)variances per chromosome and parameters
derived thereof. For all these estimates, posterior means
and posterior standard deviations were obtained. The
genomic parameters were based on the constructed
DGV of individuals which automatically take into ac-
count the covariance generated between SNP due to
linkage disequilibrium (LD). Markov chain Monte Carlo
samples of individual genomic values for trait 1 (g�1 ) and
trait 2 (g�2 ) were constructed from the MCMC samples
of allele effects for the two traits (b�1 ,b

�
2 ) as g�1 ¼Pxib�1i

and g�2 ¼Pxib�2i . Using markers only in specified inter-
vals (e.g. per chromosome or specified blocks of SNP
within a chromosome), MCMC samples of individual
DGV per interval g�1c and g�2c for interval c were con-
structed. From the MCMC samples of individual DGV,
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MCMC samples of genomic variances and covariances
were subsequently constructed by computing σ2

g1� ¼
var g�1

� �
, σ2

g2� ¼ var g�2
� �

, and σg12� ¼ cov g�1 ; g�2
� �

,

which was done for the whole-genome DGV and for the
interval-wise DGV. Furthermore, MCMC samples of

genomic correlations, rg ¼ σ�g12
σ�g1:σ

�
g2
, were computed, and fi-

nally MCMC samples of the genomic proportions of the
total variance (GPV) were computed. From these con-
structed MCMC samples, posterior statistics such as the
posterior means and posterior standard deviations were
collected.
Inferences were based on 40 000 samples with a burn-in

of 5 000 samples. Every 50th sample was saved and used for
post-MCMC analysis. Convergence of the Markov chains
was ensured by visual inspection of trace plots and plots of
autocorrelations between lags for each model parameter.

Results
The number of daughters with data from individual bulls
and the low heritabilities of the traits both affected the reli-
ability of the EBV and the posterior standard deviations of
the PM. For example, 80% of the bulls had between 5 and
50 daughters with phenotypic information. This resulted in
average reliabilities of EBV of 0.30, 0.36, 0.32, 0.30, and 0.38
for mastitis caused by Staph. aureus, CNS, E. coli, Strep.
dysgalactiae, and Strep. uberis, respectively. The heritability
of general mastitis was higher than that of the pathogen-
specific mastitis traits, resulting in a higher average reliabil-
ity, i.e. 0.57. Accuracy of the PM was assessed by studying
their posterior standard deviations (SD). Figure 1 shows that
0 500 1
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Figure 1 Relationship between number of daughters and standard de
deviations for bulls with more than 2 000 daughters with data are not show
the SD for general mastitis was larger when the number of
daughters was low. Similar results were observed for the
pathogen-specific mastitis traits (not shown).

Model fit
Model fit was assessed by plotting model residuals
(observed PM-DGV) against different variables. In Figure 2,
examples of plots of residuals against reliability of EBV are
shown for general mastitis and mastitis caused by Staph.
aureus. The slope of the regression line was significantly
different from zero (t-test; p< .0.05) for all traits except
Staph. aureus mastitis. For Staph. aureus mastitis, the esti-
mation errors of the DGV clearly increased when reliabil-
ities of the EBV reached values below 0.5. This trend was
observed for all the pathogen-specific mastitis traits. For
general mastitis, which had higher heritability and EBV
reliabilities estimation errors of the DGV increased when
EBV reliabilities were below 0.7.

Whole-genome GPV
The average of the posterior means of GPV from the
pair-wise analyses of the mastitis traits differed among
traits (Table 1). Among the pathogen-specific mastitis
traits, the largest value was found for CNS, followed by
Strep. uberis, E. coli, Staph. aureus, and Strep. dysgalac-
tiae. Analysis of a trait in different pair-wise trait combi-
nations, resulted in similar GPV for the trait. As
expected, the GPV of general mastitis was higher than
that of pathogen-specific mastitis traits, except when
compared to mastitis caused by CNS. Table 1, shows the
pedigree-based heritabilities of the trait PM for
000 1500 2000
ghters with data

viations of progeny means for general mastitis. Standard
n.
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comparison. Pedigree-based heritabilities were all smaller
than the GPV but had the same ranking across traits.

Whole-genome correlation
Genomic correlations (Table 2) among the investigated
traits were moderate to high (0.22 to 0.72). Genomic cor-
relations among the pathogen-specific traits (0.22 to
0.51) were lower than genomic correlations between gen-
eral mastitis and the pathogen-specific mastitis traits
(0.55 to 0.72) because of their part-whole relationship, i.
e. pathogen-specific cases of mastitis are part of the gen-
eral mastitis cases.

Chromosome-wise GPV
All chromosomes explained significant amounts of genetic
variance for each trait, except chromosome X (BTA30),
which explained substantially less variance than would be
expected based on its size. For example, the variance
Table 1 Whole-genome genomic proportions of total
variance (GPV) and pedigree-based estimates of
heritability h2 for progeny means of mastitis
susceptibility to five pathogens and general mastitis and
standard deviations (SD) of the estimates

Trait GPVa (range) Average GPVb SD (range) h2

Staph. aureus 0.46-0.48 0.48 0.022-0.025 0.58

CNS 0.62-0.64 0.63 0.020-0.023 0.79

E. coli 0.47-0.48 0.47 0.024-0.026 0.56

Strep. dysgalactiae 0.40-0.42 0.41 0.024-0.029 0.50

Strep. uberis 0.49-0.51 0.51 0.023-0.025 0.59

General mastitis 0.52-0.52 0.52 0.024-0.026 0.64

Pedigree based heritabilities are shown for comparison; afrom multiple pair-wise
combinations with the trait; baverage across analyses
explained by chromosome X was 93% lower than expected
for general mastitis. For the other chromosomes, the trend
is that chromosome-wise GPV (Figure 3) increases with
chromosome size (Bos Taurus 4.0; [22]), i.e. larger chromo-
somes tend to explained more genomic variance. This pat-
tern was seen for all traits.
Some chromosomes deviated from the general trend

and explained more variance than would be expected
according to their relative size, i.e. they may contain rela-
tively more QTL or QTL with larger effects on the trait
and such chromosomes differed across traits; chromo-
somes with relatively large GPV were BTA6, 13, 14, 16,
19, and 26 for Staph. aureus mastitis; BTA1, 11, 14, 17,
19, and 20 for CNS; BTA6, 11, 13, 14, 16, 19, and 21 for
E. coli; BTA3, 14, 17, 19, 20 and 25 for Strep. dysgalac-
tiae; and BTA6, 13, 14, 18, 19, 25 and 27 for Strep.
uberis. Additional chromosomes with less pronounced
effects, but still above their expected value, were
observed for most of the pathogen-specific traits. Chro-
mosomes showing a large variance for general mastitis
were BTA3, 5, 6, 14, and 19. Only BTA19 had higher
GPV than expected according to size for all traits.
Chromosome-wise genomic covariances
For all chromosomes, covariances between traits were
positive (results not shown), resulting in overall positive
genomic correlations between the traits, given the de-
fault prior assumptions for the latent vector, l. For all
trait pairs, there was a high proportion of chromosomes
with larger covariances than expected, which may indi-
cate the presence of pleiotropic QTL. In addition, in sev-
eral cases a limited number of chromosomes accounted
for a major part of the total covariance, e.g. BTA3, 6, 10,



Table 2 Genomic correlations among the five
pathogen-specific mastitis traits and general mastitis

Traita CNS COL DYS UBE MAS

AUR 0.22 (0.04) 0.28 (0.04) 0.42 (0.05) 0.25 (0.05) 0.55 (0.03)

CNS 0.37 (0.05) 0.38 (0.04) 0.51 (0.04) 0.62 (0.03)

COL 0.32 (0.05) 0.39 (0.04) 0.67 (0.03)

DYS 0.45 (0.05) 0.61 (0.04)

UBE 0.72 (0.03)

Posterior standard deviations in brackets; aAUR: Staph. aureus; CNS:
coagulase-negative staphylococci; COL: E. coli; DYS: Strep. dysgalactiae; UBE:
Strep. uberis; MAS: general mastitis
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11, 13, 14, 16, 19, 21 and 29 for the covariance between
Staph. aureus and E. coli (Figure 4).

Chromosome-wise genomic correlations
In Figure 5, three examples are shown to illustrate the
differences in chromosome-wise genomic correlations
between pair-wise trait combinations with Staph. aureus.
Differences between chromosomes were still noticeable
but were far less pronounced compared with the
chromosome-wise genomic covariances. Similar to the
chromosome-wise GPV, some chromosomes had larger
genomic correlations than expected based on the gen-
ome-wide genomic correlation. This could indicate the
presence of pleiotropic QTL, e.g. BTA16 and 19 for the
combination of Staph. aureus and Strep. uberis. In con-
trast to the genomic covariances, the genomic correla-
tions did not depend on chromosome size but were
similar across chromosomes.

Region-wise genomic variance and correlation
BTA19 was further investigated as this chromosome
showed a clear effect on all traits. Profiles of genomic
variances across this chromosome were created by com-
puting posterior variances in half-overlapping blocks of
100 SNP for each trait. This means that one computation
was done for blocks with SNP 1–100, 101–200 etc., and
a second computation was done for blocks with SNP 1–
50, 51–150 etc. and then the values of overlapping blocks
were averaged to smooth out blocks of 50 SNP.
In general, the genomic variance on BTA19 (Figure 6)

was spread across the entire chromosome, except at the
chromosome ends, with regions of larger variance than
average. The variance patterns differed between traits but
a common peak was observed around 35 Mb for the
pathogen-specific traits except E. coli. This peak was most
pronounced for CNS and Strep. uberis. Also, a peak was
observed around 10 Mb for E. coli and Strep. dysgalactiae.
No clear peaks were observed for general mastitis, possibly
because of the composition of this trait.
Establishing the profiles of genomic correlations for

BTA19 as described above, revealed the pleiotropic regions
along the chromosome. Figure 7 shows such profiles for
the genomic correlations between Staph. aureus and the
other traits. The magnitude of the genomic correlations
differed between trait combinations, with the largest gen-
omic correlations obtained between Staph. aureus and
general mastitis because of their part-whole relationship.
The genomic correlation between pathogen-specific traits
was highest for Staph. aureus and CNS, likely because
both are staphylococci. The genomic correlation between
Staph. aureus and Strep. dysgalactiae was also high, while
that between Staph. aureus and Strep. uberis was the low-
est, followed by the correlation between Staph. aureus and
E. coli. The positions and widths of the pleiotropic regions
differed between trait combinations. For example, a very
narrow region around 35 Mb was observed for the gen-
omic correlation between Staph. aureus and Strep. uberis,
while it was much wider around 30 Mb for the genomic
correlation between Staph. aureus and E. coli.

Discussion
Whole-genome GPV
The estimated values for GPV express the proportion of the
total variance (additive genetic variance+ residual variance)
of the PM that is explained by the markers and can there-
fore be related to the heritabilities of the PM. However, be-
cause the PM are mean phenotypes, the explained variance
in PM is increased relative to heritabilities of individual phe-
notypes. The GPV estimates were 80% to 87% of the pedi-
gree based estimates of heritability but almost perfectly
lined up with each other. Variances explained by markers
can be expected to be lower than pedigree-based variances
because the markers used may not be in complete LD with
the causal polymorphisms [23].
The ranking of the GPV across traits was slightly dif-

ferent from the ranking of heritabilities reported in [1],
in which the heritability was lowest for mastitis caused
by Staph. aureus, followed by Strep. dysgalactiae, E. coli,
CNS, Strep. uberis and general mastitis. In our study, the
rankings of Staph. aureus and Strep. dysgalactiae and
CNS and Strep. uberis were shifted around. Heritability
of general mastitis was up to three times higher than that
of pathogen-specific mastitis in [1] while in our case
when considering the mean GPV, the highest average
GPV was obtained for mastitis caused by CNS. Posterior
means of GPV for a trait differed little between the pair-
wise analyses of the traits. This indicates that the model
is robust and performs well for this parameter. However,
it is not clear why we see the difference in ranking be-
tween the GPV and traditionally estimated heritabilities.
This could be related to data issues such as disease inci-
dences or reliabilities of the PM.

Whole-genome correlation
The posterior means of the genome-wise genomic corre-
lations were all lower than the traditionally estimated
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genetic correlations based on pedigree [1,11,24]. Also,
the ranking of the genomic correlations among the
pathogen-specific mastitis traits was different compared
with the pedigree-based results reported in [1]. The gen-
omic correlations between general mastitis and the
pathogen-specific mastitis traits were expected to be
higher than among the pathogen-specific mastitis traits
because of part-whole relationships. We did find higher
values for correlations involving general mastitis but
compared to [24], who reported values close to unity
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(0.87 to 0.94) based on a linear pedigree-based sire
model, the values found in the present study were much
lower. We have no clear explanation for why the gen-
omic correlations are different from the pedigree-based
estimates. If all the genomic variance is captured but not
all the covariance, this will lead to a lower genomic cor-
relation and vice versa. The overall covariance could be
affected by the priors used in the model, which assumed
a common covariance across the genome.

Chromosome-wise GPV
Genomic proportions of the total variance were also esti-
mated per chromosome for all traits. Generally, the mag-
nitude of the GPV was increased with size of the
chromosomes. However, some chromosomes had slightly
higher GPV than average compared to their size and for
other chromosomes, the GPV was a little lower than
expected based on size. The dependency on chromo-
some size can partly be explained by the number of mar-
kers on each chromosome. The model assumes a priori
the same variances for all SNP, which is in line with the
standard assumption in gBLUP [9]. Thus, larger chromo-
somes, which harbor more SNP, will a priori explain
more variance than smaller chromosomes. In contrast to
using a mixture prior for the SNP effects, a common
prior will equalize the SNP effects across the genome
and is less suitable to detect small differences in SNP
effects.
Based on the results presented here, higher than

expected (based on size) chromosome-wise GPV may in-
dicate the presence of QTL on the chromosome.
Chromosomes that explained most variance may also
harbor the most important QTL (major genes) affecting
the trait. Clear differences in the GPV profiles were
observed between the six traits. However, working at the
chromosome level is likely not detailed enough to detect
clear pathogen-specific regions since no clear distinc-
tions between traits were detected regarding chromo-
somes which explain more variance than expected,
except for BTA19, which had a relatively high GPV for
all traits, including general mastitis. This may indicate
that this chromosome harbors QTL with a general effect
on mastitis resistance.
Information about QTL in the present study could be

better compared to traditional QTL methods. In contrast
to multi-trait implementations of traditional QTL map-
ping based on linkage e.g. [25-28], we used a 50 K SNP
panel and a simpler association model to perform map-
ping, which was possible because the marker map is
dense. We also modeled all markers simultaneously to
circumvent problems with false positive results and
double counting of effects from correlated SNP, which
was necessary to accumulate whole-genome effects. And
finally, we had more animals with genotypes. Thus, our
genomic model collected the effects of smaller QTL that
may not be detectable by traditional QTL methods. Also,
the results shown here were GPV for whole chromo-
somes, and a single QTL with a large effect in a chromo-
some may not show clearly in the total chromosome
GPV. Possibly, several large QTL may have to be present
in a chromosome to show a marked effect on the total
chromosome GPV.
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In general, the genomic model used here was rather basic,
as both a common variance and covariance for SNP effects
were applied. It is possible to extend the model to take in
account different (co)variances per chromosome or of other
defined genomic regions. This would be necessary to more
accurately predict effects of QTL affecting one or more
traits. Also, there are different ways of defining genomic
regions, which is an area that needs further investigation.
Below, we discuss how for example this could be done in a
rather simple way.
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Sørensen et al. Genetics Selection Evolution 2012, 44:18 Page 13 of 15
http://www.gsejournal.org/content/44/1/18
Chromosome-wise genomic covariances and correlations
The most interesting feature of our multi-trait genomic
model is the ability to estimate covariances between defined
genomic regions for each trait, which would be more diffi-
cult with other approaches. For example, with traditional
BLUP estimation, it would be necessary to build 30 genomic
relationship matrices and to simultaneously estimate 90 co-
variance components. Dividing each chromosome into sev-
eral segments would further increase these numbers and
the memory requirements for computation. For the present
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SNP-based model, the model is run once and relevant para-
meters are inferred from the MCMC samples. As with the
genomic variances, the traditional gBLUP model [9] was
extended to a REML version to estimate the covariances
from data. One can criticize the prior assumption that SNP
contribute equal covariance as being somewhat simplistic
but it is a common model used in genomic selection. Our
main reason to implement this REML approach in a Bayes-
ian context is that it makes it possible to partition covar-
iances into genome segments. In the posterior distributions
of the Bayesian model, deviations appear from the prior ex-
pectation of common covariance. We can show this by
computing covariances by groups of SNP. Here, the effect
of the common prior distribution is that chromosome and
genome-segment covariances will be regressed towards the
estimated common overall covariance, while deviations in
the posterior estimates will be informative to show where
the genome contributes more or less covariance.
Interesting chromosomes are indicated by covariances

above the average covariance of the genome or chromo-
some. Chromosomes showing large effects were in some
cases much clearer based on covariances than based on
GPV. Similar to the chromosome GPV, a clear relationship
with chromosome size was also observed for the chromo-
some covariances.
All chromosome covariances among the pathogen-spe-

cific mastitis traits were positive. This indicates that genes
that control mammary response towards one pathogen (e.g.
release of immune factors a.o.) to a certain degree also con-
trol response towards other pathogens. However, it is diffi-
cult to interpret the absolute differences between the
chromosome covariances because our model pulls these
estimates towards a common average. In reality, the
chromosome covariances will be more different than shown
here, but it would be difficult to estimate variances and cov-
ariances for 30 chromosomes in a fully unconstrained way.
Information about chromosome-wise covariances can be

useful when a QTL has been found and knowledge about
potential effects on other traits is required. One could argue
that chromosome covariances between traits vary more
when the pathogens are more distantly related or show dif-
ferent infection patterns. For example, the chromosome
covariances between Staph. aureus and E. coli differed
much more (higher covariance than expected on more
chromosomes) from their expected values (based on
chromosome size) than the covariances between Strep.
uberis and Strep. dysgalactiae or covariances between gen-
eral mastitis and the pathogen-specific mastitis traits. Also,
the use of a common prior resulted in lower genome-wide
genomic correlations, which quantify the relatedness be-
tween two traits.
It is not clear whether our method can be used to identify

chromosomes that harbor pleiotropic QTL using the
current settings. According to Figure 5, the chromosome-
wise genomic correlations plots may provide better infor-
mation than genomic covariances about chromosomes that
harbor pleiotropic QTL. Results for the Staph. aureus/E.
coli combination suggest that BTA16 and 19 are the only
chromosomes that harbor QTL affecting mastitis caused by
each of these pathogens. However, BTA16 and 19 also seem
to be clear candidates for harboring pleiotropic QTL affect-
ing both Staph. aureus and Strep. uberis. Finally, at least
five chromosomes (BTA5, 14, 16, 19, and 28) are likely to
harbor QTL that affect resistance towards Staph. aureus
and general mastitis.
A QTL that affects specific mastitis must also affect

general mastitis, but it may not be detected, e.g. the spe-
cific mastitis may only contribute little to general mas-
titis. More likely, the QTL detected for general mastitis
are QTL affecting the more prevalent and multiple mas-
titis cases.

Region-wise genomic variances and correlations
One way to overcome the problem of averaging out QTL
for the purpose of QTL mapping may be by splitting the
chromosomes up into smaller regions, for example based
on neighboring SNP that are in LD with each other.
Then, the defined region consists of SNP that are more
likely to cluster around potential QTL and the effect is
not distorted by many SNP with very small or zero
effects. In the present study, this was done in a simple
way by computing genomic (co)variances in half-overlap-
ping intervals of 100 SNP on BTA19 because this
chromosome was the only chromosome with a clear ef-
fect on all traits. This method revealed different variance
profiles between the traits. No clear peaks were detected
because of the use of a common prior which, as
explained above, equals out the variance across the
defined regions. The peaks were more pronounced. The
use of a mixed prior distribution for the SNP effect may
be more appropriate to detect QTL regions. However, to
date this method only works well for single-trait analyses
and must be further investigated.
The LD between SNP is accounted for when genomic

(co)variances are calculated. This means that the total
genomic variance may differ from the sum of region-wise
or chromosome-wise variance, because the latter would
ignore covariance between the parts. In our analysis,
these sums of chromosome and region variances were
smaller than the total genome-wide variance, indicating
presence of negative covariances between the parts.

Conclusions
The results from the present study show that it is pos-
sible to study, genome- and region-wise genomic (co)var-
iances of mastitis resistance traits in dairy cattle using a
multivariate genomic model. It was found that larger
chromosomes explained more genomic variance than
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smaller chromosomes due the larger chromosomes hav-
ing more SNP. Some chromosomes explained more vari-
ance than expected according to chromosome size. This
could indicate that these chromosomes harbor QTL
affecting the traits. Clear differences in variance profiles
among the investigated traits were observed, indicating
that the mammary response to infections differs between
pathogens. All chromosomes explained positive covar-
iances between the traits as a result of the model
assumptions. As with the genomic variance, some chro-
mosomes explained more covariance than expected
according to their size. This could indicate the presence
of pleiotropic QTL. With this methodology and PM as
phenotypes, the estimated genomic correlations between
the traits were found to be lower than genetic correla-
tions estimated by traditional methods based on pedi-
gree, which indicates that these values are not
necessarily comparable. In our model, a rather simple
approach was applied to model SNP effects, i.e. a com-
mon variance and covariance for the SNP effects. How-
ever, the results provide an opportunity to develop this
model with different model assumptions, e.g. mixture
priors for the SNP effect, which could allow the model
to more accurately accommodate differences in (co)var-
iances across the genome.
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