
Open Source Software to Control Bioflo Bioreactors
David A. Burdge1, Igor G. L. Libourel1,2*

1 Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America, 2 Department of Plant Biology, University of Minnesota, Saint Paul,

Minnesota, United States of America

Abstract

Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures.
A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of
the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the
software design cannot be performed without developing custom software. In addition, support for third party or custom
designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of
bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and
protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface
without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based
protocol execution model is included for more demanding conditional experimental control. The software was designed to
be a more flexible and free open source alternative to the commercially available solution. The source code and various
auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In
addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows
operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of
LabVIEW.

Citation: Burdge DA, Libourel IGL (2014) Open Source Software to Control Bioflo Bioreactors. PLoS ONE 9(3): e92108. doi:10.1371/journal.pone.0092108

Editor: Vinod Scaria, CSIR Institute of Genomics and Integrative Biology, India

Received December 9, 2013; Accepted February 4, 2014; Published March 25, 2014

Copyright: � 2014 Libourel, Burdge. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: IGLL received funding support from: NSF(NSF/MCB-1042335), and ONR (N000141310552). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: libourel@umn.edu

Introduction

Bioreactor systems are complex devices designed for the

sophisticated control of culture environments. Commercially

available culturing systems have integrated closed-loop control of

process variables such as pH, dissolved oxygen, and temperature.

In industry, bioreactors are commonly used to facilitate substrate

to product conversion processes in fermentation and cell culturing.

Continuous and rigid control of the environment is important to

optimize product yields of chemical by-product or total cell

biomass [1,2]. In a research setting bioreactors are used for

experiments that require careful control of environmental

parameters. In such setting, the automation of user defined

experimental protocols if often required in addition to maintaining

a static environment. To fulfill the need for execution of

customized protocols, many fermentation systems are coupled to

a personal computer running commercially available bioreactor

control software [3]. In addition to enabling protocol execution,

software provides data logging and visualization capabilities of

reactor parameters. However, many commercial software pack-

ages lack the ability to integrate auxiliary hardware, and cannot

implement the custom built control algorithms that are needed for

more sophisticated experiments [4]. Due to these short comings,

researchers have resorted to developing custom built reactor

control software, including algorithms that handle axillary

hardware [5]. The steep learning curve of most programming

languages presents a significant hurdle for many scientist interested

in developing software that implements custom algorithms. In

addition, maintenance of software and adaptation to the

frequently changing requirements of researchers constitutes a

significant investment and long term commitment. To reduce the

learning curve associated with program development using text

based languages, a visual programming environment named

LabVIEW emerged as a development environment of choice for

bioprocess control and automation [4]. As a result LabVIEW has

been used to control many bioreactor systems including: fed-batch

[6], hollow-fiber [7], air lift [8], and catalytic packed-bed [9]

reactors. While many of these systems are composed of an

assortment of hardware [10], some researchers were able to utilize

the hardware capabilities of commercial bioreactor systems to

develop custom control systems with the addition of auxiliary

hardware [11]. Given that many control processes require

significant execution time, the multitasking capability of Lab-

VIEW is essential in maintaining a responsive control interface.

Multitasking is accompanied with an assortment of potential

timing conflicts that need to be navigated. Most of the potential

complications can be avoided by implementing existing software

architectural concepts. These include maintaining scalability [12],

and proper decoupling of asynchronous processes. Inadequate

handling of asynchronous processes can cause loss of data [13] or

the loss of control signals [14]. An effective architecture for

maintaining scalability is the state machine (SM). Although SMs

are effective for small to medium sized application, larger

applications typically utilize queued SMs (QSM) to facilitate

complex access control of resources [14]. A QSM can be accom-

panied with a producer-consumer pattern (QSM-PC) to decouple

asynchronous processes. Examples of QSM-PC implementation

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e92108

https://github.com/LibourelLab/BiofloSoftware
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0092108&domain=pdf

are the decoupling of data acquisition from data analysis [15],

hardware control from hardware communication [16], and user

interactions from code execution [13].

This work describes the flexible, open source software package

that was developed to control Bioflo family bioreactors using

LabVIEW. The software is capable of controlling, monitoring,

data logging, and protocol execution. By utilizing the supervisory

control capability packaged with the Bioflo bioreactor, complex

control systems can be developed without modification of the

hardware. Auxiliary hardware is not utilized in this work, but the

software was designed to facilitate easy integration of custom

hardware through a plugin interface and several example plugins

are available for download from the project page. This work

expands on the software development previously mentioned by

presenting methods to control the distribution of shared hardware

and software resources. The software is capable of simultaneously

controlling multiple reactors through a single interface that

provides a stable and customizable control system for the Bioflo

systems. This was demonstrated by concurrently executing

independent control systems for the Bioflo3000 and Bioflo110

system.

Materials and Methods

Bioflo110 Benchtop Bioreactor
The Bioflo110 (Eppendorf AG, Hamburg/Germany) is a

modular fermentation system for cell culture and fermentation

systems. The 1.3 liter glass vessel is equipped with a motor driven

impeller, glass pH probe, Clark-type dissolved oxygen (DO) probe,

RTD temperature sensor, level probe, gas sparing coil, heat

blanket, condensing exhaust port and various liquid inlets and

outlets. The vessels hardware and sensors interface with stacked

control modules that communicate with a Primary Control Unit

(PCU) via a daisy chained RS-485 control bus. The PCU is

capable of controlling up to four separate vessels with a maximum

of sixteen control modules in total. The PCU provides a user

interface to the control system of each vessel. The vessel control

architecture is separated into loops, each including a sensor and a

control element. Examples of such control loops are temperature,

agitation speed, pH and DO control. The pump loops can be

configured to operate in response to the liquid level inside the

vessel measured with a level probe. All other control loops can be

configured to utilize an integrated PID (proportional-integral-

derivative controller) algorithm to coerce the sensor value to the

user defined setpoint using the control element.

Reading and writing the Bioflo110
The bioflo110 was connected to a supervisory computer

through a female DB-25 connector located on the rear of the

primary control unit (PCU). The DB-25 connector contains pin

outs for both RS-422 and RS-232 physical communication layers

(Guide to Operations). Because the added complexity of the RS-

422’s master-slave functionality was not needed, the RS-232

standard was chosen. A male DB-25 to male DB-9 patch cable was

custom made, and connected to an RS-232 to USB conversion

cable that was interfaced with the supervisory computer (Supple-

ment S1). Two equivalent communication protocols can be used

to communicate with the PCU: ModBUS and AFS. The AFS

protocol was chosen for use in this software because other

members of the BioFlo reactor family support this protocol. To

read control loop properties a ‘request message’ is sent to the

PCU. A list of request message types, formats and responses is

included in supplement S1. The PCU responds to a request

message with a response header and the requested information in

the message format. The setpoints and outputs of the control loops

are changed by sending a ‘command message’ to the PCU. A

command message uses the format header and the command

information in the message format (Supplement S1). The PCU

responds to command messages by acknowledging the change,

and the reactor vessel the change applied to (multidrop number).

LabVIEW software
LabVIEW is a graphical programming language designed for

hardware automation. Programs in LabVIEW are called virtual

instruments (VIs) and integrate a graphical user interface (GUI)

with the development of code. A VI contains three components: a

front panel, a block diagram, and a connector panel. The front

panel serves as the GUI which contains elements referred to as

controls and indicators. Controls such as buttons, sliders, and text

boxes, allow the user to manipulate the value of data used during

code execution. Data values are displayed on the front panel with

indicators such as graphs, indicator lights, and gauges. Controls

and indicators appear as terminals on the block diagram where

code development takes place. The block diagram contains other

elements called subVIs, functions, constants, structures, and wires.

Data from control terminals and constants flows from left to right

through wires to functions and subVI input nodes where data

operations are performed. Function and subVI output nodes wire

data from operations to indicator terminals for display on the front

panel. SubVIs, which are VIs executed on the block diagram of

another VI, connect data from input and output nodes to controls

and indicators through the connector pane. Block diagram

structures, such as while loops, control program execution and

can reroute the data flowing through wires allowing for more

complex functionality. Due to LabVIEWs native multitasking

capabilities, execution of parallel processes, such as data flowing

through wires, occurs concurrently.

Results and Discussion

Following installation using the self-installer executable, the

bioreactor that is connected to the computer as described in the

material and methods can be controlled by the bioreactor

software. Data-logging starts immediately upon selecting a control

system name, a plugins root folder, and a data logging folder

which are prompted for at startup. If the data logging file already

exists, new data will be appended. A viewer for the logged data, as

well as a detailed description of the installation procedure and

operation manual of the software are included as downloads on

the project site.

Software Design
To create stable and scalable control system software, function-

ality was distributed amongst independent subprograms (VIs) here

referred to as actors. Each actor fulfills a specific function, such as

hardware communication or protocol execution, and contains a

QSM-PC structure to decouple asynchronous processes. Control

systems and their actors are launched, managed and closed by the

manager VI. The manager VI is capable of concurrently operating

multiple control systems, which can be added or removed by the

user on the fly. Interaction with actors occurs through a subpanel

display on the manager VI front panel which integrates the

program into a single user interface.

Control system actors are loaded into memory and launched

dynamically by the manager VI through an integrated plugin

interface. The plugin interface automates the interaction between

the manager VI and control system actors. Actors, formatted

according to the plugin interface, are compiled into packaged

Software to Control Bioflo Bioreactors

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e92108

libraries called plugins. These plugins can be developed indepen-

dently of the manager VI, and are intended to expand the

program functionality to include auxiliary hardware without

modification of the manager VI. Plugins associated with a control

system are localized within the same PC directory on the

supervisory computer. When adding a control system, the user is

prompted to select the PC directory to load and launch plugins

from. By selecting different control system PC directories, unique

control systems can operate simultaneously. Plugins can be created

in the LabVIEW development environment using the plugin

interface which can be downloaded from https://github.com/

LibourelLab/BiofloSoftware along with several plugin examples.

Communication between actors within a control system occurs

through a shared data resource. Access to the data resource is

given to each actor within the control system when launched.

Actors populate the data resource with state information and

periodically update the values with current values. Each actor

reads from, and writes to, the shared data resource, allowing for

communication between actors.

To maintain a scalable control system, data logging operations

of an actor is performed by the actor itself. This provides a data

logging method that can be reused for a scalable number of actors.

Each actor logs data in a binary file format that is compact, secure

and appendable. Upon adding a control system each actor queries

for an existing data file that is associated with itself. If an actor

finds an existing file the most current data values are read from the

file and written to the shared data resource. This enables

continuation of interrupted experiments with the same state

information. Data files are periodically appended with state

information by the actor and closed with the actor when the

control system is removed. Data files can be browsed using a

bundled data viewer VI or loaded into Microsoft Office Excel

using a plugin provided by national instruments located at http://

www.ni.com/example/27944/en/.

Control of Bioflo110 using LabVIEW
The AFS communications protocol was implemented using

LabVIEW’s Virtual Instrument Software Architecture (VISA).

VISA is a high level application programming interface that calls

Figure 1. Bioreactor Communication. The PCU communicates with
the computer using Labview Virtual Instrument Software Architecture
(VISA). A VISA resource is created with the PCU serial port specified by
the user at run time. The VISA resource is used to open and configure a
connection between the PCU and PC (1&2). A separate VISA resource is
created for each of the four Bioflo110 reactors. To avoid communication
errors caused by race conditions, the ‘‘VISA Lock’’ function is used by
each control system to obtain sole access to the serial port (3). The VISA
resource is used to write messages using the ‘‘VISA Write’’ function (4),
and read responses using the ‘‘Read VISA’’ function (5). After finishing
communication with the PCU the ‘‘VISA Unlock’’ function is used to
release access to the serial port.
doi:10.1371/journal.pone.0092108.g001

Figure 2. Bioreactor VI Block Diagram. The Labview block diagram execution flow is left to right in a parallel fashion as computers processor
resources become available. At run time, the bioreactor program is passed a data value reference (DVR) to the shared bioreactor parameters. The
program bundles the bioreactor parameters in a data cluster with references to all front panel indicators and controls (1 & 2). In response to a front
panel transitions, a message is created with the data cluster and action instructions (3) and enqueued in a massage queue (4) that is shared with the
consumer loop. The consumer loop waits for (5), and dequeues messages (6),executing the instructed actions with the provided data cluster.
doi:10.1371/journal.pone.0092108.g002

Software to Control Bioflo Bioreactors

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e92108

https://github.com/LibourelLab/BiofloSoftware
https://github.com/LibourelLab/BiofloSoftware
http://www.ni.com/example/27944/en/
http://www.ni.com/example/27944/en/

into low-level instrument drivers [13]. This architecture facilitates

control of diverse instruments through a single interface. Using the

‘‘VISA Open’’ function a live connection to the PCU is created

(Figure 1). The ‘‘VISA Configure Serial Port’’ then formats the

serial connection with the appropriate baud rate, data bits, stop

bits and parity specified in the Bioflo110 Guide to Operations.

Sending messages to the PCU is achieved with the ‘‘VISA Write’’

function. The messages are formatted as character strings with

numeric values in American Standard Code for Information

Interchange (ASCII) decimal format. PCU responses are read

through the use of the ‘‘VISA Read’’ function. The PCU messages

are ASCII character strings formatted according to the AFS

communications protocol.

Bioreactor VI
A main bioreactor VI was developed to control the Bioflo110

hardware and perform data logging. The front panel of the

bioreactor VI provides a graphical user interface to visualize and

Figure 3. Logic Diagrams. Visual representation of VI transitions and actions. Transitions and actions are represented by arrows and circles. The
starting and ending states are represented by squares. Program execution flows from the start to end in the direction of the arrows. Transition
timeouts, shown in bold, are the only transition that are not user prompted and occur after a period of time elapsed without transitions. 3A
Bioreactor VI: Transition timeouts start a series of actions that writes bioreactor setpoints, reads bioreactor values and outputs, logs data, and
updates the front panel. Loop name or graph history value changes update the front panel, while a setpoint value change updates the control loop
setpoints. 3B Time Protocol VI: Execution status value changes alter the status to play, pause or stop. The play status allows execution of the
loaded protocol. The pause status suspends protocol execution. The stop status restarts the protocol and suspends protocol execution. 3C Manager
VI: An add/remove control system button value change starts/stops control systems. A control system menu value change modifies the control
system VIs listed in the VI menu. A VI menu value change modifies the VI displayed in the subpanel. 3B Python Protocol A: new button value
change clears the protocol path, protocol script and compiler output on the front panel. An open button value change prompts the user to select a
protocol to load. The selected protocol text and path are placed in the protocol script and protocol path elements on the front panel. Bioreactor
parameters used in protocol creation/modification are imported to the protocol script by selecting items from the variable menu.
doi:10.1371/journal.pone.0092108.g003

Software to Control Bioflo Bioreactors

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e92108

adjust control loop outputs, setpoints, and current values. For each

control loop, the output, setpoint, and value are updated at set

intervals and graphed as a function of time. Data is simultaneously

logged in LabVIEWs TDMS file format, which is a digital data

format directly accessible through Microsoft Excel for later

analysis. To enhance data survey within the bioreactor VI, the

history lengths of graphed parameters were made individually

adjustable. The block diagram of the bioreactor VI was designed

using the QSM-PC architecture. The QSM-PC was used to

decouple front panel user inputs, which are referred to as

transitions, from code execution on the block diagram, referred

to as actions. Actions, such as hardware communication, generally

have slow execution times compared to the rate at which

transitions can be generated. If transitions and actions are coupled

to the same process, VI responsiveness to transitions only occurs

after the execution of an action is finished. By decoupling

transitions from actions the bioreactor VI’s responsiveness to

transitions is not hindered by the execution time of actions.

Decoupling was achieved with two parallel processes, called the

producer and the consumer loop. The producer loop maintains VI

responsiveness to transitions by delegating actions to the consumer

loop with shared access to a queue of messages (Figure 2).

Messages contain instructions and data that are needed for the

execution of actions (Figure 2). Messages are generated and

enqueued by the event structure, which is contained within the

producer loop. An event structure can contain multiple execution

cases that are uniquely linked to transitions. Each case generates

and enqueues messages with different action instructions. After

enqueueing a message, the event structure returns to a default state

where it waits for the next transition. The consumer loop removes

messages from the shared queue and executes the instructed

actions (Figure 2). This behavior continues iteratively to empty the

queue. Once the queue is emptied, the consumer loop returns to a

default state and waits for more messages to appear in the queue.

Figure 3A shows all the transitions and actions used in the

bioreactor program. The QSM-PC architecture scales well within

LabVIEW because each VI encapsulates its own consumer and

producer loop, allowing for the parallel operation of all the VIs

and subVIs.

Protocol execution
To be able to run experiments that require automated changes

in the control parameters, the software was designed to include

protocol execution. Two separate VIs, the Time Protocol VI and

the Python Protocol VI, interact with the bioreactor VI, including

all protocol functionality. By implementing protocols as separate

VIs, protocol VI development does not require any modifications

to the existing code. This modular solution is well-suited for

development of multi-process systems because interaction between

software routines is minimized. The protocol VI block diagrams

utilized the same QSM-PC architecture as the bioreactor VI with

different transitions and actions (Figure 3B&C). The reuse of the

bioreactor VI structure increased protocol VI functionality and

reduced development time.

Figure 4. Protocol VIs: 4A Time Protocol. Protocol command parameters are variable name, update value, execution time and optional
parameter, load path. The VI parses the selected CSV file and stores its contents in the command history indicator. When running, the Protocol VI
parses commands for time parameters that have been surpassed by the present time. These commands are removed from the command list and
executed by assigning the specified variable with the update value. If there is a load path parameter present, the protocol located at that path is
loaded and appended to the commands in the command list. After a command has been executed it is stored in the command history indicator,
which displays the last 1000 commands executed. 4B Python Protocol The python protocol VI uses an open source library called LabPython to
execute script protocols through an interface with the Python scripting language. Protocols can be loaded by selecting the open button and
developed in the protocol script control using variable inserted from the variable menu.
doi:10.1371/journal.pone.0092108.g004

Software to Control Bioflo Bioreactors

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e92108

Time Protocol VI
The time protocol VI modifies control loop setpoints at specific

times according to a protocol script. Protocol scripts are command

lines that contain: 1) execution time; 2) variable name; and 3)

setpoint value. Protocol files can be opened from protocol

command lines as well, allowing for the recurrent operation of a

protocol, or the concurrent execution of additional protocols. Each

Bioflo control setpoint that is available through the VISA interface

can be modified using the protocol VI. The protocol scripts are

stored in comma separated value (CSV) files which contain a

protocol command in each line. The CSV file format was chosen

to facilitate protocol editing in Microsoft Excel. Scripts are loaded

and executed with the toolbar buttons located on the front panel of

the protocol VI (Figure 4A). When a protocol is loaded the VI

parses the CSV file, stores its contents in the command list, and

displays the file path in the toolbar. Protocol execution is started,

paused, and stopped with three buttons that define the three

mutually exclusive operation states the protocol VI can be in. By

transitioning to the ‘‘start’’ state the protocol time parameters are

converted from relative times to absolute times, and the protocol

VI executes commands from the command list. If a load protocol

command is encountered, the protocol is loaded, and integrated

into the command list. After a command is executed it is moved to

the command history indicator. Programmatic loading of proto-

cols is especially useful for cyclic operations. As an example of a

protocol that implements a cyclic operation the SineWave.csv file

was created (Supplement S2). The SineWave.csv file contains a

series of commands that sinusoidally oscillates the temperature of

the bioreactor over one period. The last command in the protocol

contains the load command for itself. This prompts the protocol

VI to load another period of the oscillation into memory.

Python Protocol VI
The python protocol VI uses an open source library called

LabPython to interface with the Python scripting language. Python

is an open source object orient code with a syntax that is designed

to be highly readable. By utilizing the Python language conditional

logic can be implemented in protocols within the same familiar,

stable environment. The front panel of the python protocol VI

(Figure 4B) provides a protocol development environment capable

of compiling, opening and saving protocols as wells as executing

protocols. The python protocol was tested by duplicating the

functionality of the SineWave.csv time protocol. This was achieved

with only two lines script code (Supplement S3). While the python

protocol VI allows users familiar with text based code to develop

protocols that are more complex than that can be achieved with

the time protocol VI, the python protocol requires understanding

of the python language.

Data access model structure
The implementation of protocols, such as the SineWave.csv,

required access to reactor parameters. This was achieved by

storing reactor parameters in a shared data source. The bioreactor

VI and protocol VIs read from, and write to, this shared data

source. Access to the data source was regulated to ensure that all

processes only access current information. Utilization of outdated

information, such as data that is in the process of being updated,

can lead to intermittent errors caused by ‘race conditions’. Race

conditions occur when two parallel processes race each other to

modify a shared resource. Occasionally processes that utilize

outdated data can overwrite values, effectively reverting a value to

an earlier state. For instance, if data source access is not regulated,

a race condition could occur in the temperature setpoint that is

shared between the bioreactor and protocol VIs (Figure 5). If the

operator raises the temperature setpoint after the protocol reads the

temperature setpoint, but before the protocol saves the new setpoint,

the temperature setpoint will fall back to its initial value following a

short spike (Figure 5). Data access control was implemented using

a lock, read, modify, write, and unlock sequence (Figure 6). This

sequence locks the data source, which prevents access by other

parallel VIs (i.e. the VI has sole access to the data source). The VI

Figure 5. Race Condition. A race condition occurs when two
processes share asynchronous access to a variable, which can lead to
unpredictable changes in a variable if two processes race each other to
modify the variable value. A GUI allows users to change the
temperature setpoint value while the protocol program sinusoidally
oscillates the temperature setpoint value. A 5uC increase in the
oscillation offset from the user could be nullified by the protocol
program if its operations on the variable were concurrent with the
bioreactor operations (uncontrolled data access). Synchronous access
to the variable guaranties that the bioreactor program’s change will not
be nullified by the protocol program (controlled data access).
doi:10.1371/journal.pone.0092108.g005

Figure 6. Data Structure. Bioreactor parameters access is synchro-
nized by providing the bioreactor, time protocol and python protocol
VIs with a data value reference (DVR) to the parameters. The DVR is
used to access the bioreactor parameters through an in place element
structure. The in place element structure performs operations on the
bioreactor parameters without creating a copy in memory. This data
structure enables the data exchanged with the bioreactor PCU to be
shared with the protocol VIs without causing race conditions.
doi:10.1371/journal.pone.0092108.g006

Software to Control Bioflo Bioreactors

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e92108

performs all operation on the data source during this time period.

After saving the modifications, the data source is unlocked, which

releases the data source to other VIs. All VIs attempting to access a

locked data source are queued and given access rights on a - first in

first out - basis. All VIs access the shared data source with a data

value reference (DVR), which is passed to each VI at run time.

Multiple bioreactors/shared hardware
The BioFlo 110 PCU is capable of controlling up to four

bioreactor units concurrently. To utilize this functionality, the

ability to control multiple bioreactors from a single PCU was

added to the software. Individual bioreactor control was imple-

mented by using independent copies of the bioreactor and

protocol VIs for each reactor, which allows for custom control

of each bioreactor. To interact with each bioreactor program

through a single user interface, a manager VI was introduced to

encapsulate all VIs (Figure 7). The manager VI block diagram

contains the same QSM-PC architecture used in the bioreactor VI

and protocol VI, but contains different transitions and actions

(Figure 3D). The front panel of the manager VI contains a

subpanel that displays the front panel of the bioreactor and

protocol VIs. The VI displayed in the subpanel is selectable

through the VI and control system menus (Figure 7). The control

system menu selects which bioreactor control systems is displayed,

while the VI menu selects between python protocol VI, time

protocol VI and bioreactor VI. The manager VI front panel also

contains controls for adding and removing a bioreactor control

system. This feature enabled the start and stop of additional

bioreactors. By closing the manager VI, a system wide stop

condition is issued to all bioreactor and protocol VIs.

Each bioreactor VI was given access to the PCU to allow the

bioreactor VIs to operate independently. Similar to the data

source access, the PCU access was regulated to prevent race

conditions. Uncontrolled PCU access could cause a race condition

in which one bioreactor VI could revive old data that was

modified by another bioreactor VI, but not yet stored. PCU access

control was implemented by locking the VISA resource before

writing and reading operations (Figure 1). By controlling access to

the serial port associated with a VISA resource, PCU access was

shared between bioreactor VIs without sharing VISA resources.

This was necessary because a bioreactor VI’s VISA resource is

created and destroyed when its control system is added and

removed by the Manager VI.

Figure 7. Bioreactor & Manager VI: 7A Bioreactor VI: The bioreactor VI front panel provides an interface for monitoring and controlling the
Bioflo reactor. The control value, process value and process setpoint are displayed with numerical indicators and graphs. The numerical indicators
display the most recent values, while the graphs display the values over a period of time specified by the graph history control. The process setpoint
is user controllable, and displayed graphically with a red line. The control loop in view is selected in the loop name menu. 7B Manager VI: The
manager VI provides a single interface for all control system VIs through a font panel indicator called a subpanel. The subpanel displays the front
panel of others VIs, which are selectable through the VI and control system menus. The control system’s VIs in view are selected through the control
system menu. Each control system has a bioreactor, time protocol and python protocol VI. The VI in view for a given control system is selected
through the VI menu. The manager VI also contains the ability to dynamically start and stop control systems though the ‘‘add and subtract control
system’’ buttons. 7C Manager & Bioreactor VI: In this example the manager VI is displaying the temperature control loop of the bioreactor VI from
a Bioflo3000 control system. The graphs show the response of the Bioflo3000 to the execution of the SineWave.csv time protocol.
doi:10.1371/journal.pone.0092108.g007

Software to Control Bioflo Bioreactors

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e92108

The precautions taken to decouple the control of individual

Bioflo110 reactors enabled the simultaneous control of multiple

Bioflo110 PCUs as well as other Bioflo family bioreactors that use

the AFS communications protocol. This was demonstrated by

controlling multiple Bioflo110 bioreactors through a single PCU,

while simultaneously controlling a Bioflo3000 bioreactor. This

method of hardware sharing can be replicated amongst plugins

with axillary hardware, adding functionality to the control system.

By relegating the control of auxiliary hardware to plugins, and

controlling the access of hardware amongst plugins, this additional

functionality comes with little risk to the stability of the main

bioreactor VIs.

Conclusion
Research bioreactors are instrumental in creating a carefully

controlled laboratory environment for experimentation on mi-

crobes and cell cultures. Further enhancement of the control

functionality of research reactors is a natural extension of a

reactor’s core functionality. Yet, commercially available bioreac-

tors are not easily interfaced with auxiliary hardware, or controlled

with custom software. This work addressed these limitations by

implementing a QSM-PC software architecture with a plugin

interface in LabVIEW software to provide an open source

software package for the control of bioreactors of the New

Brunswick Scientific Bioflo product family. The software package

enables process parameter control, provides an interface for

process monitoring, implements data logging and creates the

capability to execute user defined protocols. A single manager VI

encapsulates all functionality and allows for parallel control of

multiple Bioflo bioreactor control systems. This software was

tested with the Bioflo110 and Bioflo3000 control system by

executing a simple protocol that sinusoidally oscillates the

temperature setpoint. The presented opens source software is a

flexible solution to help unlock the potential of bioreactor control

in research. This software can be adapted to control other

bioreactors, but is primarily intended to alleviate the investment in

time and resources needed to extend the functionality of

commercially available Bioflo bioreactor systems.

Supporting Information

Supplement S1 supplement.pdf Connection to, and
communication with the Bioflo reactor.

(PDF)

Supplement S2 SineWave.csv. Example script for the
Time VI protocol.

(CSV)

Supplement S3 SineWave.txt. Example script for the
Python VI protocol.

(TXT)

Author Contributions

Conceived and designed the experiments: DB IL. Performed the

experiments: DB. Analyzed the data: DB IL. Wrote the paper: DB IL.

References

1. Huang SR, Chen HT, Chung CH, Wu CC, Tsai TY, et al. (2012) Fermentative
hydrogen production using a real-time fuzzy controller. International Journal of

Hydrogen Energy 37: 15575–15581.

2. Kellerhals MB, Kessler B, Witholt B (1999) Closed-loop control of bacterial
high-cell-density fed-batch cultures: Production of mcl-PHAs by Pseudomonas

putida KT2442 under single-substrate and cofeeding conditions. Biotechnology
and Bioengineering 65: 306–315.

3. Turner C, Gregory ME, Thornhill NF (1994) Closed-Loop Control of Fed-

Batch Cultures of Recombinant Escherichia-Coli Using Online Hplc. Biotech-
nology and Bioengineering 44: 819–829.

4. Gregory ME, Keay PJ, Dean P, Bulmer M, Thornhill NF (1994) A Visual
Programming Environment for Bioprocess Control. Journal of Biotechnology

33: 233–241.
5. Jung BJ, Lee S, Yang IH, Good T, Cote GL (2002) Automated on-line

noninvasive optical glucose monitoring in a cell culture system. Applied

Spectroscopy 56: 51–57.
6. Diaz C, Dieu P, Feuillerat C, Lelong P, Salome M (1996) Simultaneous adaptive

predictive control of the partial pressures of dissolved oxygen (pO2) and dissolved
carbon dioxide (pCO2) in a laboratory-scale bioreactor. Journal of Biotechnol-

ogy 52: 135–150.

7. Stoll TS, Ruffieux PA, vonStockar U, Marison IW (1996) Development of an
on-line control system for the cultivation of animal cells in a hollow-fiber reactor

using flow injection analysis and a visual programming language. Journal of
Biotechnology 51: 37–48.

8. Huang HJ, Gu TY, Moo-Young M (2005) Data acquisition and control of a 22
L B. Braun fermenter using LabVIEW. Chemical Engineering Communications

192: 137–144.

9. Street J, Yu F, Warnock J, Wooten J, Columbus E, White M (2012) Design and

Testing of A Labview-Controlled Catalytic Packed-Bed Reactor System for

Production of Hydrocarbon Fuels. Transactions of the Asabe 55: 1047–1055.

10. Anderson RKI, Jayaraman K (2005) Impact of balanced substrate flux on the

metabolic process employing fuzzy logic during the cultivation of Bacillus

thuringiensis var. Galleriae. World Journal of Microbiology & Biotechnology 21:

127–133.

11. Mkondweni N, Tzoneva R, Harisson S (2005) Integrating LabVIEW capabilities

for monitoring and supervisory control with a B-Braun Biotech Gmbh unit for

fermentation processing and direct control. International Journal of Engineering

Education 21: 63–74.

12. Yue X, Drakakis EM, Lim M, Radomska A, Ye H, Mantalaris A, et al. (2008) A

Real-Time Multi-Channel Monitoring System for Stem Cell Culture Process.

Ieee Transactions on Biomedical Circuits and Systems 2: 66–77.

13. Topalov AA, Katsounaros I, Meier JC, Klemm SO, Mayrhofer KJ (2011)

Development and integration of a LabVIEW-based modular architecture for

automated execution of electrochemical catalyst testing. Review of Scientific

Instruments 82.

14. Hosek P, Prykari T, Alarousu E, Myllyla R (2009) Application of LabVIEW:

Complex Software Controlling of System for Optical Coherence Tomography.

Jala 14: 59–68.

15. Fu B, Pitter MC, Russell NA (2011) A Reconfigurable Real-Time Compressive-

Sampling Camera for Biological Applications. Plos One 6.

16. Mueller O, Tian Q, Zantl R, Kahl V, Lipp P, Kaestner L (2010) A system for

optical high resolution screening of electrical excitable cells. Cell Calcium 47:

224–233.

Software to Control Bioflo Bioreactors

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e92108

