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Thyroid stimulating hormone (TSH), a glycoprotein hormone produced by the anterior

pituitary, controls the production of thyroxine (T4) and triiodothyronine (T3) in the thyroid.

TSH is also known to be produced by the cells of the immune system; however,

the physiological importance of that to the organism is unclear. We identified an

alternatively-spliced form of TSHβ that is present in both humans and mice. The TSHβ

splice variant (TSHβv), although produced at low levels by the pituitary, is the primary

form made by hematopoietic cells in the bone marrow, and by peripheral leukocytes.

Recent studies have linked TSHβv functionally to a number of health-related conditions,

including enhanced host responses to infection and protection against osteoporosis.

However, TSHβv also has been associated with autoimmune thyroiditis in humans. Yet

to be identified is the process by which the TSHβv isoform is produced. Here, a set of

genetic steps is laid out through which human TSHβv is generated using splicing events

that result in a novel transcript in which exon 2 is deleted, exon 3 is retained, and the 3′

end of intron 2 codes for a signal peptide of the TSHβv polypeptide.

Keywords: alternative splicing, hormone, immune-endocrine, leukocyte, thyroid

INTRODUCTION

Structure and Function of TSH
TSH consists of an α and a β subunit. The β subunit determines hormone specificity. Binding
of TSH to the TSH receptor (TSHR) in the thyroid induces the release of thyroxine (T4) and
a limited amount of triiodothyronine (T3). In tissue cells, most T4 is converted by deiodination
to T3, the more biologically-active form of thyroid hormone. Regulation of TSH release from
the pituitary is governed by levels of circulating TSH, T4, and T3. Considerable homology
exists at both the gene and protein levels between human and mouse TSHβ (1, 2). Within
the hypothalamus-pituitary-thyroid (HPT) axis, TSH regulates a broad spectrum of cellular
and organismic activities, including cell physiology, development, and cellular and organismic
metabolism. The TSHβ polypeptide is coded for by exons 4 and 5 of the mouse TSHβ gene, and
by exons 2 and 3 of the human TSHβ gene.

Immune System TSH
The pioneering work of Blalock and colleagues was the first to demonstrate that TSH is made by
the immune system. The authors reported that leukocytes cultured with known forms of immune
stimuli, such as Staphylococcus enterotoxin A or TRH, secreted immunoreactive TSH (3–5). Other
studies demonstrated that splenic dendritic cells frommice produced TSH endogenously, as well as
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following stimulation with Staphylococcus enterotoxin B (6,
7). Bone marrow (BM) hematopoietic cells, in particular
CD11b+ monocyte/macrophage precursors and to a lesser extent
granulocyte and lymphocyte precursors, were shown to be a
source of TSH (8). Additionally, intraepithelial lymphocytes and
lamina propria lymphocytes in the intestinal mucosa of mice
produced TSH locally following experimental virus infection (9–
11). In studies aimed at understanding the integration of TSH
immune-endocrine interactions, we observed that BM-derived
CD11b+ cells traffic to the thyroid where they are deposited
around thyroid follicles (7), and produce TSHβ intrathyroidally
(6). Those studies collectively provided evidence that immune
system-derived TSH may co-regulate the synthesis and release of
thyroid hormones under normal homeostatic conditions (7).

There is longstanding evidence linking TSH to immune
system function. TSH has been shown to directly influence the
cellular responses of leukocytes in both positive and negative
ways. This includes enhancement of antibody responses to T
cell-dependent antigens (12), and iodine uptake inhibition (13,
14). T3 stimulates thymocyte proliferation, which may be the
consequence of TSH-mediated increase in thyroid hormones
(15). In that light, recent studies have documented a protective
effect of TSH on thymocyte apoptosis (16). These and other
directional interactions of HPT hormones on immunity have
been detailed in several review articles (17, 18).

THE TSHβ SPLICE VARIANT (TSHβV)

Studies in our laboratory revealed that at both the transcript
and protein levels, TSHβ produced in the thyroid as well as
by leukocytes of mice and humans was significantly smaller in
size than pituitary-derived TSHβ (19, 20), though it retained
functional activity as determined by cAMP cell signaling (19).
Further analysis of leukocyte-derived TSHβ identified a novel
TSHβ splice variant (TSHβv) transcript coded for by exon 5 and
the 3′ end of intron 4 in mice (19), and exon 3 and the 3′ end of
intron 2 in humans (20, 21). Those splicing patterns for human
native TSHβ and TSHβv are shown in Figure 1A.

Experiments using mouse BM cells confirmed that TSHβv
is the principal form of TSHβ made by hematopoietic cells,
particularly by CD11B+ myeloid cells (19, 21, 22). Similar
findings were obtained using mouse splenic leukocytes (22).
Zymosan, lipopolysaccharide, and CD14 and TLR2 triggering
induced the release of TSHβv from the mouse AM macrophage
cell line (22). Similarly, the THP-1 human macrophage cell line
expressed the TSHβv gene, but not the native TSHβ gene (23).
Interestingly, the TSHα gene was expressed at low levels in
mouse BM cells (19) and human THP-1 cells (23), suggesting
that TSHβv may operate either as a monomeric molecule or as
a dimer. Further evidence of the latter is supported by studies
demonstrating that TSHβv is dimerized with TSHα in the human
circulation (24), a finding that is consistent with the presence of
an eighteen amino acid “seatbelt” region coded for by human
exon 3 that is used for attachment of TSHβ to TSHα (2). Thus,
the TSHβv protein may under certain circumstances be coupled
to TSHα.

Following polarization into M1 and M2 macrophages, TSHβv
was primarily produced by M2 macrophages in mice (21), and
by both M1 and M2 cells generated from the human THP-1
cell line (23). In vivo treatment of mice with T4 for 21 days
resulted in differential effects on TSHβv expression in the BM
and the pituitary, such that it was significantly increased in BM
cells and suppressed in pituitary tissue (23). T3-treated F4/80+

RAW 264.7 mouse macrophages had dose-dependent increases
in TSHβv expression (23).

A Putative Basis of TSHβv Splicing
The findings described above demonstrate that the TSHβv
isoform is selectively expressed in hematopoietic cells. An as yet
unresolved question pertains to the process by which the isoform
is generated. Given that the immune system makes TSHβv and
little if any native TSHβ, there must be well-regulated process for
doing this. Understanding the underlying mechanism of that will
likely provide valuable insights into how TSHβv is functionally
linked to the homeostatic balance of thyroid hormone synthesis,
to disease, and/or to the control of host metabolic activity.

Alternative splicing is a complex process by which cells
generate variable protein constructs from a common gene source
(25, 26). Numerous mechanisms have been described through
which alternative isoforms can be made. These include exon
skipping, alternative use of 3′ or 5′ splice sites, and intron
retention (27, 28). In hormone biology, the presence of receptor
isoforms produced by alternative splicing is common, as is seen
in secretin and gastrin receptors, for example (29). However,
alternatively-spliced isoforms may produce receptors associated
with neoplastic cell growth, as occurs in HER-2/neu (30).

In classical splicing situations involving intron removal, a
spliceosome directs the splicing process by recognizing splicing
signals in the transcript and catalyzing intron removal and exon
joining (31). However, the process of alternative splicing for
TSHβv differs notably from traditional approaches, including
those in which exon skipping occurs, because a portion of the
3′ end of the intron preceding the last coding exon (exon 3
in humans and exon 5 in mice) is incorporated into the new
isoform. Although utilization of introns in alternatively-spliced
genes is known to occur (32), the majority of those retain
the entire intron, as is the case with the tissue factor gene in
which a new exon is generated from an intronal sequence. (33).
Proteins in malignant tissues also have been shown to utilize
intron inclusion (34). The reasons why this occurs are unclear,
although they may be tied to mechanisms of dysregulated gene
expression that leads to neoplasia (35).While there is no evidence
of this for immune system TSHβv, it is possible that under some
circumstances TSHβv may be expressed autonomously in the
absence of known stimulatory signals (21).

The structure of the human unspliced TSHβ gene is shown
in Figure 1B. Initiation of transcription is believed to occur
at the TATAAA hexamer 22 nucleotides upstream from exon
1 (36). To gain insights into how TSHβv might be generated,
the spliceport on-line prediction tool http://spliceport.cbcb.umd.
edu/SplicingAnalyser.html was applied to the human unspliced
TSHβ gene (36), from which a number of possible splice sites
were identified. These consisted of donor sites in intron 1 and
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FIGURE 1 | Structural organization and splicing patterns of the native and splice variant forms of human tshβ transcripts. (A) The TSHβv transcript is produced by

removal of the region coded for by exon 2, and splicing into the 3′end of intron 2 (arrow), yielding a truncated TSHβ transcript coded for by exon 3. Gray boxes are

transcript regions from non-coding exons. Blue boxes are transcript regions from coding exons. Hatched regions code for signal peptides, which in native TSHβ is at

the beginning of exon 2, and in TSHβv is at the 3′ end of intron 2. (B) Unspliced TSHβ. Gray underlined nucleotides, TATAAA hexamer box of transcriptional start site.

Upper yellow nucleotides, exon 1. Blue nucleotides, portion of intron 1. Middle yellow nucleotides, exon 2. Green nucleotides, intron 2. Bottom yellow nucleotides,

exon 3. Red nucleotides, potential splice donor sites. Purple nucleotides, potential splice acceptor sites. Underlined TAA, stop codon at end of exon 3. White

nucleotides, untranslated portion of exon 3. Potential donor sites in intron 1: TATTTGTAAGAT, TCAAGGTGATCA; both with donor site scores ≥83.4. Potential

acceptor sites in intron 2: TTTTGTGTCCCAGCT, AATTCTTTCCCAGTT; both with acceptor site scores ≥88.0. (C) Spliced human TSHβ resulting in TSHβv transcript.

(Continued)
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FIGURE 1 | Blue, intron 1-coded nucleotides. Green, intron 2-coded nucleotides. Yellow, exon 3-coded nucleotides. Combined red/purple, splice site of intron 1 with

intron 2 resulting in deletion of exon 2-coded nucleotides but leaving exon 3-coded nucleotides. Bolded 69 nucleotide sequence in intron 2 codes for a putative 23

amino acid signal peptide of the TSHβv protein molecule with translation being initiated at the AUG codon (underlined). A second smaller signal peptide could be

coded for beginning at the AUG (underlined) that is located 27 nucleotides upstream from the beginning of exon 3. White nucleotides, untranslated portion of exon 3.

acceptor sites in intron 2 (Figure 1B). All four of those have
predictive splicing scores≥80.0. Note that splicing in using those
would result in the complete deletion of exon 2, the portion of
the TSHβ transcript that codes for the native TSHβ but not the
TSHβv polypeptide. The final rearranged TSHβv transcript after
splicing is shown in Figure 1C. This results in the retention of
a piece of the 3′ end of intron 2 that may code for two possible
signal peptides, one beginning with an AUG translational start
site located at position−69 from the 3′ end of intron 2, the second
located −27 nucleotides from the 3′ end of intron 2 (Figure 1C,
underlined AUGs). These would code for 23 and 9 amino acid
peptide sequences, respectively, as shown in Figure 2A.

Signal Peptide Analysis of TSHβv
Using on-line signal peptide prediction tools http://www.predisi.
de/, the 23 amino acid peptide shown in Figure 2A, prior to
and contiguous with exon 3, bears physiochemical properties
that are typical of signal peptides as shown by the large number
of hydrophobic and polar non-charged residues (Figures 2B,C).
Peptide sequences such as those are commonly used to
feed mature proteins through the membrane translocon for
extracellular secretion. Although the nine amino acid signal
peptide would be substantially shorter, it too retains most of
the elements needed for a signal peptide. Which of those two is
preferentially used may eventually be predicted from sequence
analyses studies of TSHβv.While neither of the translational start
sites contain classic Kozak features, a number of newmechanisms
for initiating translation has been identified in eukaryotic cells
(37), thus making it conceivable that either one of the two could
serve as signal peptides for human TSHβv.

Transcriptional Regulation of TSHβv
The predictions presented here provide a potential process
whereby the human TSHβv isoform may be generated in cells
of the immune system. Still to be learned is the process that
regulates when TSHβv is made, given the selective use of that
form of TSHβ by leukocytes. Although transcription could be
initiated in intron 2 at the standard transcriptional start site used
for the native TSHβ gene, it also could begin with the TATAA
box in intron 3, (see Figure 1B). Early studies into TSHβ gene
regulation identified Pit-1 and GATA-2 as potential transcription
factors acting on the TSHβ promoter in both rat and human
TSHβ (38–42). However, it has since been learned that Pit-
1 is probably minimally involved, and that GATA-2 may be
the primary activator of TRH-driven transcription of the TSHβ

gene (43–46). Other studies have shown that thyroid hormone
negatively regulates TSHβ by interfering with the binding of
transcription factors near the proximal promoter region (47, 48).
In the case of immune system TSHβv, no transcription factors
have, as yet, been linked to gene activation.

Biological Significance of TSHβv
Although it is now clear that TSHβv is made by cells of the
immune system, many unanswered question remain regarding
the functional role of the TSHβv isoform (49), and why the
production of it is primarily relegated to the cells of the immune
system rather than as an isoform made in the pituitary through
the conventional HPT axis. In that vein, the immune system is
by nature involved in sensing and responding to a wide range
of external stimuli, in particular to a variety of threats to the
safety and well-being of the host. An example of this is the
situation of acute or chronic immune stress due to infection.
Although some TSHβv-producing spleen cells routinely migrate
to the thyroid in healthy animals (7), our studies demonstrated
a marked increase in TSHβv gene expression in the thyroid of
mice following virus infection with reovirus (19) or bacterial
infection with Listeria monocytogenes (22). In the case of
the latter, trafficking of splenic CD14+, Ly6C+, Ly6G+ cells
to the thyroid was accompanied by robust intrathyroidal
TSHβv synthesis (22). Importantly, splenic leukocytes from
L. monocytogenes-infected mice homed to the thyroid when
injected into non-infected mice, thus pointing to an active and
integrated immune-endocrine host response during infection
(22).We have speculated that this constitutes an immune system-
driven host response used to manipulate, specifically to curtail,
metabolic activity at a time when energy conservation is crucial
(50).

Additional work is needed to understand the significance of
TSHβv in terms of thyroid hormone synthesis and metabolic
regulation, as well as to elucidate its action within the thyroid.
This could occur if the TSHβv polypeptide, either as a monomer
or as a TSHα/TSHβv dimer, interfered with the binding of
native TSHβ to the TSHR. It is known, for example, that
naturally-occurring minor biophysical changes in the human
TSHβ subunit can have dramatic effects on the ability of TSH
to bind to the TSHR (51–53). Given that the human TSHβv
polypeptide retains the seat-belt region coded for by exon
3 that is used to couple to TSHα, a TSHα/TSHβv complex
would almost certainly exhibit altered physiochemical properties
that could substantially affect the binding of the conventional
TSHα/TSHβ complex to the TSHR. Additional studies will
be needed to understand the effects of competitive binding
between TSHβv vs. native TSHβ in driving the release of
thyroid hormone. Moreover, because thyroid hormones directly
influence peripheral leukocyte function, as has been shown for
neutrophils (54, 55), monocytes and macrophages (56), and
dendritic cells (57), a loop may exist between TSHβv produced
by the immune system, and the regulatory effects of TSHβv-
mediated thyroid hormone release on the immune system itself.

Immune system TSHβv has been tied to the host response
in other physiological scenarios. Various studies have implicated
low TSH levels, such as occurs in hyperthyroidism, with an
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FIGURE 2 | Signal peptide analysis of TSHβv in intron 2. (A) The nucleotide and amino acid sequences at the 3′ end of intron 2 (see Figure 1C, bold sequences) that

code for a putative 23 and 9 amino acid signal peptides of TSHβv. (B) Biophysical properties of the putative 23 amino acid TSHβv signal peptide as determined using

a PrediSi signal prediction program, the 23 amino acid peptide with the serine reside at position 11 likely representing the cleavage site. (C) The 23 amino acid signal

peptide has hydrophobicity scores between 0.5 and 0.85 in a range from 0.0 (lowest hydrophobicity) to 1.0 (highest hydrophobicity).

increased risk of osteoporosis (58, 59). This is reinforced by
studies demonstrating a reduction in bone loss concomitant with
TSH binding to TSHRs on bone osteoblasts (60). Perhaps most
striking, however, was the finding that the TSHβv made by bone
marrow cells has an osteoprotective effect by acting directly on
bone TSHRs. Thus, TSHβv may play a key role in bone health
(21, 61–63).

In addition to the use of immune system TSHβv in response
to infection and for bone remodeling, a number of human
conditions tied to thyroid dysregulation, many of which are
associated with inflammation or autoimmunity, have yet to be
fully understood. These include Graves’ disease and Hashimoto’s
thyroiditis (64–66), Graves’ Ophthalmopathy (67, 68), Pendred’s
Syndrome (69), Lyme disease (70), inflammatory bowel disease
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(71), rheumatoid arthritis (72), systemic lupus erythematosus
(73, 74), psoriasis (75), asthma (76), and sepsis (77, 78). Of
particular interest, patients with Hashimoto’s thyroiditis (HT)
were found to have elevated transcript levels of TSHβv in PB
compared to normal controls (24). Treatment of HT patients
with prednisone reduced TSHβv transcript levels in patients
having disease of <9 months compared to patients with a
disease >18 months (24). Also in that study, dexamethasone
treatment suppressed in a dose-dependent fashion the expression
of TSHβv in PBLs of HT patients (24). A second study
implicated plasma cell-derived TSHβv in the pathogenesis of
HT (79).

SUMMARY

A model is presented in which the TSHβv transcript is produced
in cells of the immune system using a mechanism of alternative
splicing that results in deletion of exon 2 and retention of exon
3 coded portions of the transcript. A unique feature of this
splicing process is that the transcript codes for a signal peptide
derived from the 3′ end of intron 2 prior to exon 3. While it
is anticipated that the model presented here will add to our
understanding of the biological and inherent functional role of
immune system TSHβv in human health, it should be noted that
caution is warranted when ascribing splice site locations using
predictive information (34, 80, 81). Even sequences that have

a high potential as a splice site may be pseudosplice sites with
limited functional significance. Sequence analyses may help to
resolve this. Additionally, it may be possible to directly assess
the functional role of TSHβv in a number of ways. In mice,
for example, it may be possible using Crispr/Cas9 gene editing
to selectively disrupt the expression of intron 4 and exon 5 in
order to eliminate the TSHβv splice variant without affecting
expression of a native TSHβ. An approach such as this, if
successful, would permit experimental analyses into the extent
to which immune system TSHβv contributes to thyroid biology
and overall host metabolism. Although parallel studies cannot
be done in humans, a version of that could be addressed in
vitro using human cell lines. In summary, it is hoped that the
system laid out here will provide a point from which to launch
additional experiments into the role of TSHβv in health and
disease.
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