Open access Review

eGastroenterology

Treatment of cholangiocarcinoma in patients with primary sclerosing cholangitis: a comprehensive review

Christina Villard (1), 1,2 Carl Jorns, 2,3 Annika Bergquist 1,4

To cite: Villard C, Jorns C, Bergquist A. Treatment of cholangiocarcinoma in patients with primary sclerosing cholangitis: a comprehensive review. *eGastroenterology* 2024;**2**:e100045. doi:10.1136/ egastro-2023-100045

➤ Prepublication history for this paper is available online. To view these files, please visit the journal online (http://dx.doi.org/ 10.1136/eqastro-2023-100045).

Received 24 October 2023 Accepted 03 January 2024

© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

¹Department of Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden ²Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden ³Department of Clinical Science Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden ⁴Division of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden

Correspondence to

Dr Christina Villard; christina.villard@ki.se

ABSTRACT

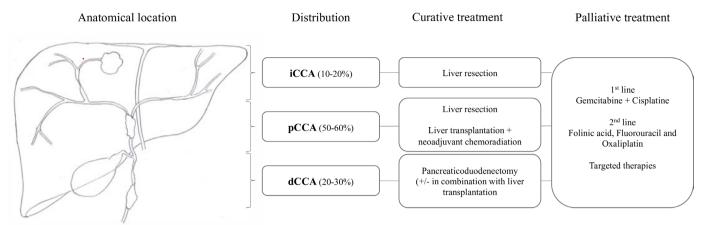
Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease, characterised by persistent biliary inflammation resulting in fibrosis and multifocal strictures of the biliary tree. The course of disease is highly variable, ranging from asymptomatic disease to the development of end-stage biliary cirrhosis and an increased risk of biliary tract cancer (BTC), particularly cholangiocarcinoma (CCA). PSC is the most important risk factor for CCA in younger people, with a reported lifetime prevalence ranging from 6% to 13%. Perihilar CCA (pCCA), involving the hepatic duct bifurcation, is the most common CCA amounting to approximately 50% of all cases, whereas intrahepatic CCA (iCCA), located within the hepatic parenchyma, represents less than 10%.

CCA is an aggressive tumour, and only a minority of patients are amenable to surgical resection with curative intent. Radical liver resection and liver transplantation are potentially curative therapeutic options in patients with PSC in the absence of metastatic or locally advanced disease. Liver transplantation with neoadjuvant chemoradiation could be considered in selected patients with unresectable pCCA and without pretreatment in patients with PSC with bile duct high-grade dysplasia. Recent reports demonstrating favourable outcomes in transplanted patients with small iCCA and patients with locally advanced disease following neoadjuvant therapy have challenged the previously described poor outcome in transplanted patients with iCCA.

Treatment for CCA is challenged by the inherent difficulties in enabling an early diagnosis and thereby preventing an otherwise dismal prognosis. This comprehensive review aims to describe therapeutic considerations and challenges in patients with PSC-CCA.

INTRODUCTION

Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease, characterised by persistent biliary inflammation resulting in fibrosis and multifocal strictures of the biliary tree.¹⁻³ The course of disease is highly variable, ranging from asymptomatic disease to the development of end-stage biliary cirrhosis and an increased risk of biliary tract cancer (BTC), particularly cholangiocarcinoma (CCA).⁴⁵


PSC can affect both sexes from early age until late adulthood but primarily affects men in their 30s-40s. 67 PSC is strongly associated with inflammatory bowel disease (IBD), and PSC-IBD represents one of the most well-described phenotypes with an increased incidence of colorectal dysplasia.⁸ Smallduct PSC primarily affects the peripheral bile ducts and tends to be less symptomatic, whereas large-duct or classical PSC mainly involves the larger ducts and is prone to more cholestatic symptoms. 9 PSC with features of autoimmune hepatitis (AIH) usually affects younger patients. 10 A subset of patients with PSC have elevated serum IgG4 levels, representing a distinct clinical phenotype, which has been associated with a worse clinical outcome.¹¹ There is no medical therapy to prevent disease progression, even if ursodeoxycholic acid can improve biochemistry.¹² Instead, liver transplantation remains the only potentially curative treatment alternative for end-stage liver diseases.⁵

CCA is the most frequent cause of death in patients with PSC, 9 13 14 and the increased risk of CCA in patients with PSC has been reported hundred folds higher compared with the general population. The risk of CCA is highest within the first year after PSC diagnosis, followed by an annual risk of 0.2%–1.5%, 9 16-18 suggesting either that CCA is unrelated to the duration of PSC or that the diagnosis of PSC has been delayed in these patients. CCA in patients with PSC has been associated with concomitant IBD, especially ulcerative colitis as well as advanced age at PSC diagnosis, whereas patients with features of AIH and small-duct disease are at lower risk. 46 9 20

Pathogenesis and classification

The pathogenesis of PSC has been associated with an interaction between a genetic predisposition and environmental factors, through multiple immune-mediated mechanisms, leading to a chronic injury to the cholangiocytes. ^{21–26} CCA pathogenesis in patients with PSC has been ascribed to the persistent

Figure 1 Anatomical location, distribution and treatment of intrahepatic, perihilar and distal cholangiocarcinoma in primary sclerosing cholangitis. dCCA, distal cholangiocarcinoma; iCCA, intrahepatic cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma.

inflammation in the cholangiocytes resulting in dysplastic transformation and ultimately carcinoma. 27-29 Similar to the distribution of CCA in the general population, PSC-CCA can occur in any part of the biliary tree but is most frequently observed in the hilar bifurcation, perihilar CCA (pCCA), followed by the distal common bile duct, distal CCA (dCCA), and an intrahepatic manifestation, intrahepatic CCA (iCCA) (figure 1). 19 30 31 pCCAs are further classified morphologically based on the primary growth pattern, ie, the intraductal, periductal and massforming subtypes. The periductal subtype, which is the most common subtype, has a characteristic longitudinal growth pattern that causes biliary strictures.³² Genetic alterations associated with iCCA include isocitrate dehydrogenases 1 and 2 (IDH1/2), neuroblastoma RAS oncogene and fibroblast growth factor receptor 2 (FGFR2), whereas mutations in tumour protein p53 (TP53), Kirsten rat sarcoma viral (KRAS) ongogene, v-raf murine sarcoma viral oncogene homolg B1 (BRAF) and suppressor of transcriptor factor mothers against decapentaplegic 4 (SMAD4) are more prevalent in extrahepatic CCA. 33-35 Two molecular subgroups, assessed by genomic methodologies, have been described for iCCA: an inflammation class characterised by the activation of inflammatory signalling pathways and a proliferation class characterised by cellular signals involved in cell-cycle regulation. ³⁶ The latter is associated with a worse outcome.³⁶ In addition, patients with PSC have an increased risk of gallbladder carcinoma through a malignant transformation of gallbladder polyps. 37 3

Diagnosis

Identifying CCA in patients with PSC remains difficult, due to diagnostic limitations and the unspecific symptoms, which often present late and overlap with those of progressive benign disease. ^{39 40} Patients with pCCA and dCCA often present with tumour-mediated biliary obstruction, whereas the symptoms of iCCA are often unspecific. ⁴¹ Magnetic resonance imaging/magnetic resonance cholangiopancreatography (MRI/MRCP)

is the imaging modality of choice when PSC-CCA is suspected. ⁴² CCA in patients with PSC has been ascribed to the development of severe stricturing, ie, dominant/high-grade strictures. ⁴³ However, dominant/high-grade strictures may present without symptoms and are present in approximately 50% of patients at the time of PSC diagnosis. ^{43–45} Another condition mimicking malignant biliary strictures is IgG4-related systemic disease, which is a systemic inflammatory syndrome characterised by infiltration of IgG4-positive plasma cells. ⁴⁶ This systemic inflammatory condition, which responds favourably to glucocorticoids, may be difficult to differentiate from CCA when only the bile ducts are affected. ⁴⁷

Malignant strictures are difficult to identify, and tissue sampling is usually required, especially in the absence of a mass lesion. ^{16 41 48 49} Tissue sampling obtained by brush cytology and complementary fluorescence in situ hybridisation (FISH) via endoscopic retrograde cholangiopancreatography improves the diagnosing of a malignant stricture but is limited by poor sensitivity, approximately 70%. ^{50–52} Endoscopic ultrasound with fine-needle aspiration can be used for diagnosing dCCA but ought to be avoided if liver transplantation can be considered. ⁵³ The number of CCA, incidentally detected in liver explants, ranging from 1% to 7%, further illustrates the difficulty in early detection of CCA. ^{18 54}

The search for biomarkers for early detection of CCA is ongoing. Carbohydrate antigen 19–9 (CA19-9), a carbohydrate secreted by cancer cells, is the most used biomarker for CCA. Elevated CA19-9 levels, especially in the absence of bacterial cholangitis and in the presence of suspicious lesion, have been associated with CCA, but measurements of CA19-9 are of limited value in predicting CCA. CA19-9 synthesis is also dependent on the enzymes fucosyltransferases 2 and 3, and genotyping of these enzymes has been shown to improve the diagnostic value of CA19-9 for detecting BTC in patients with PSC, with a sensitivity of almost 80%.

Surveillance for early detection of CCA

The potential survival benefit of early CCA detection has called for surveillance in patients with PSC, ⁶² and retrospective studies from tertiary centres have reported a survival benefit and/or risk reduction of hepatobiliary cancer-related death, in patients exposed to regular surveillance. ¹³⁶³ Despite limited evidence, regular imaging is recommended. ³⁴⁹ However, in a recent prospective surveillance study, yearly MRI/MRCP was found ineffective in diagnosing CCA early enough to benefit survival in an unselected cohort of patients with PSC. ¹⁸ Instead, surveillance with MRI/MRCP may be recommended in patients at time of PSC diagnosis, in the event of new symptoms and more regularly in patients with advanced disease. ⁹

TREATMENT OF pCCA

CCA is in general treated similarly in patients with de novo CCA and PSC-associated CCA, yet the underlying liver disease in patients with PSC can have implications on therapeutic alternatives. The following sections initially describe treatment in CCA in general followed by specific considerations in patients with PSC.

Liver resection

For pCCA in general, liver resection is a potentially curative treatment alternative, if radicality can be achieved with preserved liver function. Estimation of future liver remnant (FLR) is used to avoid postoperative hepatic insufficiency, with a minimum FLR of 20% in patients with normal liver function and 40% in those with chronic liver disease. Resection of pCCA is complex as it often requires extended resections and vascular reconstructions. Even so, radicality is difficult to obtain, morbidity is high and long-term survival remains low with a reported 5-year survival ranging from 20% to 40%. Patients with resected BTC are offered 6 months of adjuvant chemotherapy with capecitabine, according to current guidelines.

Due to the underlying parenchymal liver disease and the propensity of skip cancer lesions, liver resection in PSC-pCCA is even more challenging, often resulting in narrow margins despite extended resection and the high morbidity and mortality that it entails. ⁶⁶ ⁷¹ Transient elastography can be used to estimate liver fibrosis and aid in determining whether major liver resection with adequate liver remnant is feasible in a patient with PSC-pCCA. ⁷²

In an era of transplantation oncology, in which PSC-associated pCCA has been considered unresectable, recent data on patients with PSC undergoing liver resection are understandably limited.^{66 71} A North American multicentre study from 2018 reported a similar outcome in patients with resectable pCCA with and without PSC, with a 5-year overall survival (OS) and disease-free survival (DFS) of approximately 20%.⁷³ Lymph node involvement, vascular invasion, low tumour differentiation and higher age are associated with worse OS.⁷⁴

The outcome following liver resection has been compared with that of chemoradiotherapy followed by liver transplantation in patients with de novo CCA and PSC-associated CCA, describing a superior outcome in patients treated with chemoradiotherapy and liver transplantation. 71 75 A recent multicentre study reported a 64% 5-year survival in the transplantation group compared with 18% in the resection group. 71 Compared with resected patients, transplanted patients were younger and more frequently had PSC.71 Other clinicopathological differences between resected and transplanted patients, ie, resectability and lymph node status, are expected, as these factors are used to select patients for one surgical approach over the other but impact comparative evaluations between the two treatment approaches. 71 75 There is currently an ongoing randomised intention-to-treat multicentre trial of CCA without PSC in France comparing neoadjuvant chemoradiation followed by liver transplantation with liver resection (NCT02232932).

Liver transplantation

Liver transplantation has over the last decades emerged as a potentially curative treatment alternative for pCCA in patients with PSC and de novo CCA. The following section describes the paradigm shift of treating pCCA with liver transplantation, especially with regard to PSC-CCA. The initial experience of treating pCCA with liver transplantation was marked by high recurrence rates and poor survival. The 1993, the Mayo Clinic developed a protocol to treat patients with unresectable, de novo early-stage pCCA or early-stage pCCA arising in PSC, with liver transplantation following chemoradiation therapy. The 1993 of the 1994 of the 1994 of 1995 of

The Mayo protocol

Patients eligible for treatment according to the Mayo protocol are selected according to the following criteria: a malignant-appearing stricture on cholangiography and one of the following—(1) brush cytology or tissue biopsy positive or strongly suspicious for CCA, (2) levels of CA19–9>100 U/mL in the absence of acute bacterial cholangitis or (3) polysomy by FISH or a mass-forming lesion <3 cm in radial diameter. Patients with extrahepatic disease, prior radiation to the abdomen, percutaneous transhepatic tumour biopsy and conditions precluding liver transplantation are not eligible for the treatment. The favourable outcome following treatment according to the Mayo protocol has partly been ascribed to a strict adherence to the selection criteria and the highly selected group of patients that it entails.

Treatment according to the Mayo protocol includes external bean radiotherapy (EBRT) with a target dose of 4500 cGy delivered over 3 weeks alongside an infusion of 5-FU or followed by intraluminal brachytherapy using Iridium-192 seeds.⁷⁸ Patients are treated with oral capecitabine until liver transplantation.⁷⁸ On completion of chemoradiation therapy, a surgical staging is performed, with varying time intervals from the transplantation.⁷⁸

The surgical staging involves exploration of the abdominal cavity and examination of regional hepatic lymph nodes. At liver transplantation, arterial jump grafts are recommended due to the risk of irradiated native vessels. The portal vein and bile duct are divided as close to the pancreas as possible, and frozen section of the distal bile duct is checked for tumour infiltration. In the event of tumour infiltration in the distal bile duct, pancreaticoduodenectomy is considered to enable radicality. In this highly selected group of patients, a 5-year survival of 82% was reported.

In 2012, the Mayo Clinic reported a worse 5-year survival in PSC-patients with pretreatment pathological confirmation compared with PSC-patients lacking pathological confirmation. 80 The 5-year survival in patients with PSC-associated CCA with pathological confirmation was 66% compared with 92% in PSC-associated CCA without pathological confirmation.⁸⁰ As pathological confirmation was not associated with survival in patients with de novo pCCA and pathological confirmation neither had an impact on the detection of residual pCCA in the explants nor recurrence, the authors concluded that although desirable, pretreatment pathological confirmation should not be a requirement.⁸⁰ When combining patients with pretreatment pathological confirmation of pCCA, explant pathological confirmation and recurrence, 5% of treated patients did not have a confirmed pCCA, which has been one objection to the Mayo protocol.⁸¹ The favourable results in patients treated according to the Mayo protocol have partly been ascribed to a stringent patient selection.⁸¹ Even so, with the lack of pathological confirmation, there is a risk of treating patients without malignancy.

Versions of the Mayo protocol with varying selection criteria and pretransplantation chemoradiation have since then been applied in several well-experienced centres. 71 82 83 Following confirming reports of favourable outcome in patients with pCCA treated with chemoradiation and liver transplantation, from other North American centres, the highly selected group of patients with pCCA eligible for the treatment was granted model for end-stage liver disease (MELD) score exception points and thereby faster access to liver transplantation. 81

Treatment outcome

A recent meta-regression and meta-analysis showed that chemoradiation therapy and liver transplantation enable long-term survival in the highly selected group of patients eligible for the treatment, out of whom patients with PSC appear to have the most favourable outcome. Reg. In 2020, long-term data on patients treated according to the Mayo protocol showed a superior long-term survival in PSC-associated pCCA compared with de novo pCCA, 5-year survival 74% vs 58% and 10-year survival 67% vs 47%. In addition, patients with PSC were less likely to drop out due to disease progression and less likely to suffer from recurrence, 14% vs 26% and 22% vs 45%, respectively.

In the Mayo Clinic experience, 30% of transplants performed for pCCA were living donor liver transplantations (LDLTs), with results comparable with those of deceased donor liver transplantations. A majority of recipients (66%) were patients with PSC. In LDLT, a greater frequency of vascular complications was observed, which could be ascribed to an effect of radiation therapy, yet its occurrence did not appear to adversely affect long-term outcome. So

The reported 5-year patient survival following liver transplantation in patients with PSC amounts to 80%, yet transplanted patients have an increased risk of rejection, and PSC recurs in 15%–25% of transplanted patients. ^{86 87} The increased risk of recurrence and thereby retransplantation stresses the importance of adequately diagnosing dysplasia and malignancy. ⁸⁸

Palliative therapy

The majority of patients with pCCA are neither eligible for curative surgery with liver resection nor liver transplantation at the time of diagnosis. PCCA is considered unresectable in the event of bilateral involvement of the second-order bile ducts, bilateral or contralateral hepatic artery or portal vein encasement, intrahepatic or extrahepatic metastases and distant lymph node metastases. In addition, patients eligible for chemoradiation and liver transplantation according to the Mayo criteria are limited, 5% according to a recent European study. In addition, reports on dropout during the pretransplantation treatment due to disease progression, therapy intolerance and death vary from 10% to 60%.

The prognosis of unresectable pCCA is poor, both in patients with PSC-associated CCA and de novo PSC, with a median survival of less than a year with combined gemcitabine and cisplatin, as first-line chemotherapy, and FOLFOX (folinic acid, fluorouracil and oxaliplatin), as second-line chemotherapy. ^{19 93–95} Approximately 20% of patients are not eligible for active palliative treatment and receive best supportive care. ⁴¹

TARGETED THERAPIES

Durvalumab is a monoclonal antibody that binds to the programmed death ligand 1 (PD-L1) and induces apoptosis by inhibiting T cell effector functions. Prolonged survival in patients with advanced BTC has been reported in patients treated with durvalumab in combination with gemcitabine and cisplatin. Mutations in the genes for IDH1/2 result in excess production of an important oncometabolite. In patients with iCCA, a clinical benefit was reported following treatment with the IDH1 inhibitor, ivosidenib. Clonal FGFR2 gene fusion in CCA leads to the activation of multiple signalling networks that promote tumour progression. There is currently an ongoing phase III trial to treat participants with FGFR2-mutated iCCA with infigratinib, which selectively inhibits FGFR2 (NCT03773302).

TREATMENT OF ICCA Liver resection

For iCCA in general, liver resection is the recommended curative treatment if radicality with preserved liver function by adequate liver remnant can be achieved, with a 5-year survival of approximately 30%–40%. 99 100 Portal vein occlusion, hepatic liver vein occlusion and two-stage liver resections including associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) are surgical strategies for optimising the FLR volume and enabling radical resections. 101 In addition to the major liver resections, lymphadenectomy is often performed to improve prognosis. 49 100 Minimally invasive liver surgery can be considered in selected patients. 102 The risk of recurrence following liver resection is approximately 60%-70% and is associated with vascular invasion, aggressive biological features, narrow surgical margin and lymph node metastases. 100 103 Most recurrences occur in the liver. 103 Similar to resected patients with pCCA, resected patients with iCCA are offered adjuvant capecitabine to improve OS and DFS.⁷⁰ Neoadjuvant chemotherapy is not routinely offered to patients with upfront resectable iCCA but has been shown to enable resection in selected patients with advanced iCCA. 49 104

The number of patients with PSC in studies on iCCA is small. Over a 20-year period, out of 830 patients with PSC, 19 patients developed iCCA. Seven patients were resected, and the remaining 12 patients had advanced and/or disseminated disease. The 5-year OS for all 19 patients was 12%. 63

Liver transplantation

Due to poor survival, iCCA was for a long time regarded as a contraindication for liver transplantation. This was challenged when a survival benefit was reported in transplanted patients, in whom iCCA <2 cm were incidentally found in the native liver. A later study demonstrated a favourable outcome in patients, in whom an iCCA <5 cm and >2 cm were found incidentally. The study compared the outcome in transplanted patients and resected patients with a 5-year DFS of 67% vs 36% in resected patients. 106

Liver transplantation following neoadjuvant therapy for locally advanced iCCA has also been evaluated with promising results in a prospective case series of 12 patients. 107 Patients with non-cirrhotic, locally advanced iCCA without extrahepatic disease or vascular involvement were treated with liver transplantation following gemcitabine-based chemotherapy. 107 Patients were listed for liver transplantation after a minimum of 6 months of radiological response or stability. The 5-year OS was 83%, and the 5-year DFS was 50%. 107 Out of 21 patients that were evaluated for enrolment, 9 patients were considered ineligible due to extrahepatic disease, and 2 patients were downstaged to resectable disease. 107 Out of the 12 patients that were listed for liver transplantation, 6 patients were transplanted, 3 patients were waiting for liver transplantation at the end of the study, 2 patients did not receive

a transplant due to adhesion severity and 1 patient was at the time for exploration found with resectable disease and instead underwent partial hepatectomy. 107

There are currently ongoing prospective clinical trials to evaluate liver transplantation in iCCA. One North American and Spanish-based prospective clinical trial evaluates liver transplantation for small iCCA in patients who are not amenable to liver resection due to underlying liver disease (NCT02878473), and part of the same network is also investigating liver transplantation for locally advanced iCCA (NCT04195503) following neoadjuvant chemotherapy. In addition, a Norwegian trial is studying the outcome of liver transplantation in unresectable iCCA following neoadjuvant chemotherapy (NCT0455621).

Palliative therapy

Due to the lack of data specifically on PSC-associated iCCA, these patients are treated as patients with de novo iCCA. iCCA, which has the poorest prognosis of the CCA, often presents at a late stage, in both patients with PSC and in control cohorts without PSC, and less than 30% of patients are amenable to curative surgical resection. 41 108 iCCA primarily metastasises to the lungs, distant lymph nodes and bone, whereas pCCA and dCCA more often disseminate to the liver and peritoneum. 41

Patients with unresectable iCCA are offered palliative chemotherapy, like pCCA, with combined gemcitabine and cisplatin as first-line chemotherapy and FOLFOX as second-line chemotherapy. ^{94 95} Patients with PSC are less likely to receive active palliative therapy, which might be ascribed to late diagnosis, rapid deterioration and underlying liver dysfunction. ¹⁹

Patients with locally advanced, unresectable disease, limited to the liver locoregional therapies (LRTs), have been evaluated. Transarterial chemoembolisation (TACE), EBRT, hepatic artery infusion (HAI) and transarterial radioembolisation (TARE) have reported an OS ranging from 13 to 21 months, but as of yet, LRT is not considered a standard therapy for unresectable iCCA. ^{109 110} In addition, patients are treated with targeted therapies as described in the section about palliative therapy for pCCA.

TREATMENT OF dCCA

Pancreaticoduodenectomy

Pancreaticoduodenectomy is the potentially curative surgical treatment for dCCA in general, with a reported 5-year survival of 22%. ¹¹¹ Resected patients are offered adjuvant capecitabine. ⁷⁰ In the event of dCCA and simultaneous pCCA, pancreaticoduodenectomy could be considered simultaneous or sequential to liver transplantation. ⁷⁵ ¹¹² The reported higher frequency of pancreatic cancer in patients with PSC in epidemiological studies might partly in fact be dCCA. ¹³ ¹¹³

Palliative therapy

As for unresectable iCCA and pCCA, the recommended palliative chemotherapy includes combined gemcitabine

and cisplatin as first-line chemotherapy and FOLFOX as second-line chemotherapy. ⁹⁴ ⁹⁵ Data on the specifics of unresectable dCCA in patients with PSC are limited. In addition, patients are treated with targeted therapies as described in the section about palliative therapy for pCCA.

DISCUSSION

Treatment for PSC-pCCA has evolved over the last decades with a favourable outcome for a selected group of patients at well-experienced centres, yet the most pressing issue is the detection of pCCA early enough to enable curative therapy. Even though diagnostics are improving with, for instance, the addition of FISH and improved radiological criteria for identifying malignant strictures, most patients are diagnosed at a late stage and not amenable to curative treatment. Until more advanced surveillance strategies or early diagnostic tests have emerged and have been implemented, a low threshold for suspicion ought to be recommended, especially in patients with the highest cancer risk. For instance, high-quality MRI/MRCP is of highest value at the time of PSC diagnosis to rule out concomitant CCA and should be used in the event of new symptoms and regularly in patients with advanced disease.

The paradigm shift to treat CCA with liver transplantation, which has already occurred for pCCA, is potentially ahead for iCCA but is highly dependent on the characterisation of eligible patient groups and the evaluation of neoadjuvant chemotherapy.

Organ resources are scarce, and a potentially increasing allocation of organs to patients with CCA is not uncontroversial. The scarcity of organ resources requires a strict and optimal patient selection to enable survival benefit for patients with CCA without compromising the outcome of other patients on the waiting list for liver transplantation. However, patients with PSC might be a group of patients eligible for LDLT, which could increase the organ pool with potentially improved neoadjuvant chemoradiation therapy, and could even widen the indication for treatment.

Contributors Study concept and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript: CV. Critical revision of the manuscript for important intellectual content: CJ, AB. Funding: AB.

Funding This work was supported by the Cancer Research Funds of Radiumhemmet.

Competing interests AB is a part of the advisory board for IPSEN and has received grants from Gilead.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is

properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID id

Christina Villard http://orcid.org/0000-0003-4696-0931

REFERENCES

- 1 Warren KW, Athanassiades S, Monge JI. Primary sclerosing cholangitis. A study of forty-two cases. Am J Surg 1966;111:23–38.
- 2 Schrumpf E, Elgjo K, Fausa O, et al. Sclerosing cholangitis in ulcerative colitis. Scand J Gastroenterol 1980;15:689–97.
- 3 European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the L. EASL clinical practice guidelines on sclerosing cholangitis. *J Hepatol* 2022;77:761–806.
- 4 Trivedi PJ, Bowlus CL, Yimam KK, et al. Natural history, and outcomes of primary sclerosing cholangitis: a systematic review of population-based studies. Clin Gastroenterol Hepato 2022;20:1687–1700.
- 5 Boonstra K, Weersma RK, van Erpecum KJ, et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. *Hepatology* 2013;58:2045–55.
- 6 Deneau MR, El-Matary W, Valentino PL, et al. The natural history of primary sclerosing cholangitis in 781 children: a multicenter, international collaboration. *Hepatology* 2017;66:518–27.
- 7 Rupp C, Rössler A, Zhou T, et al. Impact of age at diagnosis on disease progression in patients with primary sclerosing cholangitis. United European Gastroenterol J 2018;6:255–62.
- 8 Palmela C, Peerani F, Castaneda D, et al. Inflammatory bowel disease and primary sclerosing cholangitis: a review of the phenotype and associated specific features. Gut Liver 2018:12:17–29.
- 9 Weismüller TJ, Trivedi PJ, Bergquist A, et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology 2017;152:1975–84.
- 10 Gregorio GV, Portmann B, Karani J, et al. Autoimmune hepatitis/ sclerosing cholangitis overlap syndrome in childhood: a 16-year prospective study. Hepatology 2001;33:544–53.
- 11 Björnsson E, Chari S, Silveira M, et al. Primary sclerosing cholangitis associated with elevated immunoglobulin G4: clinical characteristics and response to therapy. Am J Ther 2011;18:198-205
- 12 Wunsch E, Trottier J, Milkiewicz M, et al. Prospective evaluation of ursodeoxycholic acid withdrawal in patients with primary sclerosing cholangitis. Hepatology 2014;60:931–40.
- 13 Trivedi PJ, Crothers H, Mytton J, et al. Effects of primary sclerosing cholangitis on risks of cancer and death in people with inflammatory bowel disease, based on sex, race, and age. Gastroenterology 2020:159:915–28
- 14 Liang H, Manne S, Shick J, et al. Incidence, prevalence, and natural history of primary sclerosing cholangitis in the United Kingdom. Medicine (Baltimore) 2017;96:e7116.
- 15 Lundberg Båve A, Bergquist A, Bottai M, et al. Increased risk of cancer in patients with primary sclerosing cholangitis. Hepatol Int 2021;15:1174–82.
- 16 Boberg KM, Bergquist A, Mitchell S, et al. Cholangiocarcinoma in primary sclerosing cholangitis: risk factors and clinical presentation. Scand J Gastroenterol 2002;37:1205–11.
- 17 Bergquist A, Ekbom A, Olsson R, et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol 2002;36:321–7.
- 18 Villard C, Friis-Liby I, Rorsman F, et al. Prospective surveillance for cholangiocarcinoma in unselected individuals with primary sclerosing cholangitis. J Hepatol 2023;78:604–13.
- 19 Chahal D, Shamatutu C, Salh B, et al. The impact of primary sclerosing cholangitis or inflammatory bowel disease on cholangiocarcinoma phenotype, therapy, and survival. JGH Open 2020;4:1128–34.
- 20 Fevery J, Van Steenbergen W, Van Pelt J, et al. Patients with large-duct primary sclerosing cholangitis and Crohn's disease have a better outcome than those with ulcerative colitis, or without IBD. Aliment Pharmacol Ther 2016;43:612–20.
- 21 Melum E, Franke A, Schramm C, et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet 2011;43:17–9.
- 22 Ji S-G, Juran BD, Mucha S, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and

- quantifies the genetic relationship with inflammatory bowel disease. *Nat Genet* 2017;49:269–73.
- 23 Folseraas T, Melum E, Rausch P, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol 2012;57:366–75.
- 24 Dhillon AK, Kummen M, Trøseid M, et al. Circulating markers of gut barrier function associated with disease severity in primary sclerosing cholangitis. Liver Int 2019;39:371–81.
- 25 Rühlemann MC, Heinsen F-A, Zenouzi R, et al. Faecal microbiota profiles as diagnostic biomarkers in primary sclerosing cholangitis. Gut 2017;66:753–4.
- 26 Kummen M, Thingholm LB, Rühlemann MC, et al. Altered gut microbial metabolism of essential nutrients in primary sclerosing cholangitis. Gastroenterology 2021;160:1784–98.
- 27 Bergquist A, Glaumann H, Stål P, et al. Biliary dysplasia, cell proliferation and nuclear DNA-fragmentation in primary sclerosing cholangitis with and without cholangiocarcinoma. J Intern Med 2001:249:69–75.
- 28 Li J, Razumilava N, Gores GJ, et al. Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest 2014;124:3241–51.
- 29 Lewis JT, Talwalkar JA, Rosen CB, et al. Precancerous bile duct pathology in end-stage primary sclerosing cholangitis, with and without cholangiocarcinoma. Am J Surg Pathol 2010;34:27–34.
- 30 Choi J, Ghoz HM, Peeraphatdit T, et al. Aspirin use and the risk of cholangiocarcinoma. Hepatology 2016;64:785–96.
- 31 DeOliveira ML, Cunningham SC, Cameron JL, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg 2007;245:755–62.
- 32 Yamashita Y, Takahashi M, Kanazawa S, et al. An evaluation of subtypes with CT and angiography. Acta Radiol 1992;33:351–5.
- 33 Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet 2015;47:1003–10.
- 34 Putra J, de Abreu FB, Peterson JD, et al. Molecular profiling of intrahepatic and extrahepatic cholangiocarcinoma using next generation sequencing. Exp Mol Pathol 2015;99:240–4.
- 35 Montal R, Sia D, Montironi C, et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J Hepatol 2020:73:315–27.
- 36 Sia D, Hoshida Y, Villanueva A, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. *Gastroenterology* 2013;144:829–40.
- 37 Lewis JT, Talwalkar JA, Rosen CB, et al. Prevalence and risk factors for gallbladder neoplasia in patients with primary sclerosing cholangitis: evidence for a metaplasia-dysplasia-carcinoma sequence. Am J Surg Pathol 2007;31:907–13.
- 38 Zenouzi R, Weismüller TJ, Hübener P, et al. Low risk of hepatocellular carcinoma in patients with primary sclerosing cholangitis with cirrhosis. Clin Gastroenterol Hepatol 2014;12:1733–8.
- 39 Kuo A, Gomel R, Safer R, et al. Characteristics and outcomes reported by patients with primary sclerosing cholangitis through an online registry. Clin Gastroenterol Hepatol 2019;17:1372–8.
- 40 Benito de Valle M, Rahman M, Lindkvist B, et al. Factors that reduce health-related quality of life in patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2012;10:769–775.
- 41 Izquierdo-Sanchez L, Lamarca A, La Casta A, et al. Cholangiocarcinoma landscape in Europe: diagnostic, prognostic and therapeutic insights from the ENSCCA registry. J Hepatol 2022;76:1109–21.
- 42 Schramm C, Eaton J, Ringe KI, et al. Recommendations on the use of magnetic resonance imaging in PSC-A position statement from the international PSC study group. *Hepatology* 2017;66:1675–88.
- 43 Stiehl A, Rudolph G, Klöters-Plachky P, et al. Development of dominant bile duct stenoses in patients with primary sclerosing cholangitis treated with ursodeoxycholic acid: outcome after endoscopic treatment. J Hepatol 2002;36:151–6.
- 44 Chapman MH, Webster GJM, Bannoo S, et al. Cholangiocarcinoma and dominant strictures in patients with primary sclerosing cholangitis: a 25-year single-centre experience. Eur J Gastroenterol Hepatol 2012;24:1051–8.
- 45 Björnsson E, Olsson R. Dominant strictures in patients with primary sclerosing cholangitis. Am J Gastroenterol 2004;99:502–8.
- 46 Kamisawa T, Funata N, Hayashi Y, et al. A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol 2003;38:982–4.
- 47 Chari ST, Smyrk TC, Levy MJ, et al. Diagnosis of autoimmune pancreatitis: the Mayo clinic experience. Clin Gastroenterol Hepatol 2006;4:1010–6.
- 48 Alvaro D, Bragazzi MC, Benedetti A, et al. Cholangiocarcinoma in Italy: a national survey on clinical characteristics, diagnostic

- modalities and treatment. Results from the 'Cholangiocarcinoma' committee of the Italian Association for the study of liver disease. *Dig Liver Dis* 2011;43:60–5.
- 49 Bowlus CL, Arrivé L, Bergquist A, et al. AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2023;77:659–702.
- 50 Kipp BR, Stadheim LM, Halling SA, et al. A comparison of routine cytology and fluorescence in situ hybridization for the detection of malignant bile duct strictures. Am J Gastroenterol 2004;99:1675–81.
- 51 Halme L, Arola J, Numminen K, et al. Biliary dysplasia in patients with primary sclerosing cholangitis: additional value of DNA ploidity. Liver Int 2012;32:783–9.
- 52 Navaneethan U, Njei B, Venkatesh PGK, et al. Fluorescence in situ hybridization for diagnosis of cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc 2014;79:943–50.
- 53 Mohamadnejad M, DeWitt JM, Sherman S, et al. Role of EUS for preoperative evaluation of cholangiocarcinoma: a large singlecenter experience. Gastrointest Endosc 2011;73:71–8.
- 54 Sapisochin G, Facciuto M, Rubbia-Brandt L, et al. Liver transplantation for 'very early' intrahepatic cholangiocarcinoma: international retrospective study supporting a prospective assessment. Hepatology 2016;64:1178–88.
- 55 Charatcharoenwitthaya P, Enders FB, Halling KC, et al. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. *Hepatology* 2008:48:1106–17.
- 56 Razumilava N, Gores GJ, Lindor KD. Cancer surveillance in patients with primary sclerosing cholangitis. *Hepatology* 2011;54:1842–52.
- 57 Levy C, Lymp J, Angulo P, et al. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. *Dig Dis Sci* 2005;50:1734–40.
- 58 Hultcrantz R, Olsson R, Danielsson A, et al. A 3-year prospective study on serum tumor markers used for detecting cholangiocarcinoma in patients with primary sclerosing cholangitis. J Hepatol 1999;30:669–73.
- 59 Wannhoff A, Brune M, Knierim J, et al. Longitudinal analysis of CA19-9 reveals Individualised normal range and early changes before development of biliary tract cancer in patients with primary sclerosing cholangitis. Aliment Pharmacol Ther 2019;49:769–78.
- 60 Nishihara S, Narimatsu H, Iwasaki H, et al. Molecular genetic analysis of the human Lewis histo-blood group system. J Biol Chem 1994;269:29271–8.
- 61 Wannhoff A, Hov JR, Folseraas T, et al. FUT2 and FUT3 genotype determines CA19-9 cut-off values for detection of cholangiocarcinoma in patients with primary sclerosing cholangitis. J Hepatol 2013;59:1278–84.
- 62 Bowlus CL, Lim JK, Lindor KD. AGA clinical practice update on surveillance for hepatobiliary cancers in patients with primary sclerosing cholangitis. *Clin Gastroenterol Hepatol* 2019;17:2416–22.
- 63 Ali AH, Tabibian JH, Nasser-Ghodsi N, et al. Surveillance for hepatobiliary cancers in patients with primary sclerosing cholangitis. Hepatology 2018;67:2338–51.
- 64 Ribero D, Chun YS, Vauthey JN. Standardized liver volumetry for portal vein embolization. Semin Intervent Radiol 2008;25:104–9.
- 65 Mizuno T, Ebata T, Yokoyama Y, et al. Combined vascular resection for locally advanced perihilar cholangiocarcinoma. Ann Surg 2022;275:382–90.
- 66 Jansson H, Olthof PB, Bergquist A, et al. Outcome after resection for perihilar cholangiocarcinoma in patients with primary sclerosing cholangitis: an international multicentre study. HPB (Oxford) 2021;23:1751–8.
- 67 Komaya K, Ebata T, Yokoyama Y, et al. Recurrence after curativeintent resection of perihilar cholangiocarcinoma: analysis of a large cohort with a close postoperative follow-up approach. Surgery 2018;163:732–8.
- 68 Groot Koerkamp B, Wiggers JK, Allen PJ, et al. Recurrence rate and pattern of perihilar cholangiocarcinoma after curative intent resection. J Am Coll Surg 2015;221:1041–9.
- 69 Primrose JN, Fox RP, Palmer DH, et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol 2019:20:663–73
- 70 Shroff RT, Kennedy EB, Bachini M, et al. Adjuvant therapy for resected biliary tract cancer: ASCO clinical practice guideline. J Clin Oncol 2019;37:1015–27.
- 71 Ethun CG, Lopez-Aguiar AG, Anderson DJ, et al. Transplantation versus resection for hilar cholangiocarcinoma: an argument for shifting treatment paradigms for resectable disease. *Ann Surg* 2018;267:797–805.

- 72 Corpechot C, Gaouar F, El Naggar A, et al. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology 2014;146:970–9.
- 73 Jansson H, Villard C, Nooijen LE, et al. Prognostic influence of multiple hepatic lesions in resectable intrahepatic cholangiocarcinoma: a systematic review and meta-analysis. Eur J Surg Oncol 2023;49:688–99.
- 74 Bird NTE, McKenna A, Dodd J, et al. Meta-analysis of prognostic factors for overall survival in patients with resected hilar cholangiocarcinoma. Br J Surg 2018;105:1408–16.
- 75 Rea DJ, Heimbach JK, Rosen CB, et al. Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. *Ann Surg* 2005;242:451–61.
- 76 Stieber AC, Marino IR, Iwatsuki S, et al. Cholangiocarcinoma in sclerosing cholangitis. The role of liver transplantation. *Int Surg* 1989;74:1–3.
- 77 Meyer CG, Penn I, James L. Liver transplantation for cholangiocarcinoma: results in 207 patients. *Transplantation* 2000:69:1633–7
- 78 Heimbach J, Gores G, Haddock M, et al. Liver transplantation for unresectable perihilar cholangiocarcinoma. Semin Liver Dis 2004;24:201–7.
- 79 De Vreede I, Steers JL, Burch PA, et al. Prolonged diseasefree survival after orthotopic liver transplantation plus adjuvant chemoirradiation for cholangiocarcinoma. *Liver Transpl* 2000:6:309–16
- 80 Rosen CB, Darwish Murad S, Heimbach JK, et al. Neoadjuvant therapy and liver transplantation for hilar cholangiocarcinoma: is pretreatment pathological confirmation of diagnosis necessary. J Am Coll Surg 2012;215:31–8.
- 81 Darwish Murad S, Kim WR, Harnois DM, et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 2012;143:88–98.
- 82 Cambridge WA, Fairfield C, Powell JJ, et al. Meta-analysis and meta-regression of survival after liver transplantation for unresectable perihilar cholangiocarcinoma. *Ann Surg* 2021:274:e921–2.
- 83 Kitajima T, Hibi T, Moonka D, et al. Center experience affects liver transplant outcomes in patients with hilar cholangiocarcinoma. Ann Surg Oncol 2020;27:5209–21.
- 84 Azad Al, Rosen CB, Taner T, et al. Selected patients with unresectable perihilar cholangiocarcinoma (pCCA) derive long-term benefit from liver transplantation. Cancers (Basel) 2020;12:3157.
- 85 Tan EK, Rosen CB, Heimbach JK, et al. Living donor liver transplantation for perihilar cholangiocarcinoma: outcomes and complications. J Am Coll Surg 2020;231:98–110.
- 86 Ravikumar R, Tsochatzis E, Jose S, et al. Risk factors for recurrent primary sclerosing cholangitis after liver transplantation. J Hepatol 2015:63:1139–46.
- 87 Visseren T, Erler NS, Polak WG, et al. Recurrence of primary sclerosing cholangitis after liver transplantation - analysing the European liver transplant registry and beyond. *Transpl Int* 2021;34:1455–67.
- 88 Henson JB, King LY. Post-transplant management and complications of autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis including disease recurrence. Clin Liver Dis 2024;28:193–207.
- 89 Chaiteerakij R, Harmsen WS, Marrero CR, et al. A new clinically based staging system for perihilar cholangiocarcinoma. Am J Gastroenterol 2014;109:1881–90.
- 90 Matsuo K, Rocha FG, Ito K, et al. The Blumgart preoperative staging system for hilar cholangiocarcinoma: analysis of resectability and outcomes in 380 patients. J Am Coll Surg 2012;215:343–55.
- 91 Benson AB, D'Angelica MI, Abbott DE, et al. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2021;19:541–65.
- 92 Vugts JJA, Gaspersz MP, Roos E, et al. Eligibility for liver transplantation in patients with perihilar cholangiocarcinoma. Ann Surg Oncol 2021;28(Suppl 3):1483–92.
- 93 Banales JM, Cardinale V, Carpino G, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European network for the study of cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016;13:261–80.
- 94 loka T, Kanai M, Kobayashi S, et al. Randomized phase III study of gemcitabine, cisplatin plus S-1 versus gemcitabine, cisplatin

- for advanced biliary tract cancer (KHBO1401- MITSUBA). J Hepatobiliary Pancreat Sci 2023;30:102-10.
- 95 Lamarca A, Palmer DH, Wasan HS, et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. *Lancet Oncol* 2021;22:690–701.
- 96 Stewart R, Morrow M, Hammond SA, et al. Identification and characterization of MEDI4736, an antagonistic anti-PD-L1 monoclonal antibody. *Cancer Immunol Res* 2015;3:1052–62.
- 97 Kelley RK, Ueno M, Yoo C, et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* 2023;401:1853–65.
- 98 Zhu AX, Macarulla T, Javle MM, et al. Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 Mutation: the phase 3 randomized clinical ClarIDHy trial. JAMA Oncol 2021;7:1669–77.
- 99 Buettner S, Galjart B, van Vugt JLA, et al. Performance of prognostic scores and staging systems in predicting long-term survival outcomes after surgery for intrahepatic cholangiocarcinoma. J Surg Oncol 2017;116:1085–95.
- 100 de Jong MC, Nathan H, Sotiropoulos GC, et al. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment. J Clin Oncol 2011;29:3140–5.
- 101 Li J, Moustafa M, Linecker M, et al. ALPPS for locally advanced intrahepatic cholangiocarcinoma: did aggressive surgery lead to the oncological benefit? An international multi-center study. Ann Surg Oncol 2020;27:1372–84.
- 102 Lee W, Park J-H, Kim J-Y, et al. Comparison of perioperative and oncologic outcomes between open and laparoscopic liver resection for intrahepatic cholangiocarcinoma. Surg Endosc 2016;30:4835–40.
- 103 Zhang X-F, Beal EW, Bagante F, et al. Early versus late recurrence of intrahepatic cholangiocarcinoma after resection with curative intent. Br J Surg 2018;105:848–56.
- 104 Buettner S, Koerkamp BG, Ejaz A, et al. The effect of preoperative chemotherapy treatment in surgically treated Intrahepatic cholangiocarcinoma patients-A multi-institutional analysis. J Surg Oncol 2017;115:312–8.
- 105 Shimoda M, Farmer DG, Colquhoun SD, et al. Liver transplantation for cholangiocellular carcinoma: analysis of a singlecenter experience and review of the literature. Liver Transpl 2001;7:1023–33.
- 106 De Martin E, Rayar M, Golse N, et al. Analysis of liver resection versus liver transplantation on outcome of small intrahepatic cholangiocarcinoma and combined hepatocellularcholangiocarcinoma in the setting of cirrhosis. *Liver Transpl* 2020;26:785–98.
- 107 Lunsford KE, Javle M, Heyne K, et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. Lancet Gastroenterol Hepatol 2018;3:337–48.
- 108 Amini N, Ejaz A, Spolverato G, et al. Temporal trends in liverdirected therapy of patients with intrahepatic cholangiocarcinoma in the United States: a population-based analysis. J Surg Oncol 2014;110:163–70.
- 109 Edeline J, Lamarca A, McNamara MG, et al. Locoregional therapies in patients with Intrahepatic cholangiocarcinoma: a systematic review and pooled analysis. Cancer Treat Rev 2021;99:e102258.
- 110 Mosconi C, Solaini L, Vara G, et al. Transarterial chemoembolization and radioembolization for unresectable intrahepatic cholangiocarcinoma-a systemic review and meta-analysis. Cardiovasc Intervent Radiol 2021;44:728–38.
- 111 Strijker M, Belkouz A, van der Geest LG, et al. Treatment and survival of resected and unresected distal cholangiocarcinoma: a nationwide study. Acta Oncol 2019;58:1048–55.
- 112 Sutcliffe RP, Lam W, O'Sullivan A, et al. Pancreaticoduodenectomy after liver transplantation in patients with primary sclerosing cholangitis complicated by distal pancreatobiliary malignancy. World J Surg 2010;34:2128–32.
- 113 Yu J, Refsum E, Helsingen LM, et al. Risk of hepato-pancreatobiliary cancer is increased by primary sclerosing cholangitis in patients with inflammatory bowel disease: a population-based cohort study. *United European Gastroenterol J* 2022;10:212–24.