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ABSTRACT

Motivation: Revealing the subcellular localization of proteins
within membrane-bound compartments is of a major importance
for inferring protein function. Though current high-throughput
localization experiments provide valuable data, they are costly
and time-consuming, and due to technical difficulties not readily
applicable for many Eukaryotes. Physical characteristics of proteins,
such as sequence targeting signals and amino acid composition
are commonly used to predict subcellular localizations using
computational approaches. Recently it was shown that protein—-
protein interaction (PPI) networks can be used to significantly
improve the prediction accuracy of protein subcellular localization.
However, as high-throughput PPl data depend on costly high-
throughput experiments and are currently available for only a few
organisms, the scope of such methods is yet limited.

Results: This study presents a novel constraint-based method
for predicting subcellular localization of enzymes based on their
embedding metabolic network, relying on a parsimony principle of
a minimal number of cross-membrane metabolite transporters. In
a cross-validation test of predicting known subcellular localization
of yeast enzymes, the method is shown to be markedly robust,
providing accurate localization predictions even when only 20%
of the known enzyme localizations are given as input. It is
shown to outperform pathway enrichment-based methods both
in terms of prediction accuracy and in its ability to predict the
subcellular localization of entire metabolic pathways when no a-priori
pathway-specific localization data is available (and hence enrichment
methods are bound to fail). With the number of available metabolic
networks already reaching more than 600 and growing fast, the new
method may significantly contribute to the identification of enzyme
localizations in many different organisms.

Contact: shira.mintz@weizmann.ac.il; tomersh@cs.technion.ac.il

1 INTRODUCTION

Eukaryotic cells contain several membrane-bound compartments
called organelles that perform specialized biological functions.
Subcellular compartmentalization allows the cell to maintain
different environments that bring enzymes and substrates into
physical proximity, participating in compartment-specific processes.
Revealing the subcellular localization of proteins is of a major
importance for inferring protein functions (Huh et al., 2003) and
for the discovery of drug targets (as some compartments are more
easily accessible than others for drug molecules). Systematic protein
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localization experiments based on green fluorescent protein (GFP)
tagging have been performed for several microbial species (Kumar
et al., 2002; Matsuyama et al., 2006). Such large-scale experiments
are both costly and time-consuming, and due to technical difficulties
are commonly not applicable to higher Eukaryotes.

Current limitations of experimental procedures for identifying
protein subcellular localization have given rise to ongoing
development of computational methods for predicting localization
data (Bhasin and Raghava, 2004; Emanuelsson et al., 2000;
Nakai and Horton, 1999; Scott et al, 2004; Shatkay et al.,
2007). Such methods rely on lists of features that characterize a
protein, such as its amino acid composition, their physio-chemical
and structural properties, codon-bias, protein motifs and targeting
signals (short stretches of amino-acid residues predominantly
located at the N-terminus). The various localization methods apply
different supervised classification approaches (e.g. artificial neural
networks, nearest neighbor, SVM, etc.) to predict protein subcellular
localization based on training data of experimentally determined
protein localization. The performance of these methods significantly
varies between different organisms and compartments, requiring
specific calibration in each context. Recent studies have investigated
a complementary approach for predicting subcellular localization,
utilizing large-scale protein—protein interaction (PPI) networks (Lee
et al., 2008; Scott et al., 2005). These methods are based on the
assumption that two proteins should be localized within the same or
adjacent compartments in order to interact. The work of Lee et al.
has shown that in some cases, utilizing a PPI network may provide
accurate localization predictions even without relying on common
protein characteristics such as those described above.

This study presents the first method that predicts the subcellular
localization of enzymes based on a metabolic network. Relying on a
metabolic network rather than a PPI network is highly advantageous
as metabolic networks are readily available for hundreds of species
based on cross-species enzyme sequence homology (Kanehisa and
Goto, 2000), while large-scale PPI networks depend on costly high-
throughput experiments that are currently available for only a few
organisms. Metabolic enzymes are also less likely to yield PPI
interactions (Uetz et al., 2000); e.g. the probability of a PPI between
metabolic enzymes in yeast is less than half of the probability
of an interaction between other non metabolic proteins (based on
data extracted from the DIP database (Salwinski et al., 2004)).
Thus, PPI-based localization methods have far less data to bootstrap
upon the localization of metabolic enzymes. Yet, constraint-based
modeling of metabolic networks was previously shown to predict
strong functional associations between enzymes (Notebaart et al.,
2008; Rokhlenko et al., 2007), and to successfully predict various

© 2009 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://creativecommons.org/licenses/

S.Mintz-Oron et al.

metabolic phenotypes in microorganisms [see Price et al. (2004) for
areview] and recently in human (Duarte et al., 2007; Shlomi ef al.,
2008).

Considering a metabolic network view of metabolic processes,
the potential activity of an enzyme in a certain compartment
depends on the activity of many other enzymes in the compartment
synthesizing and degrading its substrate metabolites and on the
activity of membrane transporters that move metabolites between
compartments. Indeed, metabolic processes tend to be clustered
within various compartments without extensive usage of cross-
membrane metabolite transporters. For example, 36% and 47%
of the metabolic pathways in yeast are confined within only one
or two compartments, respectively (based on pathway annotation
data in the model of (Duarte et al., 2004). This may be explained
by the fact that the cross-membrane exchange of many of the
metabolites depends on transporter proteins, imposing an energetic
cost (e.g. demanding an ATP or GTP molecule per each metabolite
translocation (Palmieri ef al., 2000) or requiring the maintenance
of a membrane potential (Wada et al., 1987). Accordingly, our
method predicts the subcellular localization of enzymes relying on
a parsimony principle of a minimal number of cross-membrane
metabolite transports. The utility of the method is demonstrated via
a cross-validation test of predicting known subcellular localization
of yeast enzymes.

2 METHODS

We present a new constraint-based modeling (CBM) method for
systematically predicting subcellular localization of enzymes in a metabolic
network, based on a-priori localization data for a subset of the enzymes,
relying on a parsimony principle of minimal number of cross-membrane
metabolite exchange. A schematic representation of the method is presented
in Figure 1. The input data for this method is a metabolic network,
representing a set of enzyme-catalyzed reactions, and the known localization
of a subset of the enzymes (Fig. 1a). Enzymatic reactions whose subcellular
localization is given as input are referred to as localized reactions. We
refer to the remaining reactions as non-localized reactions. The first step
of our method involves the integration of the given metabolic network
and the known localization data to construct an initial compartmentalized
network (Fig. 1b). This network consists of several compartments, in which
localized reactions may be activated in the corresponding compartments, and
non-localized reactions are duplicated to be present in all compartments.
Next, we apply a Mixed Integer Linear Programming (MILP) method to
compute a localization score for each pair of non-localized reaction and
compartment, reflecting the likelihood of this reaction to be present in that
compartment (Fig. 1c). These scores are used to determine the localization
of each non-localized reaction, which is the output of the method (Fig. 1d).
Next, we provide a brief overview on constraint-based modeling, followed
by a detailed description of the various steps of our compartment prediction
method.

2.1 Constraint-based modeling of metabolic networks

A metabolic network consisting of n metabolites and m reactions can be
represented by a stoichiometric matrix, denoted S, in which the S; ; represents
the stoichiometric coefficient of metabolite i in reaction j (Price et al.,
2004). A steady-state flux distribution (i.e. an assignment of flux rates
to all reactions in the network), denoted v, should satisfy the following
mass-balance constraint:

S-v=0

The exchange of metabolites with the environment is represented as a
set of exchange reactions, enabling for a pre-defined set of metabolites to
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Fig. 1. A schematic representation of the enzyme subcellular localization
prediction method. (a) The input data is a metabolic network, representing
a set of enzyme-catalyzed reactions, and the known localization data
for a subset of enzymes. (b) Integrating the given network and
localization data yields an initial compartmentalized network, consisting
of several compartments. Localized reactions appear in the corresponding
compartments while the non-localized reactions are duplicated to all
compartments. (¢) Mixed Integer Linear Programming (MILP) is applied
for each pair of non-localized reaction and compartment to calculate a
localization score, reflecting the likelihood of this reaction to be present in
that compartment. (d) Enzymes are predicted to be localized in compartments
achieving the highest localization scores.

be either taken-up or secreted from the growth media. Available metabolite
localization data can be incorporated within S, by considering each row as
an instance of a metabolite in a specific compartment, and each column
as a reaction that involves metabolites in specific compartments (Duarte
et al., 2004). In this case, additional transport reactions (incorporated as
additional columns in S) are used to represent metabolite translocation
across compartments. In addition to mass-balance, a-priori data on reaction
directionality can be used to enforce flux rates to have positive values for
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non-reversible reactions. In some cases, additional flux capacity constraints
are available and can be further applied. The stoichiometric mass-balance,
directionality and capacity constraints give rise to a space of feasible flux
distributions that has been analyzed by various optimization methods (Price
et al., 2004).

2.2 Constructing an initial compartmentalized network

We construct an initial compartmentalized network model with &k
compartments, in which (i) all metabolites are present in all k compartments;
(ii) transport reactions enable metabolite exchange between cytoplasm
and all k compartments. We denote by 7' the transport reactions between
the cytoplasm and compartment i; (iii) all reactions are present in all k
compartments. (iv) localized reactions can be activated (i.e. carry non-zero
flux) only in their associated compartments, while non-localized reactions
can be activated in all compartments. We denote the set of compartments in
which a localized reaction i can be activated by Ci. In this model, a steady-
state flux distribution, v:(f/l 2 .,\71‘,), should enforce the following
stoichiometric mass-balance, flux directionality and capacity constraints:

S-Dl:i?—ké-? 1)
i=2

SV =—F, i=2..k @

Vinin <V <Vmax, i=1...k 3)

Vj' VijlCi|>0 and j¢C; (4)

where, ! denotes the flux distribution in the cytoplasm, and e denotes the
set of enabled exchange reactions (i.e. all zero, except for ones for exchange
reactions) that move cytosolic metabolites across the model boundaries.
Equation (1) enforces mass-balance in the cytosol, where all metabolites may
be transported to all other compartments, and a subset of them exchanged
with the growth environment. To enable the activation of a significant
fraction of the reactions in the network, we considered a rich media in
which all exchange reactions in the network model are enabled. Equation
(2) enforces mass-balance for each compartment i. Equation (3) enforces
flux directionality and capacity constraints, once available in the model.
Equation (4) restricts flux activity of localized reactions only to their known
compartments (for which the set of associated compartments Ci consists of
at least a single compartment, i.e. |Ci| >0).

2.3 A MILP optimization for predicting enzyme
localization scores

To predict a subcellular localization of non-localized reactions, we employ
MILP to predict a feasible flux distribution v in the initial compartmentalized
network, in which: (i) a maximal number of localized reactions are activated
(i.e. carry non-zero flux) in their known compartment, and (ii) a minimal
number of transport reactions are activated. The predicted flux distribution is
used to infer the localization score for each reaction and compartment pair, as
described below. To enable counting of the number of localized reactions that
are correctly activated in the right compartments, for each localized reaction
i and its known compartment j, we define Boolean auxiliary variables,
y]’:’+, y’:’f, representing whether reaction i indeed carries non-zero flux in
either the forward or backward directions in compartment j, respectively
[following (Shlomi et al., 2008)]:

Vi (iminj —€) > Vinin j, I Ci| > 0 ©)

V}‘Fy;'i(vmax,jfe)zVmax,jyvlcil>O (6)

where ¢ denotes a minimal flux rate in which a reaction is considered
as active. We used &=0.1, following previous studies (Shlomi et al.,
2008), though other choices provided qualitatively similar results. Using
a similar method to count the number of activated transport reactions is

problematic as it requires k - n additional Boolean auxiliary variables, which
is computationally intractable. Instead, we employ a relaxation based on an
L1 metric (Shlomi ef al., 2005), minimizing the absolute value of fluxes rate
through transport reactions (which requires no additional Boolean variables).
The resulting objective function of our MILP formulation is hence:

m n
maxg, 350y 08T )= Y pld] @
j=1 J=1

where p denotes penalty per unit of flux through a transport reaction.
We choose a penalty value satisfying p << 1/(k-n) (where k-n equals the
total number of transport reactions), such that the optimization criteria of
maximizing the activity of localized reactions is given a higher priority over
the optimization criteria of minimizing the activity of transport reactions.
Using this parameter, the optimization problem is equivalent to first,
maximizing the number of localized reactions that are activated and only
then, minimizing the flux through transport reactions. The transport of
currency metabolites that participate in a high number of reactions in the
network (above 20; e.g. ATP, NADH, H20) was not associated with a penalty
score, as these metabolites are assumed to be present in all compartments.
The commercial CPLEX solver was used for solving MILP problems, on a
Pentium-4 machine running Linux in dozens of seconds per problem.

Once an optimal flux distribution is computed via our MILP formulation,
the localization of enzymes can be predicted based on their flux activity in
various compartments. However, due to the existence of alternative pathways
in the network, alternative optimal flux distributions may exist, resulting in
different localization predictions in each case. To handle such alternative
MILP solutions we employ a method similar to flux variability analysis
(FVA) (Mahadevan and Schilling, 2003). Specifically, for each non-localized
reaction i and compartment j, we compute an optimal flux distribution using
the above MILP method, while forcing the reaction to have non-zero flux
specifically in that compartment. The resulting optimization value is referred
to as the localization score. In the cross-validation tests described below, we
predict for each non-localized enzyme either one or two compartments (based
on the actual number of compartments the reaction is known to be localized
to), by considering the compartments achieving the highest localization
scores. In case of an enzyme having the same optimal localization score
for both cytoplasm and another compartment, the enzyme is predicted to be
localized in the other compartment (to avoid bias due to the large size of the
cytoplasm in which reaction activation is a-priori more likely to require a
lower number of transporters). When the same localization score is obtained
for more than two compartments, we provide no localization prediction for
that enzyme (lowering the prediction coverage).

2.4 An illustrative example of enzyme subcellular
localization predictions

An illustrative example of the prediction method is depicted in Figure 2.
In this example, the metabolic network contains 11 metabolites, 8 enzymatic
reactions and 4 exchange reactions. The initial compartmentalized network is
shown in the figure, depicting three compartments (cytoplasm, compartment-
A, compartment-B), and transport reactions for metabolites between
cytoplasm and the two other compartments. Localized reactions, given as
input, are marked with thick edges (R2, R4, R6 and R8), while non-localized
reactions (R1, R3, RS and R7), whose localizations we wish to predict, appear
in all three compartments.

We applied our MILP method to predict an optimal flux distribution for
this example, and show the derived flux distribution within the network (i.e.
marking activated, non-zero flux, reactions). As shown, the flux distribution
spans all three compartments, starting from the uptake of metabolite M1
and M10 from the growth environment, and ending with the secretion of
metabolites M5 and M9. Reactions R1 and RS are predicted to be localized
to compartment-A, as the transport of a single metabolite M1 into the
compartment enables the production of metabolites M2 and M7, required for
activating reactions R2 and R6 in this compartment. Reaction R7 is predicted
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Fig. 2. An illustrative example of our method for enzyme subcellular
compartment prediction. The initial compartmentalized network consists of
three compartments, with instances of 11 metabolites and 8 reactions in each
compartment. Thin edges connecting different instances of a metabolite in
various compartments represent transport reactions that move metabolites
across membrane boundaries. Wide arrows represent localized reactions
whose known localization is given as input to the prediction method. Solid
arrows represent reactions that are predicted to have non-zero flux by
our method reflecting their predicted localization. Dashed arrows represent
reactions predicted to have zero flux.

to be localized in the cytoplasm, as its substrate M11 is produced by R8
solely in the cytoplasm, and hence activating R7 in a different compartment
would require an unnecessary transport of M11 out of the cytoplasm. An
example in which the method cannot uniquely predict the localization of a
certain reaction is in the case of reaction R3 that produces metabolite M4
from M3. Activation of the localized reaction R4 in compartment-B requires
that its substrate metabolite M4 would be present in this compartment.
Metabolite M3 is produced solely in compartment-A, and hence reaction
R3 can be activated in compartment-A (with M4 being transported via two
transporters to compartment-B), or M3 can be transported to the cytoplasm
or to compartment-B and R3 activated in the cytoplasm or compartment-B,
respectively. In all three cases, the activation of R4 in compartment-B would
have the same total cost of activating two transport reactions.

3 RESULTS

3.1 Validating the localization prediction via a
metabolic network of Saccharomyces cerevisiae

To evaluate the performance of our method, we applied it to predict
enzyme localization for metabolic enzymes in the yeast S.cerevisiae.
Both the metabolic network and subcellular localization data
for S.cerevisiae are available within the genome-scale, fully
compartmentalized metabolic network model of (Duarte et al.,
2004). This network model accounts for 750 genes, 1062 metabolites
and 1149 reactions, acting in seven compartments: cytosol,
mitochondrion, peroxisome, nucleus, endoplasmic reticulum, golgi
apparatus, and vacuole. The cytosol is the largest compartment,
consisting of 65% of the total metabolic reactions, followed by the
mitochondrion, consisting of 16% of the reactions.

Metabolic-network prediction
{eytosolic reactions)

8 Metabolic-network prediction
{non-cytosolic reactions)

% Accuracy

B Enrichment-based prediction
{cytosolic reactions)

¥ Enrichment-based prediction
{non-cytosclic reactions)

s

% Coverage

% Localized reactions given as input

Fig. 3. Accuracy (a) and coverage (b) of enzyme subcellular localization
predictions in a cross-validation test in the yeast S.cerevisiae. The average
and standard error of the accuracy and coverage measures were calculated
based on 10 applications of the prediction methods over randomly sampled
sets of localized enzymes of similar size that are used as input.

To evaluate our method, we first removed all existing localization
data from the network model of Duarte e al., forming a new
stochiometric matrix with a single merged compartment that can
be given as input to our prediction method. Then, we applied a
cross-validation test, in which we randomly partitioned the enzymes
to localized and non-localized sets and applied our method to
predict the localization of the non-localized enzymes, given the
localized enzymes and the metabolic network. For the non-localized
enzymes, we assumed that prior knowledge (obtained for example,
via sequence-based prediction methods such as those described
above) narrows down the list of potential localizations of enzymes
to one out of four compartments, and hence restricts the activity
of non-localized reactions in the model to three randomly chosen
compartments in addition to the correct compartment. The specific
choice of restricting non-localized reactions to four compartments
was made based on a comprehensive analysis of ten prediction
methods applied to Arabidopsis thaliana, which showed that over
90% of its enzymes are predicted to be localized to no more than four
compartments (Heazlewood et al., 2007). To further evaluate the
performance of our method, we compare it with an enrichment-based
method that predicts subcellular localization based on an assumption
that pathways are coherently localized in various compartments.
Specifically, for each non-localized reaction participating in a
certain pathway we compute a hyper-geometric p-value reflecting
the pathway’s enrichment with enzymes localized within each
compartment. The localization of the reaction is predicted based
on the compartment that yields the lowest p-value. The metabolic
pathway data was also obtained from the metabolic network model
of Duarte et al.

The accuracy and coverage of our method in comparison with
the enrichment-based method, for various fractions of localized
enzymes input sets, are shown in Figure 3. Since the known
distribution of enzyme compartment localization is significantly
skewed towards the cytoplasm, we present the accuracy and
coverage statistics separately for cytosolic reactions and non-
cytosolic reactions (showing that our method correctly predicts
localization in both cases). The accuracy of our method is markedly
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robust, remaining above 78% for both cytosolic and non-cytosolic
reactions when the percentage of given localized reactions is as low
as 20%. The coverage shows a moderate decline from 88% and
79% for cytosolic and non-cytosolic reactions, respectively, given
the 80% localized reactions as input, towards 78% and 63% in the
case of 20% localized reactions. This decline in coverage is quite
expected, as when the set of localized reactions used as input is
small, many reactions have the same likelihood of being active
in various compartments. The pathway enrichment-based method
constantly achieves a markedly lower accuracy (except for the case
in which only 20% localized reactions are used as input in which
its coverage is minute), especially for the prediction of cytosolic
enzymes. The coverage of this method shows a slight advantage over
our network-based approach for high fractions of localized reactions
used as input. However, the pathway enrichment-based method is
shown to be highly non-robust when the fraction of given localized
reactions decreases—when it reaches 20% its coverage significantly
drops to below 10%. The failure of the pathway enrichment-based
method to match our network-based approach is somewhat expected,
considering that many metabolic pathways do cross compartmental
boundaries (as discussed above) and as it does not account for
pathways intersection as shown below.

3.2 An example of predicting the subcellular
localization of complete pathways

We further tested our method in predicting subcellular localization
for a set of enzymes with unknown localization that covers two
complete pathways. In such cases, a-priori localization data is not
available for any enzyme in a certain pathway, and hence pathway
enrichment-based methods are bound to fail, requiring a network-
based view of pathways connectivity. Specifically, we aim to predict
the localization of a group of enzymes composing the TCA cycle
and the glyoxylate cycle, given the known localization all of the
remaining enzymes in the network (Fig. 4). The set of enzymes to
predict consist of 12 reactions: three ethanol fermentation reactions
(with isozymes localized to both cytoplasm and mitochondria),
four TCA cycle reactions (only in mitochondria; referred to as
mitochondria-specific TCA cycle reactions), two glyoxylate cycle
reactions [one in both peroxisome and cytosol and another only
in cytosol) and three reactions involving both gloxylate and TCA
(with isozymes localized in all three compartments; (Regev-Rudzki
et al., 2005)]. The three reactions involved in the ethanol oxidation
pathway are correctly predicted to be localized both in the cytosol
and mitochondria. The four mitochondria-specific TCA cycle
reactions are correctly predicted to be localized in mitochondria
and the three reactions involving both gloxylate and TCA pathways
are correctly predicted to be localized in all three compartments.
The glyoxylate reaction localized to both peroxisome and cytosol is
correctly predicted to be localized in the cytosol, though its second
most likely localization is falsely predicted to be mitochondria, while
only its third predicted localization is peroxisome. A similar problem
arises with the localization prediction of the glyoxylate reaction that
is known to be localized only in the cytosol, where the method
predicts a most likely mitochondrial localization. The two false
predictions for these reactions result from the utilization of their
substrate metabolites also in mitochondria. However, in both cases,
the next most likely localization prediction given by our method is
the correct one.

Fig. 4. Enzyme subcellular localization prediction of two complete
metabolic pathways, including the TCA cycle (black rectangles) and
glyoxylate cycle (grey rectangles), and a subset of the ethanol oxidation
pathway (white rectangles), given localization data for enzymes in other
connected pathways (white ellipses) as input. Transport reactions are marked
by dotted arrows.

3.3 Validating emergent subcellular localization
predictions via GO annotation

Following the cross-validation test, we turned to predict novel
subcellular localizations of enzymes in the metabolic network.
Towards this goal, we re-ran our method on the same network in
a leave-one-out cross validation setup, in which localization data
for all reactions but one was used to predict the localization of
that single reaction. We found that our method predicts a non-
cytosolic localization for 22 reactions in the model although they
are localized in the model to the cytosol. Inspecting the GO
cellular localization annotation for these reactions revealed that
the localization of 10 out of the 22 was correctly predicted. This
prediction accuracy is statistically significant (p < 0.05) compared
with a random assignment of genes to compartments (with
an assignment probability for each compartment relative to its
size in GO).

An example of such emergent localization predictions that
are not accounted for in the model is the case of enzymes
SUR2 (dihydrosphingosine C-4 hydroxylase), and TSC10
(3-ketosphinganine reductase), which catalyze consecutive
reactions in the ceramide biosynthesis pathway. Ceramides are
formed as the key intermediates in the biosynthesis of sphingolipids,
essential components of the plasma membrane. This pathway is
known to be accomplished by ER enzymes, some of which can
also be localized to the cytosol (Natter er al., 2005). SUR2 is
known to be localized exclusively to the ER, although mistakenly
it is localized strictly to the cytosol in the model. TSC10 is
experimentally localized to both the ER and the cytosol, though
again, mistakenly it is localized in the model only to the cytosol.
Our method predicts the correct localization of both enzymes in
the ER.

4 DISCUSSION

This study presents a novel constraint-based modeling method
for predicting subcellular localization of enzymes embedded in a
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metabolic network. While constraint-based modeling was previously
employed to predict many different metabolic phenotypes, this
is the first application of this approach to predict subcellular
localization. The method is based on a parsimonious principle of
minimal number of metabolite transports across compartments—a
novel concept in the context of metabolic network analysis, which
enables the prediction of plausible flux distributions that are
clustered within various compartments, but does not strictly enforce
such a clustering in a ‘hard-wired’ manner.

While previous methods have used PPI networks to improve
localization predictions, relying on metabolic networks is
advantageous as metabolic networks are readily available for
hundreds of species. Another advantage is in regard to the prediction
of metabolic enzyme localization, as metabolic enzymes are less
likely to yield PPIs. However, an evaluation of the performance of
PPI-based localization prediction methods when applied strictly to
metabolic enzymes has yet to be performed. An inherent limitation of
metabolic network-based localization prediction is that it is strictly
limited to metabolic enzymes. Furthermore, we note that our method
is computationally more demanding than common methods that rely
on standard supervised classification approaches, requiring multiple
mixed integer optimizations.

We intend to apply this method to predict subcellular localizations
in other organisms in which the true localization is unknown.
For example, in the plant model organism A.thaliana for which
experimentally determined localization data is available for only
50% of the metabolic enzymes (Heazlewood et al., 2007). Different
aspects of protein’s localization can be explored using this method,
such as the dependency of localization on various growth media
(John et al., 2006). While here we rely on this principle of
minimal metabolite exchange to partition a network to its subcellular
compartments, future research may employ the same principle to
partition metabolic networks into different subsystems. For example,
with the availability of a genome-scale human metabolic network
model, a similar approach may be used to partition it to various
tissue-specific subsystems. Or in the realm of meta-genomics,
similar approaches may be used to partition a metabolic network
of population of species to species-specific subsystems.
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