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Abstract

While Twitter has been touted as a preeminent source of up-to-date information on hazard events, 

the reliability of tweets is still a concern. Our previous publication extracted relevant tweets 

containing information about the 2013 Colorado flood event and its impacts. Using the relevant 

tweets, this research further examined the reliability (accuracy and trueness) of the tweets by 

examining the text and image content and comparing them to other publicly available data sources. 

Both manual identification of text information and automated (Google Cloud Vision, application 

programming interface (API)) extraction of images were implemented to balance accurate 

information verification and efficient processing time. The results showed that both the text and 

images contained useful information about damaged/flooded roads/streets. This information will 

help emergency response coordination efforts and informed allocation of resources when enough 

tweets contain geocoordinates or location/venue names. This research will identify reliable 

crowdsourced risk information to facilitate near real-time emergency response through better use 

of crowdsourced risk communication platforms.
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1. Introduction

Increased frequency and severity of climate-related hazards (e.g., floods, wildfires, 

hurricanes, and heat weaves) and anthropogenic hazards (e.g., mass shooting, epidemics) has 

brought unprecedented challenges to nations and individuals worldwide [1]. Risk and crisis 

communication regarding disasters are paramount in helping the population prepare for and 

respond to extreme events by providing essential information to plan and mitigate potential 

damages to life and property [2,3]. The proliferation of information technology and Web 2.0 

have transformed the way individuals and organizations communicate and interact with 

others across the globe. For instance, according to the Pew Research Center, around 30% of 

Americans often depend on social media and social networking sites (e.g., Facebook, 

Twitter, etc.) for their news or information about specific events [4]. Consequently, 

traditional mainstream media have adopted new strategies to expand their presence, 

distribute content, and engage with consumers on social media [5]. Similarly, online content 

created by members of the public is being consumed and shared on various social media 

platforms (e.g., Twitter), thereby enriching and challenging traditional communication, 

especially during emergency management phases [6]. From the socio-psychological 

perspective, reasons that generally drive people to share information on social media are 

self-efficacy, self-fulfilment, altruism, social engagement, reciprocity, and reputation [7,8]. 

As a result, social media platforms have been used during disasters to issue warnings to the 

public, report damages, engage with stakeholders, and help organize relief efforts [9–13].

Citizen science-based platforms (e.g., iCoast, Tweet Earthquake Dispatch, 

CitizenScience.gov) allow citizens to collaborate with scientists in collecting and analyzing 

data, reporting observations and disseminating results about scientific problems [14]. 

Crowdsourcing platforms, such as Twitter and Facebook, are social media and social 

networking sites that allow non-experts to generate new knowledge and datasets [15,16]. 

Although both citizen science and crowdsourcing engage socio-culturally diverse and 

geographically dispersed citizens in data and knowledge creation/collection, each has subtle 

differences [17,18]. While crowdsourcing remains an ill-defined approach that uses large 

networks of people, citizen science solely uses scientists, volunteers, and lay people with 

interests and knowledge about a specific topic [19]. Because tweets are generated via 

crowdsourcing and tend to contain rumors and hoaxes, we assumed the tweets to be 

inaccurate and implemented a hierarchical approach to verify the reliability and relevance of 

the tweets using scientifically derived and confirmed data.

Despite the importance of social media in risk communication, there are challenges that 

need to be addressed. First, information overload due to massive amounts of user-generated 

content can overwhelm users attempting to gain relevant information [20]. Second, 

crowdsourced social media data often lack metadata providing information about the creator, 

time, date, device used to generate data, purpose, and standard, making it less credible [21–

23]. Third, the advent of robot-controlled social media accounts, commercial spam, and 

collective attention spam/misinformation on social media [24,25] could also impede the 

quality of crowdsourced data. Finally, heuristics play a significant role in deciding what or 

whether to share information on social media. This has become influential during 

complicated and unanticipated crisis situations, thereby contributing to the possibility of 
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introducing errors and biased judgements to shared risk information [26]. These challenges 

are more pronounced on crowdsourcing platforms.

Even when the above issues are controlled, information relevance determines the usability of 

social media crisis information. Thus, evaluating relevance of social media content is critical 

[10], and hence it is paramount to assess the quality and trustworthiness of data to ensure the 

information shared is accurate and true for decision making and public consumption during 

a crisis. The goal of this research is to extract risk information from tweets during the 2013 

Colorado flood and assess the reliability (accuracy and trueness) of this information. This 

was done by examining the text and image content and comparing the content to publicly 

available information from federal, state, and local governments and emergency 

management agencies.

2. Literature Review

Risk communication, a principal element of emergency management, is defined as “the 

process of exchanging information among interested parties about the nature, magnitude, 

significance, or control of a risk” [27]. Risk communication is of paramount importance to 

governments, organizations, businesses, and individuals because it provides information 

about potential disasters/crises, possible impacts/damages, and countermeasures. Social 

media-based approaches are characterized by collaborative, participatory, and 

multidirectional communications that allow both impacted and interested populations to 

share unlimited information about a hazard, irrespective of its geographic location and time 

[28]. For instance, social networking sites (e.g., Facebook) and short-blog services (e.g., 

Twitter) were extensively used during 2017 Hurricane Harvey [29], 2017 Hurricane Maria 

[30], 2018 California wildfires [12,13], and the COVID-19 pandemic [31,32].

Data reliability can be defined as “the accuracy and completeness of data, given the uses 

they are intended for” [33]. Existing research assessing reliability of crowdsourced data 

tends to focus on evaluating quality of content (e.g., presence of metadata [21], detection of 

rumors [24]), and developing machine learning algorithms or models to asses data reliability 

[34–36]. Citizen scientists and subject matter experts are also used in reliability validation to 

differentiate and justify perceived “true incidents” [37,38]. Based on this need, more 

researchers have adopted the Amazon Mechanical Turk to verify the effectiveness and 

reliability of crowdsourced data in addition to other manual identification approaches [39–

43].

Despite the abundance of existing evaluation methods, some algorithm-based studies rarely 

incorporate potentially relevant external data sources to the research context, such as 

meteorological and geospatial data in flood studies [44] and digital elevation models (DEM) 

in earthquake or landslide studies [45]. As a result, these studies may fail to capture all the 

necessary information for reliability validation. Therefore, this research designed a 

workflow to work closely with reference documents to extract reliable risk information.

Reliability in this research refers to “accuracy of information and the extent to which the 

data reflects actuality.” Using this definition, a workflow was developed to assess reliability 
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of extracted risk information from relevant tweets that were obtained for the 2013 Colorado 

flood event. Using the workflow, we examined the tweet text and images leveraging human 

intelligence and Google Cloud Vision (GCV) application programming interface (API). The 

relevant tweets were extracted via several data mining techniques and can be found in a 

previous publication [10]. GCV API allowed automatic identification of image content, 

labeling of images, and automatic matching online information [46,47].

3. Materials and Methods

3.1. Study Site

The 2013 Colorado flood severely affected Front Range, El Paso County, Boulder County, 

and part of the Denver metropolitan area. The severe flash flooding caused by days of heavy 

precipitation that spanned from September 9th to 18th brought considerable damages to the 

region. Boulder County, the study site, received 9.4 inches of precipitation on September 

12th alone, which was equivalent to the county’s average annual precipitation [48]. Other 

counties had relatively less but increasing precipitation from September 9th until September 

15th.

3.2. Datasets and Processing

The datasets used in this study include historical tweets, geospatial datasets corresponding to 

the flood event and the study site (e.g., Boulder flood extent map, Boulder street map), and 

reference documents including news articles and agency reports from the National Weather 

Service, state, and local government agencies. A discussion of the data processing steps and 

analytical approaches is presented below.

3.2.1. Tweets of 2013 Colorado floods—Historical tweets were identified and then 

purchased from Twitter Inc. using two types of keywords: (1) location names (Colorado, 

Boulder, Front Range, El Paso County and Boulder County, Denver metro), and (2) hazard 

event/impacts (flash flooding, flooding, rain 2013, emergency, impact, damaged bridges and 

roads, damaged houses, financial losses, evacuate, and evacuation). Any tweet that contained 

either the location name or hazard event/impact was included in the analysis. The tweets 

covered a 10-day duration from September 9th to 18th and captured all flooding events. 

From the 1 million tweets, we extracted 5202 (0.44%) English tweets that were geo-tagged 

to a location in Colorado. Our previous study extracted 720 (14% of the geo-tagged tweets 

and 0.31% of raw tweets) relevant tweets using six different computational and 

spatiotemporal analytical approaches [10,49]. The relevant tweets contained considerable 

flooding-related information with a threshold relevance score of 1.3 [10].

3.2.2. GIS Data—To understand the spatial distribution of tweets with respect to the 

flood-impacted area, the flood extent dataset was obtained from the City of Boulder [50]. 

This dataset was generated using field surveys, Digital Globe Worldview satellite imagery, 

and public input from Boulder crowdsourced online applications. Street network data from 

the City of Boulder was used to evaluate reliability of tweets with respect to damages to 

flooded roads and streets [51].
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3.2.3. National Oceanic and Atmospheric Administration (NOAA) Warning/
Alert Messages—Warning/alert messages sent by the National Weather Service during 

the 2013 Colorado flooding event were obtained from the NOAA Weather Forecast Office at 

Boulder [52]. The messages contained meteorological forecasts, observations, public 

watches, warnings, advisories, and areas that may be impacted during the flooding event. 

These alert/warning messages were used as official reference information in evaluating 

reliability of tweets.

3.2.4. Reference Documents—Damage assessment reports about the Colorado 

flooding event were retrieved from federal, state, and local governments and emergency 

management agencies from their respective websites. The documents include “situational 

awareness report” [53], rainfall assessment report [54], and damage assessment report [55]. 

These reports provided situational awareness about cause of flooding, flooding extent, and 

severity, as well as damages to properties and infrastructures in affected regions. 

Additionally, newspaper articles that validated incidents and/or facts (i.e., damage to specific 

roads) were also used as reference documents [56,57].

3.3. Analytics and Techniques

This section presents the steps used to assess the reliability of relevant tweets. In the context 

of risk communication, relevant information may not be reliable, e.g., mention of the time 

and/or location of the event cannot be deemed as reliable unless the relevant information is 

verified to be accurate and true. Based on this rationale, this research sequentially extracted 

relevant tweets first and then evaluated their reliability (Figure 1). Specifically, the bag-of-

words model was applied to geo-tagged tweets to extract assumed relevant tweets. The bag-

of-words extraction used topic-specific search terms and top frequent words/hashtags to 

measure the relevance of a document (i.e., tweets) to the search terms and extract the 

assumed relevant documents. The relevance of these tweets was determined first, after which 

their reliability was evaluated.

The text analysis involved a few consecutive steps. The first step was to search for evident 

information from reference documents, especially weather warning/alert messages from the 

National Weather Service and the state and local emergency management agencies. 

Furthermore, events, names of damaged roads and streets, and the posted time of each tweet 

were manually identified [58] from relevant tweets and then used as keywords to search for 

related information in reference documents. If no such information could be found, the 

topic, posted time, and location of tweets was documented for further use. The next step was 

to holistically assess if the documented unverified tweets had any association with other 

tweets based on topic, posted time, or location. Finally, news information, when available, 

was also used as a complementary reference source. If evidence could be found from 

reference documents or enough tweets from multiple Twitter users presented facts that fit the 

hazard context in the relevant tweets, the studied tweets were considered reliable.

In the image analysis process, 308 images were downloaded from 720 relevant tweets. The 

images were considered reliable if they met either of the following two conditions: (1) gain 

evidence from credible sources, or (2) mutually prove each other. Both manual and 
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automatic evaluation approaches were implemented to analyze the 308 images. In the 

manual approach, images were manually examined for roads/streets and property damage, as 

well as their corresponding tweet text content. Next, the image content, geographical 

locations, and text content were compared to reference documents. In the automatic/

Artificial Intelligence (AI) approach, Google Cloud Vision API 308 images were uploaded 

to Google Cloud’s Vision API (application programming interface) [59], and were classified 

and assigned categorical labels using Google’s pre-trained machine learning models. This 

approach aims to leverage an existing AI (artificial intelligence) tool to improve the 

efficiency of extracting flood related features to facilitate the tweets reliability evaluation 

process.

4. Results and Discussion

4.1. Evaluation of Text Content

Three authors of this paper worked on manual evaluation of tweet text, and each tweet was 

evaluated by at least two authors to minimize human error or bias. As a result, 584 out of 

720 relevant tweets were verified to have reliable information. Examples of unverified 

tweets include tweets solely about emotions or tweets containing information that could not 

be verified based on our evaluation criteria. Table 1 shows how the names of damaged roads/

streets, tweet post time, and associated risk information was manually extracted. The 

location of the tweets shown in Table 1 were marked in Figure 2 using their ID number. A 

detailed description of our process to assess the reliability of each tweet is presented below.

Using the key phrase “west of Broadway,” a related NOAA warning/alert message was 

found from tweet #1 in Table 1: “Hourly rainfall intensity at the Sugarloaf RAWS station 6 

mi. west of Boulder compared with gage height on Boulder Creek at Boulder (west of 
Broadway). The first flood peak closely followed the heavy rainfall before midnight on 
September 11th–12th, when 3.5” fell in 6 h. (Data: rainfall: RAWS via WRCC; and 

streamflow: Colorado DWR; plotted by Jeff Lukas, WWA)”.

The above message mentioned the gauge height on Boulder Creek at west of Broadway 

following the flood peak that resulted from heavy rainfall before midnight on September 

11th. This corresponds to tweet #1 and explains why “Boulder Creek is about to spill its 

bank at west of Broadway” at 3:02 a.m. on September 12th. Therefore, tweet #1 in Table 1 

was considered reliable in terms of its location, time, and content.

When searching for “Broadway” and “Arapahoe Avenue,” no direct evidence was found in 

tweet #2, which may be because Arapahoe Avenue is a county road and is generally too 

specific to be mentioned in official warning or damage assessment reports. However, as 

shown in symbol #2 in Figure 2, Boulder Creek flooded the crossing of Broadway and 

Arapahoe Avenue, allowing the observer to detect an increased water level of 2.5 feet within 

10 min. Additionally, the tweet posting time (5:30 a.m.) was within the period when Boulder 

Creek was officially identified to have experienced a rapid accumulation of precipitation (see 

Section 3.1).
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The crossing of 8th Street and Marine Street (symbol # 3 in Figure 2) was adjacent to and 

flooded by Gregory Canyon Creek, which corresponded to tweet #3 (see Table 1) indicating 

that the drainage at Gregory Canyon overflooded 8th Street. Based on the time, tweet #2 

identified a rapid increase in water level on Boulder Creek at 5:30 a.m., and 20 min later, 

this tweet reported inundation of roads due to flooding of Gregory Canyon Creek, nearby 

Boulder Creek. This confirmed that risk information in tweet #3 is reliable based on content, 

time, and geographical locations.

The intersection of 28th Street and Colorado Avenue (symbol #4 in Figure 2) is between 

Boulder Creek and Skunk Creek, and tweet #4 was posted at the peak of the flooding when 

water overflowed from the creeks. The multi-day continuous rainfall flooded most tributaries 

and thereafter inundated most roads in Boulder City. An estimation of road damage was 

found in an official damage assessment report [55]: “Authorities estimate the flooding 

damaged or destroyed almost 485 miles of roads and 50 bridges in the impacted counties.” 

This tweet reported flooded roads with “knee deep water” and was posted right after 

continuous heavy rainfall. Therefore, it was treated as a reliable tweet.

Tweet #5 in Table 1 was posted in a similar context as tweet #4, and the user seemed to have 

witnessed the flooded neighborhood streets. Since this tweet was reliable, 15th Street (where 

the tweet was posted) could be marked as inundated so that others could avoid this road.

State Highway 36 was mentioned several times in tweets #6, #10, #11, and #12 (Table 1). 

The earliest mention was on September 12th when excessive rainfall continued to intensify 

the flooding situation. Those tweets also disclosed other details about Highway 36, such as 

“raining and pouring,” “flooded by over 3 feet of water,” and “its subsequent closure.” 

Evidence of this was also found in an official damage assessment report [55]: “Based on 

Federal Emergency Management Agency (FEMA) information, the flooding destroyed more 

than 350 homes with over 19,000 homes and commercial buildings damaged, many of which 

were impossible to reach except on foot. Flooding resulted in a total of 485 miles of 

damaged roadway, destroyed 30 state highway bridges, and severely damaged another 20 

bridges. During the height of the flooding, authorities were forced to close 36 state 

highways. Some highways could not be repaired for weeks or even months.” These 

assessments confirmed the reliability of the tweets.

Tweets #6, #10, and #12 were also geo-located along Highway 36, but tweet #11 was posted 

beyond the city limits of Boulder. Because this tweet was posted from a place that is farther 

from the impacted location, it was hard to prove its reliability without referring to other 

tweets that also mentioned Highway 36. However, because the content mentioned in this 

tweet was also mentioned in other tweets, this tweet was considered reliable. Consequently, 

keywords that were verified to be related to important incidents/places, such as Highway 36, 

could be used to extract tweets that were beyond the spatial limit of the study area or that did 

not possess any geo-location information. This approach yields a larger volume of relevant 

tweets.

Tweet #7 posted at 3:22 a.m. on September 13th mentioned that a portion of 8th Street 

between University of Colorado Boulder and Marine Street (symbol # 7 in Figure 2) 
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experienced severe rainfall. Given the site was located near Boulder Creek, Sunshine 

Canyon Creek, and Gregory Canyon Creek junction, 8th Street was highly likely to have 

been flooded at that time. A piece of news by Huffington Post reported that, “around 80 

buildings on campus were damaged in some form, CU Boulder police tweeted, and raw 

sewage was flowing from a pipe in one area,” [56] confirming this tweet. A campus damage 

assessment report [57] also mentioned that “80 of 300 structures on the Boulder campus 

sustained some damage. The damage is described as ‘widespread’ but not severe.” These 

two news articles confirmed the reliability of the tweet.

Tweets #8 and #9 were geo-located along the flooded Skunk Creek (symbols #8 and #9 in 

Figure 2). While 30th Street was flooded, the adjacent Colorado Avenue was already closed. 

Both streets are in the Foothills area, which was reported to have been seriously impacted by 

flood in a damage assessment report summary: “Foothills around Boulder also saw severe 

flooding and debris flows” [54].

4.2. Evaluation of Image Content

Interactive delivery of information (stories) through images is more engaging because it is 

an effective way to visualize information and enables the brain to process and organize 

information. Through images, people can develop a deep understanding about the severity 

and significance of issues associated with a disaster [60]. However, previous studies have 

shown that around 4% of tweets are spams [61], and fake images tend to be propagated via 

the web, especially during crises [62]. Despite abundant research on filtering out spam or 

phishing tweets [63], studies focusing on diffusion of fake images are sparse [62]. Given this 

limitation, 308 images were downloaded from relevant tweets and two strategies were 

implemented to evaluate the reliability of those images. Results showed that the manual 

approach identified 60 (19%) reliable images compared to the AI approach which detected 

only 34 (11%). The following section presents the results of both approaches.

4.2.1. Manual Approach—This section illustrates the method of organizing images 

based on location, time, the photographer. Additionally, like-images were grouped together 

in order to draw comparisons and elucidate themes or topics featured in the image groups. 

Figures 3–5, and Figure 6 show 24 most representative images out of 308 that were 

identified and grouped into different themes. All images in Figure 3 depict the flood 

conditions of Boulder Creek at different time points, perspectives, and angles. Figure 4 

includes images about submerged ground on different streets and intersections; some streets 

were mentioned in 4.1.2 and 4.1.4.

The images shown in Figure 5 were taken at the same location by different people, at 

different times, and from different angles. The flood water falling from the bridge created an 

unusual waterfall and attracted people to take pictures to report the severity and rarity of the 

flood. The bottom three images in Figure 5 recorded the increased water level at Boulder 

Creek under Broadway Bridge, which clearly displays the temporal change in flood severity. 

This finding is critical for crowdsourcing-based risk communication because massive 

numbers of images could mutually verify each other despite lack of external information.
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Images in Figure 6 were posted by a local news reporter, who continuously reported flood 

situations in several locations along with pictures on Twitter. The locations that were 

mentioned by the reporter were: Colorado Avenue, the backyard of Boulder High School, 

Folsom Field Stadium, and 28th Street and Arapahoe Ave. The text and images posted by 

the reporter could be regarded as reliable.

4.2.2. AI Approach—This section illustrates the AI approach for detecting flood-related 

features using GCV API and presents the result of the automatic detection. GCV API 

provided two types of automatic detection: image and web detection [59]. For each image 

fed to the API, its pre-trained machine learning models generated image detection and web 

detection results. Image detection results include annotated images by detecting the features 

of images. Web detection uses the image content and its metadata to crawl the web and 

detect relevant information from the internet. Accuracy of image detection is based on the 

availability of training data and the detection algorithm. Accuracy of web detection is based 

on image content, metadata, and the availability of related information on the web.

Among the 34 images detected by GCV API to be relevant to 2013 Colorado flood, web 

detection outperformed the results from the image detection, one example of which could be 

found in Figure 7. According to Figure 7, web detection accurately detected the scene as the 

2013 Colorado flood, while image detection only recognized the water feature in the image. 

On the other hand, Figure 8 shows that both modes of detection failed to identify the 

inundated condition of the parking lot with most cars only visible from the top. GCV API 

can only detect the type or size of cars, e.g., “family car” or “luxury vehicle,” largely 

because the sample images used to train the underlying models did not include scenes of 

parking lot flooding. On one hand, this suggests current limitations of AI-based image 

processing. On the other hand, it also implies that using images alone will cause the lack of 

contextual information to help us understand and make full use of the images.

4.3. Extracting Added Tweets Using Verified Keywords

Sections 4.1 and 4.2 identified 584 reliable tweets and 60 reliable images, which accounts 

for 11% and 1% of 5202 geo-tagged tweets, respectively, and 0.05% and 0.01% of all 

1,195,183 purchased tweets. To make better use of this data source, we selected a group of 

keywords/locations (e.g., Highway 36) from the verified reliable tweets discussed in 

Sections 4.1 and 4.2 and used these to extract more tweets that did not possess any 

geolocation information. We believed that doing this would yield a larger volume of relevant 

tweets that were discarded due to lack of geoinformation. Despite the lack of geolocation, 

the time frame (September 9th to 18th, 2013) and keywords (a. location names: Colorado, 

Boulder, etc., and b. hazard event/impacts: flooding, rain, etc.) used to download those 

tweets ensured the relevance of those tweets. The keywords we used were from Table 1, 

which included: West of Broadway, Broadway, Arapahoe Ave, Marine St, 28th St, Colorado 

Ave, Boulder Creek, Highway 36/US-36, and Skunk Creek. Using these keywords, we found 

2472 additional non-repetitive, relevant, and reliable tweets and 752 reliable images, which 

accounts for 0.2% and 0.06% of all 1,195,183 raw tweets, respectively. This is a big 

improvement from using geo-tagged tweets alone for this research workflow.
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5. Discussion, Implications for Risk Communication, and Future Research

The goal of this research was to apply an integrated workflow to extract and evaluate reliable 

risk information to facilitate risk communication, increase situational awareness, and 

promote public response to natural hazards. Crowdsourced risk communication could 

provide valuable risk information if relevance and reliability evaluations are done properly to 

alleviate or eliminate data quality issues.

In this study, we implemented text and image content analysis to extract and evaluate tweet 

reliability. Previous research using both image and text analysis was relatively rare in 

Twitter-based flood research, most prior research focused on Twitter text alone. Another 

reason for using this approach is that information extracted from text and images is 

oftentimes complementary, so including both could extract more information than using 

either text or images.

The strengths of this research are: (1) precipitation data was used to account for the cause of 

flood, (2) geospatial data was used to understand the spatial extent of flooding, (3) relevant 

official documents were closely referenced, and (4) both manual and AI approaches were 

implemented in image content analysis to ensure accuracy and efficient processing time. 

Manual and AI approaches combined the advantages of human intelligence and computing 

efficiency. While leveraging human intelligence to validate textual content of tweets is not 

novel in Twitter text mining research, it brought a unique contribution to flood research. 

Specifically, it allowed identification of different scenarios and processed information 

beyond plain text (e.g., associate events in different images or associate events based on their 

proximity to events in the surrounding areas by pinpointing them on maps), which is 

impossible for current AI approaches to achieve. Given that the current neural networks 

(e.g., ResNet, UNet) used for disaster situations require human intelligence to collect and 

label a significant amount of training images, our manual approach complemented the AI 

approach. The GCV API could be replaced with other AI algorithms. However, our research 

workflow can be repurposed to be used by researchers interested in designing automatic or 

semi-automatic systems to extract reliable and relevant data and information from social 

media streams searching for disaster response.

Despite the advantages, both the manual and AI approaches have certain limitations in terms 

of their usability and implementation. First, given the time-consuming and expensive nature 

of the proposed manual approach, its implementation may require a team of specialists to 

dedicate huge efforts to extract relevant and reliable risk information in an emergency 

setting. One promising phenomenon to counterbalance this limitation is the emergence of 

volunteered citizen scientists who involve themselves in disaster response activities by 

voluntarily providing technical support or process information to facilitate humanitarian 

efforts in recent disasters [64,65]. For instance, CitizenScience.gov, citizen science efforts 

by the United States Geological Survey (https://www.usgs.gov/topic/citizen-science), and 

FEMA’s crowdsourcing and citizen science efforts have allowed citizens to participate 

during emergency management and response efforts to complement the activities underway 

by the decision-makers. With the involvement of these digital humanitarians, we believe that 

the workflow outlined in our research can partially or fully be adopted in disaster responses. 

Liu et al. Page 10

ISPRS Int J Geoinf. Author manuscript; available in PMC 2021 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://CitizenScience.gov
https://www.usgs.gov/topic/citizen-science


Further, the AI approach was able to detect reliable information for 11% of the images, 

which is less than the percentage achieved in the manual approach (19%) and most of the 

images identified by AI approach were also identified by the manual approach. AI has low 

accuracy because it was developed for general purpose image detection and understanding, 

but not tailored for flood/disaster learning. If more images are used to train the AI model, it 

has the potential to significantly improve its accuracy. This approach requires less human 

labor investment, so it is complementary to the manual approach and is advantageous when 

a significant number of tweets are available. Finally, human errors and heuristic bias may be 

introduced in manual approaches, even though multiple authors cross-checked the results.

Considering the limitation of this research workflow, future research would focus on 

streamlining the process and automating the entire workflow of assessing relevance and 

reliability of Twitter data. Moreover, integration of citizen-led reliability evaluation efforts 

following well-informed protocols will greatly boost the usefulness of this research 

workflow. Space and airborne images can also be used to assess the reliability of tweets. 

While researchers are working to maximize the amount of risk information from Twitter, it 

is essential for emergency management agencies to develop easy-to-follow standards 

tailored for Twitter users to encourage dissemination of relevant and reliable crisis 

information to facilitate their use for response activities.

6. Conclusions

This research implemented an integrated workflow to extract and assess reliable risk 

information from tweets to facilitate risk communication, increase situational awareness, and 

promote public response to natural hazards. Both manual and automatic approaches were 

used to combine the advantages of human intelligence and computing efficiency. We found 

both the tweet text and images contained useful and reliable information about damaged/

flooded roads/streets. This information could assist emergency response coordination efforts 

and informed allocation of resources. With the help of citizen scientists’ efforts and well-

designed systems to streamline this workflow, more reliable crowdsourced risk information 

can be extracted to facilitate near real-time use of crowdsourced risk communication 

platforms during the emergency response phase.
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Figure 1. 
Reliability evaluation workflow.

Liu et al. Page 16

ISPRS Int J Geoinf. Author manuscript; available in PMC 2021 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Example of identified roads/streets.
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Figure 3. 
Images of Boulder Creek.
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Figure 4. 
Images of flooded streets.
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Figure 5. 
Images mutually prove each other.
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Figure 6. 
Images taken by a local news reporter.
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Figure 7. 
Web detection performed better.
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Figure 8. 
Both image and web detection were inaccurate.
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Table 1.

Example of Identified Roads/Streets.

ID Roads/streets Posted Time Associated Risk Information

1 West of Broadway 09/12 03:02 Boulder Creek is about to spill its bank.

2 Broadway & Arapahoe Avenue 09/12 05:30 Water at Boulder Creek has come up 2.5 feet in 10 min.

3 8th Street & Marine Street 09/12 05:52 Gregory canyon drainage overtopping the underground culvert, flowing onto 
8th St. near Marine.

4 28th Street & Colorado Avenue 09/12 06:09 Knee deep water at 28th St & Colorado Ave.

5 15th Street 09/12 08:39 River taking back Boulder neighborhood street.

6 Highway 36 underpass 09/12 22:23 It’s raining! It’s pouring!

7 8th Street between University of 
Colorado and Marine

09/13 03:22 … basically, a raging torrent.

8 30th Street & Foothills 09/13 00:49 Colorado Avenue is closed between 30th and Foothill.

9 30th Street 09/13 01:08 Water is coming up through drains on 30th and Colorado Ave … this could get 
ugly.

10 Highway 36 09/13 01:30 Barely make it out of Boulder. Couldn’t get to hwy 36.

11 Highway 36 09/13 02:33 Highway 36 is flooded, not way out.

12 Highway 36 & Foothills 09/13 05:32 Over 3 feet of water flooding.
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