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expression

Ana P. Leite Montalvão, Birgit Kersten, Gihwan Kim, Matthias Fladung and
Niels A. Müller

Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany

NAM, 0000-0001-5213-042X

The number of dioecious species for which the genetic basis of sex determi-
nation has been resolved is rapidly increasing. Nevertheless, the molecular
mechanisms downstream of the sex determinants remain largely elusive.
Here, by RNA-sequencing early-flowering isogenic aspen (Populus tremula)
lines differing exclusively for the sex switch gene ARR17, we show that a
narrowly defined genetic network controls differential development of
female and male flowers. Although ARR17 encodes a type-A response reg-
ulator supposedly involved in cytokinin (CK) hormone signalling, clustered
regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated
arr17 knockout only affected the expression of a strikingly small number
of genes, indicating a specific role in the regulation of floral development
rather than a generic function in hormone signalling. Notably, the UNU-
SUAL FLORAL ORGANS (UFO) gene, encoding an F-box protein acting as
a transcriptional cofactor with LEAFY (LFY) to activate B-class MADS-box
gene expression, and the B-class gene PISTILLATA (PI), necessary for male
floral organ development, were strongly de-repressed in the arr17 CRISPR
mutants. Our data highlight a CK-independent role of the poplar response
regulator ARR17 and further emphasize the minimal differences between
female and male individuals.

This article is part of the theme issue ‘Sex determination and sex chromosome
evolution in land plants’.
1. Introduction
Poplars are dioecious trees with a genetically controlled system of sex determi-
nation [1]. The genomic architecture of sex determination varies between
species. The sex-determining regions (SDRs) have different locations and
sizes [2–5], and different species exhibit different heterogametic systems [4–6].
Several studies have characterized the genetic basis of sex determination in
poplars [2–5,7], including an experimental validation of a single-gene sex
switch, named ARR17, in early-flowering aspens (Populus tremula) [4]. This
gene likely underlies sex determination in both XY and ZW systems [4,5].
Although previous RNA-sequencing studies in different Populus species pro-
vided valuable insights into sexual development [8–10], the molecular
function of ARR17 and the downstream regulatory pathways remained largely
elusive. In particular, the possible involvement of cytokinin (CK) hormone sig-
nalling and the molecular pathways connecting ARR17 and B-class MADS-box
gene expression represent open questions.

CK is a phytohormone that plays a crucial role in plant growth and devel-
opment including sexual development, especially the gynoecium [11]. CK is
perceived via a two-component system in which signal transduction is achieved
by phosphorylation of response regulators (RRs) by histidine kinases (HKs),
similar to the two-component systems employed by bacteria to respond to
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environmental stimuli [12,13]. The RRs are particularly
interesting as they cause CK-dependent transcriptional repro-
gramming [12,14]. Since the poplar sex switch gene ARR17 is
homologous to the ARABIDOSPIS RESPONSE REGULATOR
17, one of the type-A RRs that are reported to negatively
regulate the CK signalling cascade [15], a connection between
ARR17 and the CK pathway might be expected. Differential
sexual development may be controlled by differential
hormone signalling.

The separation of the sexes in dioecious species with type
II flowers, that is flowers that are unisexual from inception
[16], is thought to depend on proper temporal and spatial
expression of floral homeotic genes [17,18]. According to
the ABC model of floral development [19], floral organs
(i.e. sepals, petals, stamens and carpels) are arranged in
four distinct whorls, and within a regulatory network, the
whorl-specific combination of homeotic gene expression
determines floral organ identity. Different genes were found
for each class encoding MADS-box transcription factors in
Arabidopsis thaliana [20]. The A-class gene APETALA 1 (AP1)
is responsible for sepal development. The B-class genes PIS-
TILLATA (PI) and APETALA 3 (AP3) specify the petals and
stamens depending on whether they are expressed together
with A-class or C-class genes. Finally, the C-class gene
AGAMOUS (AG) determines carpel development [18–20].

The B-class genes PI and AP3, which are essential for
stamen development, have been highlighted as differentially
expressed male-biased genes in different dioecious species,
such as the persimmon Diospyros lotus [21] and the balsam
poplar Populus balsamifera [9]. However, the molecular path-
ways connecting the sex switch genes MeGI in persimmon or
ARR17 in poplar with the floral MADS-box genes have
remained unclear. In this study, we aimed to specifically
characterize the molecular function of the poplar sex switch
ARR17. To this end, we generated transcriptomic data of iso-
genic early-flowering male and female aspen lines only
differing for a point mutation in the ARR17 gene. These data
allowed us to investigate the molecular mechanisms down-
stream of ARR17 without the confounding effects of different
genetic backgrounds. We find that, in poplar, ARR17 functions
independently of CK and triggers female development by
repressing the UNUSUAL FLORAL ORGANS (UFO)–PI cas-
cade, suggesting a direct role of ARR17 on the specification
of floral organ identity.
2. Material and methods
(a) Plant material, growth and sampling
The plant material (flower buds) was obtained from one female
early-flowering line (T222-3), which expresses the A. thaliana
FLOWERING LOCUS T (FT) gene under the control of the heat-
inducible promoter derived from the soya bean gene hs6871 [22]
encoding a heat shock protein (HSP), and three independent
T222-3-based isogenic arr17 CRISPR mutants (N500-1, N500-3
and N500-5) previously described [4]. Each of these lines contains
a clustered regularly interspaced short palindromic repeats
(CRISPR)-induced mutation disrupting the open reading frame
of ARR17. In vitro-grown plants were transferred to soil and culti-
vated under 16/8 h light/dark and 22/17°C temperature cycles
for 1.5 months. To induce FT expression and the consequential
development of generative buds, a heat shock treatment was
applied for 2 h at 40°C every day for one month. The plants were
randomized and watered daily. The experiments were conducted
in two batches, under the same conditions. For the first batch,
the flower buds were sampled every 5 days after the start of the
heat shock treatment until fully formed flowers were observed.
Samples from days 5, 10, 15 and 20 were used for RNA-sequen-
cing. For each time point, three biological replicates were
collected for each sex (female: 3× T222-3, arr17 CRISPR: 1×
N500-1, 1× N500-3 and 1× N500-5). Each replicate consisted of
flower buds pooled from three plants. The second batch was pre-
pared the same way; however, only samples from day 20 were
used for RNA-sequencing. For Populus alba, flower buds from a
female (clone Jap1) and a male (clone Monrepos) field-grown
tree (three samples per tree) were collected at a single time point
on 22 July 2020. All flower buds were snap frozen in liquid
nitrogen and stored at −70°C until RNA extraction.

(b) RNA extraction, cDNA synthesis and qRT-PCR chain
reaction

The frozen flower buds were ground to a fine powder in a Retsch
mill (Retsch GmbH, Germany) at 25 Hz for 30 s and this powder
was used for RNA extraction. Total RNA was extracted with the
Spectrum Plant Total RNA kit (Sigma-Aldrich, USA) according
to the manufacturer’s manual, Protocol A. Following that, DNase
I digestion was performed using the Turbo DNA-free kit (Invitro-
gen,USA). The RNA concentration andpuritywere assessed using
a Nanodrop 1000 spectrophotometer (Peqlab Biotechnologie
GmbH, Germany) and by native agarose gels. The RNA Integrity
Number (RIN) was determined using the plant-specific protocol of
Agilent Bioanalyzer (Agilent Technologies, Inc., USA). All samples
presented RIN greater than 7. For complementary DNA (cDNA)
synthesis, 2 µg of RNA, Oligo (dT) primers and SuperScript IV
reverse transcriptase (Invitrogen, USA) were used following the
manufacturer’s protocol, using 10 µl reactions without RNaseOUT.
Reverse transcriptase quantitative polymerase chain reaction (qRT-
PCR) was carried out in duplicates on a CFX96 Touch Real Time
PCR Detection System (Bio-Rad Laboratories GmbH, USA) using
the SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Indus-
tries, Inc., USA) and a two-step PCR programme with annealing
temperature of 60°C. Relative expression levels were calculated
using the 2−ΔΔCt method [23]. The primers are given in electronic
supplementary material, table S1.

(c) RNA-sequencing and data analysis
Strand-specific RNA-seq libraries were generated by Novogene
(Novogene (UK) Company Ltd., Cambridge, UK) and sequenced
using the Illumina HiSeq platform. Paired-end 150 bp reads to a
target depth of 30 million paired-end reads per sample were pro-
duced. The filtering of sequenced reads consisted of removing
reads containing adapters, reads containing undetermined
bases (N > 10%) and low-quality reads (Qscore≤ 5). The quality
of the raw reads was assessed using FastQC [24]. The reads
were mapped to the P. tremula v. 2.2 genome [25] using STAR
aligner (v. 2.7.1a) with default settings and with the annotation
gene file, and they were subsequently used to calculate read
counts with the R package Rsubread [26] and the command fea-
turecounts. Differential expression (DE) analyses between the
lines was performed in R v. 4.0.4 using the DESeq2 package
(v. 1.30.1) [27]. The raw dataset was filtered by removing genes
for which the sum of reads for all samples was below 10. From
the second experiment, an outlier sample was removed from
further analysis, since no reads of ARR17 were detected (elec-
tronic supplementary material, figure S1). The remaining
samples and genes were used for the DE analysis using DESeq
function (design =∼batch + sex). The adjusted p-value ( padj <
0.05) and an absolute Log2FoldChange (log2FC) greater than
1.5 were used to assess significance and identify differentially
expressed genes (DEGs). The variance-stabilizing rlog was
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Figure 1. Transcriptome variation and ARR17 expression in female and male flower buds of early-flowering aspen lines. (a) Principal component analysis (PCA) of
transcriptome variation of early-flowering female (magenta) and male arr17 CRISPR (blue) aspen (P. tremula) lines. Different symbols indicate different sampling
days (i.e. days 5, 10, 15 and 20 after the start of flower induction). The first principal component PC1 explains 71% and the second principal component PC2 11% of
the total variance. (b) ARR17 expression occurs in a narrow temporal window during poplar flower development. Average relative expression (n = 3) of ARR17
expression determined via qRT-PCR over a developmental time course in the same two genotypes shown in (a). ARR17 expression peaks at day 20. Error bars
indicate the standard error of the mean (SEM).
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used, and the counts were normalized using DESeq2’s own
normalization method for exploratory analyses such as principal
component analysis (PCA). Batch effects were removed using the
removeBatchEffect function from the R package limma (v. 3.46.0)
[28]. The raw read counts are given in electronic supplementary
material, table S2.

(d) Gene set enrichment analysis based on gene ontology
A GO term enrichment analysis was performed using the topGO
package in R (v. 2.42.0) [29] with default settings as well as the
optional function nodeSize = 10, which removes terms with
fewer than 10 annotated genes. We considered 24 464 genes
(out of the 29 549 expressed genes used for the DE analyses)
that had a GO annotation for P. tremula [25]. The analysis was
performed with DEGs at our standard cut-off ( p < 0.05 and |
log2FC| > 1.5) and using a relaxed significance level of p < 0.1
to avoid false negatives and to control for random effects due
to threshold choice [30].

(e) Cytokinin treatment
Female and male heat-inducible early-flowering aspen lines were
grown for one month in tissue culture and subsequently
transferred to Magenta plant incubation boxes (Sigma-Aldrich,
USA) containing woody plant medium (WPM) with and without
6-benzylaminopurine (BAP), which is a synthetic CK that pro-
motes growth and is involved in various developmental
processes such as cell division, shoot formation and promotion
of flowering. Different concentrations of BAP were used: 110,
220, 440 and 880 µM, in four individuals per sex, totalling 32
treated plants. Moreover, six plants of each sex were used as a
control (without BAP). Following a three-week incubation in a
climate room at 21°C and constant light, the cultures were
placed under a daily heat treatment (2 h at 40°C) to trigger flow-
ering as described above. Flowers were analysed after 45 days,
and the numbers were recorded.
3. Results and discussion
Expression of ARR17 in poplar is tissue-specific, occurring
only in female flower buds [4,31]. Thus, to identify the
downstream genes controlled by ARR17, we analysed
transcriptome datasets of female and male flower buds
collected at different times of development. For reliable
sample collection, we took advantage of an artificial flower



Table 1. Differentially expressed genes (DEGs) at day 20. For each gene, the Log2FoldChange (log2FC; female versus arr17 CRISPR), the adjusted p-values (padj),
the respective P. trichocarpa and A. thaliana gene identifiers and the A. thaliana synonym are given.

Potra_v2.2_ID log2FC padj P. trichocarpa ID A. thaliana ID A. thaliana synonym

Potra2n2c5701 −3.56 1.99 × 10−24 Potri.002G079000 AT5G20240 pistillata (PI)

Potra2n1c1412 −1.62 1.01 × 10−20 Potri.001G160900 AT1G30950 unusual floral organs (UFO)

Potra2n10c20292 −2.05 3.17 × 10−11 Potri.010G236300 AT3G21510 histidine-containing phosphotransmiter 1

(AHP1)

Potra2n2c4152 −2.10 7.15 × 10−10 Potri.002G250000 AT3G25400 dCTP pyrophosphatase

Potra2n4c8755 1.65 7.41 × 10−7 Potri.004G040700 AT5G44640 beta glucosidase 13 (BLU13)

Potra2n3c7869 −2.35 8.11 × 10−6 Potri.003G074100 AT1G30950 unusual floral organs (UFO)

Potra2n5c11227 −2.11 3.66 × 10−5 Potri.005G182200 AT5G20240 pistillata (PI)

Potra2n16c29771 1.95 4.83 × 10−5 Potri.016G058500 AT4G38180 far1-related sequence (FRS5)

Potra2n2c5611 −1.77 6.07 × 10−5 Potri.002G088200 AT1G37140 MEI2- C-terminal RRM only like 1

Potra2n18c32797 2.52 8.14 × 10−5 Potri.018G053600 AT5G56860 GATA transcription factor 21 (GATA21/GNC)

Potra2n9c19634 −1.79 0.000513 Potri.009G055700 AT5G13790 agamous-like 15 (AGL15)

Potra2n10c21177 2.18 0.000764 Potri.010G141000 AT5G49330 MYB domain protein 111 (MYB111)

Potra2n299s35250 −1.82 0.002193 Potri.008G131100 AT1G70890 major latex protein-like 43 (MLP43)

Potra2n1c1097 1.68 0.002836 Potri.003G106800 AT5G51330 switch 1 (SWI1)

Potra2n6c13866 1.52 0.003592 Potri.006G165900 AT4G30190 plasma membrane protein ATPase 2 (PMA2)

Potra2n15c28326 1.72 0.006144 Potri.005G036600 AT1G54820 protein kinase superfamily protein

Potra2n5c12526 1.59 0.006144 Potri.015G095900 AT5G50400 purple acid phosphatase 27 (PAP27)

Potra2n2c5221 1.69 0.007187 Potri.014G038500 —

Potra2n11c23459 1.93 0.010079 Potri.011G031800 AT3G25820 terpene synthase-related protein (TPS-CIN)

Potra2n5c12753 1.95 0.011358 Potri.005G014900 AT4G21390 S-locus lectin protein kinase family protein

(B120)

Potra2n6c13588 1.87 0.014159 Potri.006G199300 AT1G68450 pigment defective 337 (PDE337)

Potra2n5c12584 1.53 0.015329 Potri.005G028200 AT3G26040 HXXXD-type acyl transferase

Potra2n2c4059 −1.72 0.016211 Potri.014G195800 AT5G44070 phytochelatin synthase 1 (PCS1)

Potra2n6c14378 1.53 0.016528 Potri.006G107700 AT2G30400 ovate family protein 2 (OFP2)

Potra2n10c20471 1.61 0.016988 Potri.008G043900 AT1G07900 LOB domain-containing protein 1

Potra2n12c23975 −1.87 0.020274 Potri.012G032300 AT5G15290 domain of unknown function (DUF588)

Potra2n13c25563 −1.95 0.021018 Potri.013G084400 AT3G26120 terminal ear1-like (TEL1)

Potra2n432s35661 1.76 0.021045 Potri.001G015400 AT3G45140 lipoxygenase 2 (LOX2)

Potra2n1c775 1.58 0.021279 Potri.003G138400 AT5G42800 dihydroflavonol 4 reductase (DFR4)

Potra2n6c15208 1.99 0.026446 Potri.006G019800 —

Potra2n3c7698 2.03 0.029643 Potri.003G091200 AT4G17810 zinc finger protein 1 (ZP1)

Potra2n18c32253 1.63 0.04113 Potri.018G113300 AT4G02050 sugar transporter protein 7 (STP7)

Potra2n14c27869 −1.54 0.041274 Potri.014G179400 AT1G32450 nitrate transporter 1.5 (NRT1.5)
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induction system, which uses the A. thaliana FT gene under
the control of a soya bean HSP promoter. This system enables
heat-inducible early-flowering and allows poplar flower
development—which in nature takes almost 1 year and is
inconsistent between individuals and years [32,33]—to be
compressed into one month by heat shock-mediated induc-
tion of FT expression [4,32]. During this month, we
repeatedly sampled the developing flower buds of female
and male early-flowering aspen (P. tremula) lines. Impor-
tantly, these female and male lines (henceforth referred to
as female and arr17 CRISPR) are genetically identical,
except for a CRISPR-Cas9-induced arr17 mutation. This
single-induced mutation, which disrupts the open reading
frame of ARR17, changes females to males [4]. These isogenic
lines provide a unique possibility to study the genetic net-
works downstream of the sex-determining gene without
any confounding effects from different genetic backgrounds,
which usually complicate comparisons between female and
male individuals.

To assess DEGs downstream of ARR17, samples from
days 5, 10, 15 and 20 after the start of flower induction
were employed for RNA-sequencing, with three replicates
per sex and day. Initially, we analysed the general patterns
of transcriptome variation with a PCA (figure 1a). The PCA
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indicated rapid and dynamic changes in the transcriptome
consistent with the transitioning from vegetative to genera-
tive development. PC1 and PC2 represented 71% and 11%
of the total variance, respectively, and most of the variation
in the transcriptome can be accounted for by the sampling
day. Nevertheless, a marked separation between female and
arr17 CRISPR lines occurred at day 20 (figure 1a), suggesting
that this may be the earliest stage of sexual differentiation. In
line with this, day 20 was the first time point with robust
ARR17 expression in a qRT-PCR expression time course
(figure 1b). ARR17 expression was present in a narrow tem-
poral window during the developmental trajectory from
vegetative buds to fully developed flowers. These results
highlight that ARR17 expression is not only tissue-specific
but also time-specific. Considering that ARR17 represents a
single-gene sex switch, differences between females and
males could hardly be smaller.

While ARR17 expression is female-specific in the natural
sex-determining systems [4,9], we see expression at day 20
also in our male arr17 CRISPR lines (figure 1b). This can,
however, be explained by the fact that the arr17 CRISPR
lines present a male phenotype due to a loss of function
mutation of the ARR17 gene at the protein level and not
due to transcriptional silencing or gene absence. The peak
of ARR17 expression corresponds to an early stage of
flower development (electronic supplementary material,
figure S2a). Notably, no sex-specific differences in flower
bud morphology or any other floral structures could be
observed between female and arr17 CRISPR lines at time
point 20 (electronic supplementary material, figure S2b). A
study in Populus balsamifera demonstrated that in nature the
highest expression of ARR17 also occurs at the earliest
stages of reproductive development [9]. Together, these
data suggest that ARR17 may determine sex early on
during flower development.

Since our developmental RNA-seq and ARR17 qRT-PCR
time courses demonstrated that the earliest substantial sex-
specific differences are expected for day 20, we focused
further differential gene expression analyses on that time
point. It must be noted, however, that three biological
replicates limit the statistical power to identify sex-specific
differences. We only found two significantly ( p < 0.05,
|log2FC| > 1.5) DEGs, i.e. Potra2n2c5701 (PI) and
Potra2n4c8755 (BGLU13) (electronic supplementary material,
figure S3). We therefore generated a second identical RNA-
seq dataset for day 20. The combination of replicates from
both experiments should provide sufficient statistical power
and allow the reliable identification of DEGs. A total of 29
549 expressed genes were analysed for DE (electronic sup-
plementary material, table S3). To get a first overview of
the biological processes that may be involved in sex determi-
nation, we performed a gene ontology (GO) term enrichment
analysis. For this analysis, we selected DEGs based on differ-
ent significance thresholds (using a relaxed setting: p < 0.1,
and a more stringent setting: p < 0.05 and |log2FC| > 1.5),
since the threshold choice can have a relevant effect on the
results [30]. With both settings, we identified the biological
processes ‘positive regulation of transcription by polymerase
II’ (GO:0045944) and ‘maintenance of meristem identity’
(GO:0010074) among the top five categories (electronic
supplementary material, tables S4 and S5). Strikingly,
almost 90% (15/17) of the DEGs ( p < 0.1) involved in positive
regulation of transcription were MIKC-type MADS-box
genes, which play prominent roles in the control of repro-
ductive development [34,35]. In particular, all AP3 and PI
paralogues, which are essential for stamen development,
were upregulated in the arr17 CRISPR mutants (electronic
supplementary material, table S5). The three identified
meristem identity genes included both UFO paralogues,
which encode F-box proteins acting as transcriptional cofac-
tor with LEAFY (LFY) to activate B-class MADS-box gene
expression and are reported to provide the spatial cues for
the expression of AP3 and PI [36,37]. No category related
to the CK signalling pathway, such as ‘response to CK’
(GO:0009735), was enriched. These results argue against a
function of ARR17 in modulating CK signalling to control
sex determination in poplar, but rather highlight the impor-
tance of ARR17 in repressing MIKC-type MADS-box
transcription factors to specify floral organ identity.

The differential gene expression analysis of the combined
dataset with a standard significance cut-off (i.e. p < 0.05 and
|log2FC| > 1.5) resulted in a strikingly small set of 33 DEGs
(table 1 and figure 2), indicating minimal changes in the tran-
scriptome upon arr17 knockout. Among those 33 DEGs, 13
are upregulated in the arr17 CRISPR mutants. Two of these
genes stand out compared to all others: PISTILLATA
(Potra2n2c5701) required for stamen development [38] and
UFO (Potra2n1c1412), which activates B-class MADS-box
gene expression [39–42]. Both these genes are strongly upre-
gulated in the arr17 CRISPR mutants (figure 2). It should
be noted that their paralogues are also differentially
expressed (table 1, rows 6 and 7). We were wondering
whether the same genes may be differentially expressed in
poplar species with independently evolved systems of sex
determination. For example, P. alba features a ZW system of
sex determination in which ARR17 is located in the female-
specific region of the W chromosome [4,5]. Populus balsamifera
exhibits an XY system similar to the one found in the aspens
but with a different genomic architecture and an indepen-
dent evolutionary origin [2,4,43]. For P. balsamifera, 854
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DEGs in early developing female and male floral buds (July
2017) have been reported before [9]. For P. alba, we generated
RNA-seq data to assess differential gene expression (p < 0.05
and |log2FC| > 1.5) in female and male samples collected at
an early stage of reproductive development (July 2020) as
well. These data identified a total of 1725 DEGs (electronic sup-
plementarymaterial, table S6). All three datasets,which are not
expected to share any gene by chance, shared exactly two
DEGs representing the two PI paralogues (electronic sup-
plementary material, figure S4 and table S7). UFO was not
assessed in P. balsamifera but was shared between P. tremula
and P. alba (electronic supplementary material, table S7).
These additional data further highlight the prominent role of
PI and UFO and suggest that the molecular mechanism of
sex determination may be shared between species with
independently evolved SDRs.

Interestingly, key genes from the CK signalling pathway
such as the type-B RRs ARR1, ARR10 and ARR12 are not dif-
ferentially expressed, indicating that ARR17 may not be
involved in CK signalling (electronic supplementary material,
figure S5). This is in line with the GO term enrichment ana-
lyses, which also failed to detect any connection of arr17
mutation with CK signalling. CK-independent roles of type-
A RRs have been described before. For instance, in A. thaliana,
the type-A RRs ARR3 and ARR4 play CK-independent roles
in the circadian clock [44]. To further explore the potential
role of CK signalling in poplar sex determination, we adapted
our early-flowering system to generate poplar plants flower-
ing in vitro with a height of only 10 cm. This system
allowed us to test the effect of exogenous application of syn-
thetic CK into the growth medium on flower development.
In particular, we wanted to assess whether treatment with
6-BAP may have any effect on sexual development. While
we observed an increase in the total number of flowers (elec-
tronic supplementary material, figure S6), there was no effect
on flower sex. This is in contrast with other dioecious species
where an exogenous application of CK in male flowers stimu-
lates the induction of carpel development, converting them to
hermaphrodites [45–47].

In summary, our results suggest a specific function of the
poplar sex switch gene ARR17 on floral organ identity rather
than a generic function in the CK signalling pathway. The
poplar ARR17 gene is orthologous to the A. thaliana gene
pair ARR16/ARR17. There is no one-to-one orthology. In
A. thaliana, overexpression of the ARR16 and ARR17 genes
slightly affects flowering time but does not appear to
change floral organ identity [48]. Additionally, the ARR16/
ARR17 gene pair appears to be specifically involved in regu-
lating cell divisions of the stomatal lineage [49]. By contrast,
our results in poplar highlight UFO and PI as major down-
stream factors and thus the regulation of floral organ
identity as the key function of the sex determinant ARR17.
In the absence of ARR17 activity, expression of UFO is
ensured, and as a transcriptional cofactor with LFY, it acti-
vates B-class MADS-box genes [40,50]. On the other hand,
in females, ARR17 prevents the expression of UFO and
therefore represses male development (figure 3).

Remaining open questions concern the mechanism by
which ARR17 prevents UFO expression in females, the linear-
ity of the pathway and the presence of possible additional
factors on the male Y chromosome that might contribute to
differential sexual development in nature. ARR17 is a
single-domain RR because it contains only a receiver
domain [51]. The C-terminal extension in ARR17 of P. tremula
is short (only nine amino acids in Potra000483g02981.1; elec-
tronic supplementary material, figure S7), similar to ARR16
and ARR17 in A. thaliana [52]. The absence of any kind of
effector domain at the C-terminus in ARR17 argues against
direct transcriptional control of UFO by ARR17. Single-
domain RRs may rely on protein–protein interactions to
exert their downstream biological effects, after phosphoryl-
ation by a HK and conformational change of the receiver
domain [53]. Thus, one mode of action could be that
ARR17 interacts at the protein level with a transcriptional
regulator of UFO. Regarding the linearity of the pathway,
ARR17 could be involved in the repression of UFO and PI
only, or it could fulfil additional essential functions to deter-
mine the sex of poplars. This question should be addressed in
future experiments by knocking out the poplar genes UFO
and PI. In the case of a linear pathway, ufo and pi mutations
should convert males to females.
4. Conclusion
RNA-sequencing of developing flower buds of early-
flowering isogenic female and male aspen lines only
differing for a CRISPR-induced mutation in the sex determi-
nant ARR17 identified DEGs likely involved in poplar sex
determination. During poplar development, ARR17 is only
expressed in floral buds and only in a narrow temporal
window during flower bud development. The difference
between females and males could hardly be smaller, which
is in line with sexual homomorphism reported in different
poplar species [7,54,55]. Despite being a type-A RR, ARR17
does not appear to control CK signalling. Instead, UFO and
the B-class MADS-box gene PI were highlighted by several
analyses as key components of the gene network downstream
of ARR17 (figure 3), indicating a highly targeted role of
ARR17 in specifying floral organ identity. It will be exciting
to explore the proposed pathway further and to generate
ufo and pi knockouts to test whether the modulation of
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additional signalling cascades is essential or whether the repres-
sion of UFO and PI alone is sufficient to specify differential
sex expression.
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