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ABSTRACT
Background: Improved detection of hepatocellular carcinoma (HCC) is needed, as
current detection methods, such as alpha fetoprotein (AFP) and ultrasound, suffer
from poor sensitivity. MicroRNAs (miRNAs) are small, non-coding RNAs that
regulate many cellular functions and impact cancer development and progression.
Notably, miRNAs are detectable in saliva and have shown potential as non-invasive
biomarkers for a number of cancers including breast, oral, and lung cancers. Here,
we present, to our knowledge, the first report of salivary miRNAs in HCC and
compare these findings to patients with cirrhosis, a high-risk cohort for HCC.
Methods: We performed small RNA sequencing in 20 patients with HCC and 19
with cirrhosis. Eleven patients with HCC had chronic liver disease, and analyses were
performed with these samples combined and stratified by the presence of chronic
liver disease. P values were adjusted for multiple comparisons using a false discovery
rate (FDR) approach and miRNA with FDR P < 0.05 were considered statistically
significant. Differential expression of salivary miRNAs was compared to a previously
published report of miRNAs in liver tissue of patients with HCC vs cirrhosis.
Support vector machines and leave-one-out cross-validation were performed to
determine if salivary miRNAs have predictive potential for detecting HCC.
Results: A total of 4,565 precursor and mature miRNAs were detected in saliva and
365 were significantly different between those with HCC compared to cirrhosis (FDR
P < 0.05). Interestingly, 283 of these miRNAs were significantly downregulated in
patients with HCC. Machine-learning identified a combination of 10 miRNAs and
covariates that accurately classified patients with HCC (AUC = 0.87). In addition, we
identified three miRNAs that were differentially expressed in HCC saliva samples
and in a previously published study of miRNAs in HCC tissue compared to cirrhotic
liver tissue.
Conclusions: This study demonstrates, for the first time, that miRNAs relevant to
HCC are detectable in saliva, that salivary miRNA signatures show potential to be
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highly sensitive and specific non-invasive biomarkers of HCC, and that additional
studies utilizing larger cohorts are needed.

Subjects Bioinformatics, Molecular Biology, Gastroenterology and Hepatology, Oncology, Data
Mining and Machine Learning
Keywords Transcriptomics, Biomarker, Hepatocellular carcinoma, Liver cancer, Saliva,
Non-invasive, Cirrhosis, Machine-learning

INTRODUCTION
Liver cancer is the most rapidly increasing cancer among men and women in the United
States and is estimated to have resulted in 31,780 deaths in 2019 (American Cancer Society,
2019). Hepatocellular carcinoma (HCC) accounts for 80% of all primary liver cancers,
and the global incidence of HCC is expected to increase to 78 million by 2030 (Petrick
et al., 2016) due to increasing nonalcoholic steatohepatitis (NASH), hepatitis C, and
excessive alcohol consumption. Early detection of HCC has shown to improve reception of
curative therapy and overall survival (Singal, Pillai & Tiro, 2014). However, current
HCC serum biomarkers, such as alpha fetoprotein (AFP) lack prognostic and diagnostic
value (39–65% sensitivity) (Daniele et al., 2004). Although resection is the treatment of
choice for many patients, as many as 54% will recur within 2 years, and ~70% within
5 years (Forner et al., 2006; Tabrizian et al., 2015). As early detection is associated with
improved prognosis and overall survival, reliable biomarkers are needed to detect tumor in
early stages of development.

MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene
expression by translational inhibition or mRNA degradation. Although the majority of
miRNA regulation occurs intracellularly, in some cases select miRNAs are found in the
circulation and have been associated with a plethora of human diseases. Several studies
have shown miRNA expression is associated with cancer (Eslam, Valenti & Romeo, 2018),
NASH/NAFLD and alcoholic hepatitis (Blaya et al., 2016; Eslam, Valenti & Romeo,
2018), and patient survival (Pineau et al., 2010; Dongiovanni et al., 2018). In addition,
differentially expressed miRNA in blood have been detected in HCC (Murakami et al.,
2012; Qi et al., 2013). However, it is not known if detectable alterations in salivary miRNAs
are present in patients with HCC. Previously, miRNA abundance in saliva has been
associated with oral, head and neck, lung, and breast cancers (Zhang et al., 2010, 2012;
Elashoff et al., 2012; Salazar, Calvopiña & Punyadeera, 2014; Salazar et al., 2014; Wan
et al., 2017). Saliva is an attractive biospecimen for biomarkers because (1) it is non-
invasive, (2) less expensive than more invasive biospecimens, (3) can be collected without
requiring a patient to go to the doctor’s office, and (4) saliva collection tubes can now
stabilize samples at room temperature for months (Nunes et al., 2012; Lim et al., 2016),
allowing for the possibility that patients may be able to submit their sample through the
mail.

Here, we conducted a pilot-study to evaluate if miRNAs are differentially expressed
in the saliva of patients with HCC compared to the saliva of patients with cirrhosis.
Furthermore, we evaluate how these miRNAs compare to previously reported tissue- and
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blood-based miRNAs in HCC, and determine the potential for saliva miRNAs to serve as a
non-invasive, diagnostic biomarker for HCC.

MATERIALS AND METHODS
Patient recruitment and sample collection
Saliva samples were collected from 20 individuals with HCC and 19 from individuals with
cirrhosis seen at the Cleveland Clinic (Cleveland, OH). Participants were adult patients
(>18 years of age) who underwent liver transplantation for HCC, surgical resection for
liver tumors or liver biopsy. Some patients with HCC had previously received treatment
but all had active HCC at the time of collection. Prior treatments and clinical staging
for patients with HCC can be found in Table S1. A description of the cohort is provided in
Table 1, including the frequencies of chronic liver disease (CLD) between the two
groups. Twelve out of the twenty patients with HCC had CLD, and analyses were
performed with these samples combined and stratified by liver disease, as described below.
Initial disease diagnoses were made from a combination of clinical presentation, imaging
and laboratory techniques. Subsequently, these diagnoses underwent a secondary
confirmatory pathological diagnosis. All participants provided written informed consent
and the study was approved by the Cleveland Clinic IRB (IRB #10-347).

Small RNA-seq extraction and sequencing
Small RNA library preps were prepared using the QIAseq miRNA Library Kit (QIAGEN,
Hilden, Germany). Adapters are first ligated sequentially to the 3′ and 5′ end of the
miRNAs followed by cDNA synthesis with UMI assignment, cDNA cleanup, library
amplification and final library cleanup. All protocol steps were followed based on the
use of the miRNeasy Serum/Plasma kit used upstream for purification of RNA, which has
been shown to be effective for saliva samples (Zahran et al., 2015). The recommended
starting amount of total RNA is 5 µl of the RNA eluate when 200 µl of sample has been
processed using the miRNAeasy Serum/Plasma Kit. Adapter dilutions throughout the
protocol followed the serum/plasma recommendations. Cycles of library amplification
followed that of a 10 ng input sample with 19 total cycles, consistent with manufacturer
recommendations. Two RNA control samples (Human XpressRef RNA, QIAGEN, Hilden,
Germany) with an input of 10 ng RNA were processed alongside the saliva samples.
Final libraries were validated by Qubit Fluorometer (Invitrogen, Waltham, MA, USA)
and Fragment Analyzer (Agilent Technologies, Inc, Santa Clara, CA, USA), and quantified
via qPCR using NEBNext Library Quant Kit for Illumina (New England BioLabs, Inc,
Ipswich, MA, USA). Pooled libraries were diluted, denatured and loaded onto the
Illumina NextSeq 550 System, following the NextSeq User Guide. All 42 libraries were
sequenced on one NextSeq High Output flow cell, single read 75 cycle run. FastQ files were
developed for downstream analysis.

Data processing
FastQ files were first evaluated for read quality, using FastQC v0.11 (Andrews, 2010).
Individual reads were then trimmed for phred quality scores (Q > 20) and presence of
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Table 1 Summary statistics for the study cohort.

Characteristic Cirrhosis without HCC HCC

Total (N) 19 20

Mean age (min-max) 57.2 (33–80) 67.9 (53–89)

Sex

Male (%) 9 (47%) 14 (70%)

Female (%) 10 (53%) 6 (30%)

Race

Caucasian (%) 18 (95%) 10 (50%)

Black (%) 0 (0%) 0 (0%)

Hispanic (%) 1 (5%) 1 (5%)

Unspecified (%) 18 (95%) 9 (45%)

Mean BMI (min-max) 33.12 (21.07–57.96) 29.44 (19.53–41.8)

Chronic liver disease 19 (100%) 12 (60%)

Fibrosis (%) 0 (0%) 2 (10%)

Cirrhosis (%) 19 (100%) 10 (50%)

NASH (%) 7 (37%) 5 (25%)

EtOHa (%) 7 (37%) 7 (35%)

HCVb (%) 0 (0%) 7 (35%)

HBVc (%) 0 (0%) 2 (10%)

Primary biliary cholangitis (%) 2 (11%) 0 (0%)

Primary sclerosing cholangitis (%) 1 (5%) 0 (0%)

Autoimmune hepatitis (%) 1 (5) 0 (0%)

Other (%) 0 (0%) 0 (0%)

Child-pugh score

5–6 8 8

7–9 10 1

10–15 1 1

Diabetes mellitus (%) 9 (47%) 10 (50%)

Hypertension (%) 6 (32%) 16 (80%)

Coronary artery disease (%) 2 (11%) 7 (35%)

Hyperlipidemia (%) 5 (26%) 14 (70%)

Psychiatric disorder (%) 3 (16%) 6 (30%)

Other cancer (%) 1 (5%) 3 (15%)

COPDd/Asthma/OSAe 3 (16%) 6 (30%)

Thyroid 5 (26%) 0 (0%)

Other PHf 0 (0%) 0 (0%)

Ascites 8 (42%) 1 (5%)

Encephalopathy 8 (42%) 0 (0%)

Mean hemoglobin (std.err) 10.68 (0.7) 12.80 (0.5)

Mean platelets (std.err) 116 (16.2) 210 (19.3)

Mean ALPg (std.err) 156.45 (29.5) 162.85 (40.0)

Mean ASTh (std.err) 54.53 (8.4) 56.30 (7.4)

Mean ALTi (std.err) 34.79 (6.8) 52.20 (7.0)
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adapters, using fastp v0.19 software (Chen et al., 2018). Processed FastQ files were then
aligned to the human genome (hg38) (Schneider et al., 2017) and annotated using known
miRNA sequences from miRBase v22 (Griffiths-Jones, 2010). Alignments and miRNA
counts were performed using the Rsubread package v2.2, following the authors’ guidelines
for miRNA. Mature miRNA and miRNA hairpin precursors were both used for alignment,
and are designated “hsa-miR” and “hsa-mir”, respectively. Data files, including
miRNA counts are located in Files S1 and S2, and R code for the analysis described below
can be found at: https://github.com/rotroff-lab/salivary-miRNA-HCC. Raw sequences can
be found at: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA755300.

Differential expression analysis
miRNA expression was compared between HCC and cirrhosis samples using the R
package DESeq2 v1.28 (Love, Huber & Anders, 2014). First, raw read counts were
normalized to account for sequencing depth, gene length, and RNA composition. Wald’s
test was then performed on the normalized counts to identify any differentially expressed
miRNA, using the cirrhosis samples as reference. All association tests included age, sex,
race, body mass index and smoking status as model covariates to prevent confounding.
In addition, patients were stratified to perform comparisons between those with CLD and
the cirrhosis reference samples to distinguish miRNA associations specific to HCC vs those
that may be due to impaired liver function. Log2 fold changes (logFC) were estimated using
empirical Bayes procedure and implemented with the R package apeglm v1.10 (Zhu,
Ibrahim & Love, 2019). All P values were false discovery rate (FDR) corrected (Benjamini
& Hochberg, 1995). Any miRNA with an FDR P < 0.05 was considered significantly
differentially expressed. The level of confidence for significant miRNAs were categorized
based on read counts per million (CPM) into low, medium or high categories. miRNAs
with <1 CPM in >20% of the samples were considered to be low confidence. miRNAs were
classified as medium confidence if at least 20% of the samples had CPM ≥ 1 and high
confidence if at least 20% of the samples had CPM ≥ 10. Only miRNAs meeting the criteria
for medium or high confidence were considered for inclusion in the predictive models, as

Table 1 (continued)

Characteristic Cirrhosis without HCC HCC

Mean bilirubin (std.err) 1.99 (0.4) 0.91 (0.2)

Mean albumin (std.err) 3.42 (0.1) 3.80 (0.1)

Mean INRj (std.err) 1.26 (0.06) 1.14 (0.05)

Mean creatinine (std.err) 1.10 (0.1) 1.18 (0.2)

Notes:
a Alcoholic hepatitis
b Hepatitis C
c Hepatitis B
d Chronic Obstructive Pulmonary Disease
e Obstructive Sleep Apnea
f Pulmonary Hypertension
g Alkaline Phosphatase
h Aspartate Aminotransferase
i Alanine Transaminase
j International Normalized Ratio.
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described below. Pathway analysis was performed using QIAGEN Ingenuity Pathway
Analysis (IPA) software (Krämer et al., 2014). Here, differentially expressed miRNA (FDR
P < 0.05) were mapped to mRNA and tested for overrepresentation in cancer and
disease-specific pathways using the IPA knowledgebase. The analysis was performed (1)
restricted to only cancer-related pathways and (2) cancer-related and disease-specific
pathways combined.

Comparison to tissue-based miRNA profiles
Differentially abundant miRNAs were compared to microarray expression data from
Martinez-Quetglas et al. (2016), GEO Accession Number: GSE74618 (Martinez-Quetglas
et al., 2016). These data included miRNA expression data from 218 samples from human
HCC tumors and 10 samples from cirrhotic non-tumoral tissue. Differential expression
was conducted on the normalized expression values between HCC and cirrhosis
samples, using the GEO2R tool available from the GEO database (Barrett et al., 2012).
Overlapping miRNAs detected in both GSE74618 and the salivary miRNA data were
compared and were adjusted using a FDR approach, as described above.

Predictive modeling for biomarker development
Model development was performed using the statistical software, R (Team, 2020).
Significant miRNAs (FDR P < 0.05) were assessed for their ability to differentiate HCC
and cirrhosis samples. Here, we used support vector machine (SVM) models with a radial
basis function using the R caret package (Kuhn, 2008). Because some patients with
HCC had no evidence of CLD, we also performed modeling on the subset of patients with
CLD to compare with the cirrhosis group. Hyperparameters for both models with and
without covariates are listed in Table S2. miRNA expression was mean centered and scaled
by the standard deviation prior to modeling. Leave-one-out cross-validation was used to
limit model over-fitting. Recursive feature selection with leave-one-out cross-validation
was used to characterize feature importance and 10 miRNAs were selected for inclusion in
the final models (Kuhn, 2008). Model performance was assessed based on the AUC,
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
and balanced accuracy. PPV is the ratio of true positives out of all identified positives,
whereas NPV is the ratio of true negatives out of all identified negatives.

RESULTS
Differential expression of miRNAs in the saliva of HCC patients
A total of 4,565 miRNAs were detected and 365 miRNAs were significantly differentially
expressed between HCC and cirrhosis samples and met the threshold for medium or high
confidence (FDR P < 0.05), demonstrating a broad shift in miRNA profiles (Table S3).

The majority of the differentially expressed miRNAs (N = 283) were downregulated
(logFC < 0) in the HCC samples compared to cirrhosis samples, and 50 of those had a
logFC < −2 (Fig. 1A). The five most significantly differentially expressed miRNAs that
also met the threshold for high confidence were: has-mir-3198-2 (logFC = −5.00, FDR
P = 6.81 × 10−6), hsa-miR-3198 (logFC = −5.01, logFC = 6.80 × 10−6), hsa-mir-1246
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(logFC = −6.03, FDR P = 7.98 × 10−6), hsa-miR-1246 (logFC = −6.86, FDR P = 7.98 × 10−6)
and hsa-mir-3648-2 (logFC = −7.10, FDR P = 1.24 × 10−5). The 20 most significantly
differentially expressed miRNA are shown in Table 2. A heatmap showing the expression

Figure 1 Volcano plots of differential salivary miRNA expression. Volcano plots showing the
unadjusted log2 fold change and log FDR P value for (A) salivary miRNAs in all patients with HCC
(N = 20) compared to patients with cirrhosis only (N = 19), and (B) patients with HCC and chronic liver
disease (N = 11) compared to patients with cirrhosis only (N = 19). Salivary miRNAs with a corre-
sponding log fold change less than −5 and FDR P < 5 × 10−6 are annotated using color. Mature miRNA
and hairpin precursors are referred as “miR” and “mir”, respectively.

Full-size DOI: 10.7717/peerj.12715/fig-1

Table 2 Results for 20 most significantly differentially expressed miRNA.

miRNA Log2 FC Log2 FC SE P value FDR P value

hsa-miR-3198 −5.01 1.50 5.96 × 10−9 6.81 × 10−6

hsa-mir-3198-2 −5.01 1.51 6.56 × 10−8 6.81 × 10−6

hsa-miR-1246 −6.86 1.46 1.18 × 10−8 7.98 × 10−6

hsa-mir-1246 −6.03 1.57 1.54 × 10−8 7.98 × 10−6

hsa-mir-3648-2 −7.10 1.94 3.59 × 10−8 1.24 × 10−5

hsa-mir-766 −5.05 1.79 3.50 × 10−8 1.24 × 10-5

hsa-mir-1290 −8.24 1.84 1.00 × 10−7 2.61 × 10−5

hsa-miR-1290 −8.24 1.84 1.00 × 10−7 2.61 × 10−5

hsa-mir-3648-1 −8.94 2.61 3.52 × 10−7 7.31 × 10−5

hsa-miR-766-3p −5.00 2.28 3.22 × 10−7 7.31 × 10−5

hsa-mir-10401 −9.85 3.36 7.48 × 10−7 1.29 × 10−4

hsa-miR-191-3p −2.67 1.15 7.47 × 10−7 1.29 × 10−4

hsa-mir-133a-2 −4.94 1.21 9.70 × 10−7 1.48 × 10−4

hsa-miR-133a-3p −5.11 1.28 9.96 × 10−7 1.48 × 10−4

hsa-mir-3615 −4.08 1.44 1.57 × 10−6 2.04 × 10−4

hsa-miR-3615 −4.08 1.44 1.57 × 10−6 2.04 × 10−4

hsa-miR-454-5p −2.53 0.94 1.70 × 10−6 2.08 × 10−4

hsa-miR-4449 −3.06 2.09 2.75 × 10−6 3.17 × 10−4

hsa-miR-642a-3p −0.61 1.13 3.25 × 10−6 3.38 × 10−4

hsa-miR-642b-5p −0.61 1.13 3.25 × 10−6 3.38 × 10−4

Mariam et al. (2022), PeerJ, DOI 10.7717/peerj.12715 7/21

http://dx.doi.org/10.7717/peerj.12715/fig-1
http://dx.doi.org/10.7717/peerj.12715
https://peerj.com/


of the significant miRNAs (FDR P < 0.05 and absolute |logFC| > 2) is shown in Fig. 2.
Interestingly, a cluster of majority HCC patients was identified (N = 14 out of 16, 87.5%).
The other four clusters had cirrhosis patients in majority. The number of cirrhosis patients
in the four clusters was three (100%), three (75%), four (80%) and seven (58%),
respectively. Notably, a cluster of three individuals from the cirrhosis group clustered
together with elevated miRNA expression (Fig. 2). The Child-Pugh scores for these
individuals were between five and seven, consistent with the rest of the control group, and
no demographic or physical characteristics were identified that could explain the observed
pattern (Fig. 2).

Pathway analysis revealed 96 (27%) differentially expressed miRNAs that were
represented in at least one significant pathway in the IPA metabolic and signaling
pathways knowledgebase (Table S4). Approximately a third of these miRNAs were
associated with cancer-related diseases and pathways (N = 31 of 96) (Table S4). When the
analysis was limited to cancer signaling pathways, the top three diseases were “early-stage
invasive cervical squamous cell carcinoma” (miRNA N = 12, FDR P = 8.04 × 10−13),
“hypopharyngeal squamous cell carcinoma” (miRNA N = 12, FDR P = 1.51 × 10−11), and
“early stage solid tumor” (miRNA N = 13, FDR P = 4.59 × 10−8). The cancer pathway with
the greatest number of overlapping miRNAs differentially expressed in this cohort was
“mammary tumor” (miRNA N = 35, FDR P = 2.26 × 10−2).

Figure 2 Heatmap showing the expression of the significant miRNA in each sample (FDR P < 0.05
and absolute log2 fold change > 1). Heatmap showing the expression of the significant miRNA in each
sample (FDR P < 0.001 and absolute log2 fold change > 2). Clustering was performed using Ward’s D
method and Manhattan distance. The dendrogram of samples (columns) was cut to create four clusters,
where a distinct cluster with 14 out of 15 samples consisted of HCC samples was observed. The clustering
appears to be largely driven by HCC status rather than the presence of chronic liver diseases, such as
cirrhosis or fibrosis. The Barcelona Clinic Liver Cancer (BCLC) stage is shown in the annotation bar.

Full-size DOI: 10.7717/peerj.12715/fig-2
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Comparison between patients with and without chronic liver disease
(CLD)
Twelve out of 20 patient samples with HCC also had CLD, and these samples were
compared with cirrhosis control samples. This resulted in 281 differentially expressed
miRNAs, of which 248 (88%) were also significant in the analysis between all HCC samples
and those with cirrhosis only (Table S5), suggesting that these differentially expressed
miRNAs are likely to be due to the presence of HCC rather than the presence or lack
of CLD. Out of 281 differentially expressed miRNA, 240 (85%) were downregulated
(logFC < 0) in the HCC samples with CLD compared to only those with cirrhosis, and
49 of these had a logFC < −2 (Fig. 1B). The five most significantly differentially expressed
miRNAs were: hsa-mir-122 (logFC = −6.65, FDR P = 7.54 × 10−5), hsa-mir-122b
(logFC = −6.64, FDR P = 7.54 × 10−5), hsa-miR-122-5p (logFC = −6.64, FDR P =
7.54 × 10−5), hsa-mir-122b-3p (logFC = −6.64, FDR P = 7.54 × 10−5) and hsa-mir-603
(logFC = −4.86, FDR P = 1.14 × 10−4). These top five miRNAs were also considered to be of
high confidence based on the CPM criterion. Pathway analysis after stratifying patients
based on CLD status resulted in the same top rankings of cancer-related and
disease-specific pathways (Table S6).

Comparison to tissue-based miRNA
Three significant miRNAs detected in saliva were also found to be differentially expressed
in HCC tissue samples compared to cirrhotic liver tissue samples (FDR P < 0.05)
(GSE74618) (Fig. 3 and Table S7). Forty-seven miRNAs were significantly different
between HCC and cirrhosis tissue samples (FDR P < 0.05), 27 of which were evaluated in

Figure 3 Comparison between salivary miRNAs and previously reported tissue-based miRNA
expression. (A) Venn diagram showing the overlap of miRNAs detected in tissue (25) compared to
saliva in patients with hepatocellular carcinoma (HCC) vs cirrhosis. In addition, the overlap between
miRNA determined to be statistically significantly different between patients with HCC and cirrhosis are
shown (FDR P < 0.05). (B) The direction of association between saliva and tissue miRNA detected to be
statistically significantly different between patients with HCC and cirrhosis across both biospecimens
(FDR P < 0.05). Full-size DOI: 10.7717/peerj.12715/fig-3
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the saliva; whereas out of the 365 significant salivary miRNAs, 100 were also evaluated in
tissue. However, only three miRNAs were significantly different in both cohorts (FDR
P < 0.05) (Fig. 3). Out of the three significant miRNA found in each dataset, all were
downregulated in saliva, but two were downregulated and one was upregulated in tissue
(Fig. 3, Table 3). The miRNA comparisons are provided in Table S7. The significant
miRNAs common to both datasets were hsa-mir-92b, hsa-mir-548i-2 and hsa-mir-548l.

Saliva miRNA predictive modeling
The predictive model trained on HCC +/− CLD vs cirrhosis optimized with the following
10 miRNAs: hsa-mir-576, hsa-miR-576-5p, hsa-mir-6727, hsa-mir-27b, hsa-miR-27b-3p,
hsa-mir-4664, hsa-mir-125a, hsa-miR-6727-5p, hsa-mir-190b and hsa-miR-125a-5p.
All of the above miRNAs met the threshold for high confidence except for hsa-mir-4664
and hsa-miR-6727-5p, which met the threshold for medium confidence. The model
classified HCC with salivary miRNA alone (AUC = 0.74), and was improved with the
inclusion of demographic and lifestyle variables (AUC = 0.87) (Fig. 4, Table 4). The model
trained on the subset of patients with both HCC and CLD vs cirrhosis optimized with

Table 3 Results for 20 most significant common miRNAs in saliva compared to tissue samples from
Martinez-Quetglas et al. (2016).

Core miRNA HCC vs cirrhosis liver tissuea HCC vs cirrhosis saliva

miRNAb logFC FDR P value logFC FDR P value

hsa-mir-1246 hp_hsa-mir-1246_st 0.051 7.73 × 10−1 −6.03 7.98 × 10−6

hsa-mir-1246 hsa-miR-1246_st 0.677 6.24 × 10−1 −6.03 7.98 × 10−6

hsa-mir-766 hsa-miR-766_st 0.026 9.53 × 10−1 −5.05 1.24 × 10−5

hsa-mir-766 hp_hsa-mir-766_st −0.019 9.12 × 10−1 −5.05 1.24 × 10−5

hsa-mir-1290 hsa-miR-1290_st 0.238 8.01 × 10−1 −8.24 2.61 × 10−5

hsa-mir-133a-2 hp_hsa-mir-133a-2_s_st 0.029 8.53 × 10−1 −4.94 1.50 × 10−4

hsa-mir-133a-2 hp_hsa-mir-133a-2_st −0.035 8.52 × 10−1 −4.94 1.50 × 10−4

hsa-mir-133a-2 hp_hsa-mir-133a-2_x_st 0.010 9.85 × 10−1 −4.94 1.50 × 10−4

hsa-mir-122 hsa-miR-122-star_st −0.351 6.22 × 10−1 −4.88 3.57 × 10−4

hsa-mir-122 hsa-miR-122_st −0.149 7.94 × 10−1 −4.88 3.57 × 10−4

hsa-mir-122 hp_hsa-mir-122_st −0.038 7.79 × 1−1 −4.88 3.57 × 10−4

hsa-mir-1180 hsa-miR-1180_st 0.809 8.5 × 10−2 −1.14 4.88 × 10−4

hsa-mir-21 hsa-miR-21_st 1.790 6.97 × 10−5 0.06 8.79 × 10−1

hsa-mir-548i-2 hp_hsa-mir-548i-2_st −0.285 2.45 × 10−4 −4.88 6.01 × 1−3

hsa-mir-378c hsa-miR-378c_st −1.990 1.40 × 10−3 0.25 2.55 × 10−1

hsa-mir-125b-1 hp_hsa-mir-125b-1_x_st −0.286 2.05 × 10−3 −1.08 8.13 × 10−2

hsa-mir-106b hsa-miR-106b_st 0.876 2.98 × 10−3 −0.95 1.28 × 10−1

hsa-mir-548i-2 hp_hsa-mir-548i-2_st −0.285 2.45 × 10−4 −4.88 6.01 × 10−3

hsa-mir-548l hp_hsa-mir-548l_x_st −0.220 1.67 × 10−2 −0.37 9.31 × 10−3

hsa-mir-92b hsa-miR-92b-star_st 1.170 3.72 × 10−2 −1.42 1.33 × 10−3

Notes:
a Data obtained from NIH Gene Expression Omnibus (GSE74618), previously published by Martinez-Quetglas et al.
(2016).

b miRNA identifier reported in Martinez-Quetglas et al. (2016).
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following miRNAs: hsa-miR-1262, hsa-mir-1262, hsa-mir-216a, hsa-mir-484,
hsa-mir-30d, hsa-miR-216a-5p, hsa-miR-30d-5p, hsa-miR-484, hsa-mir-10401 and
hsa-miR-454-3p. Five miRNAs above reached the threshold for high confidence:
hsa-mir-30d, hsa-miR-30d-5p, hsa-miR-454-3p, hsa-mir-484 and hsa-miR-484.
The model performed well, discriminating patients with HCC using salivary miRNA
(AUC = 0.78) and with the inclusion of covariates (AUC = 0.87) (Fig. 4). Table 4 shows
the AUC, sensitivity, specificity, and balanced accuracy for the predictive models,
demonstrating that salivary miRNAs show potential for predicting which patients with
CLD are likely to have HCC.

Table 4 Accuracy metrics for predicting HCC from cirrhosis.

Covariates included* Sensitivity Specificity Balanced accuracy PPV NPV AUC

Model trained using data from all patients

miRNA: hsa-mir-576, hsa-miR-576-5p, hsa-mir-6727, hsa-mir-27b, hsa-miR-27b-3p, hsa-mir-4664, hsa-
mir-125a, hsa-miR-6727-5p, hsa-mir-190b, hsa-miR-125a-5p

No 0.80 0.74 0.77 0.75 0.74 0.74

Yes 1.00 0.84 0.92 0.81 0.70 0.87

Model trained using data from patients with chronic liver disease

miRNA: hsa-miR-1262, hsa-mir-1262, hsa-mir-216a, hsa-mir-484, hsa-mir-30d, hsa-miR-216a-5p, hsa-
miR-30d-5p, hsa-miR-484, hsa-mir-10401, hsa-miR-454-3p

No 0.83 0.68 0.76 0.67 0.68 0.78

Yes 0.92 0.84 0.88 0.82 0.85 0.87

Notes:
PPV, positive predictive value; NPV, negative predictive value; AUC, Area under the receiver operating characteristic
curve.
* Covariates include age, sex, race, BMI and smoking.

Figure 4 Development of a salivary miRNA signature to predict the presence of hepatocellular
carcinoma. (A) ROC curves of the support vector machine (SVM) models fit using the 10 miRNAs
selected based on backward selection. (B) ROC curves of the model fit using the 10 selected miRNAs and
covariates: age, sex, race, body mass index and smoking status. Gold curves show model performances for
hepatocellular carcinoma (HCC) with or without chronic liver disease (CLD) cohort vs cirrhosis control
samples. Blue curves show model performances for the HCC samples with CLD cohort vs cirrhosis
control samples. Inclusion of covariates only improved the model performance when restricted to
patients with CLD. Full-size DOI: 10.7717/peerj.12715/fig-4
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DISCUSSION
Current approaches used to screen patients for HCC lack sensitivity, resulting in too many
false negative diagnoses (Daniele et al., 2004; Ayuso et al., 2018). There is a significant need
for improved screening tools for HCC that are also non-invasive and cost-effective.
Making screening tools more widely accessible may result in detection of HCC prior to the
onset of symptoms, which could improve patient outcomes (Singal, Pillai & Tiro, 2014).
The relative stability of miRNA (Fabian, Sonenberg & Filipowicz, 2010), combined with
the non-invasive nature of saliva collection, makes this an attractive option to address
these needs. Liver cirrhosis is the primary risk factor for development of HCC, so
distinguishing patients with HCC from this cohort of high-risk patients serves as a
proof-of-principle for this potential screening approach (Fattovich et al., 2004).

Salivary miRNAs have demonstrated biomarker potential for CLD and cancers, such
as oral cancer, lung cancer, and breast cancer (Zhang et al., 2010, 2012; Elashoff et al.,
2012). However, to our knowledge this is the first study to investigate whether miRNAs
expressed in saliva can distinguish individuals with HCC. miRNA are important cell
signaling molecules affecting functions such as cell proliferation, apoptosis, metastasis, and
many others (Jansson & Lund, 2012). Although, their importance and biomarker potential
are recognized, relatively little is known about specific miRNA functions and targets
(Gebert & MacRae, 2019).

Here, we observed that a large fraction of the miRNAs detected were differentially
expressed in HCC patients vs cirrhosis (365 out of 4,565 detected miRNA), and the
majority of these (78%, N = 283) were significantly down-regulated in patients with HCC
vs cirrhosis (FDR P < 0.05). Importantly, in patients with both CLD and HCC, 248
miRNAs were significantly down-regulated compared to patients with cirrhosis without
HCC—of which 85% were also statistically significantly down-regulated when all HCC
patients were included (Tables S3, S5). This suggests that most of the miRNAs observed
were dysregulated due to the presence of HCC regardless of the presence of CLD. This is
further supported in Fig. 2, where the clustering of miRNAs is driven mostly by HCC
status rather than the presence of CLD. Other studies have reported significant imbalances
between the ratio of upregulated and downregulated salivary miRNAs in gastric cancer
and pancreatic cancer (Machida et al., 2016; Li et al., 2018), and additional research is
needed to determine the mechanism responsible for the downregulation of the miRNAs
observed in this study. Furthermore, the patients with HCC were heterogeneous with
regards to cancer stage, with 13/20 (65%) with very-early or early-stage HCC based on the
Barcelona Clinic Liver Cancer (BCLC) stage of 0 or A. However, significant miRNAs
clustered HCC samples together regardless of stage (Fig. 2) and the predictive model
classified the majority of HCC samples correctly (Table 4) suggesting that the miRNA
changes were detected even in early-stage HCC.

Pathway analysis established that salivary miRNAs differentially expressed in HCC are
known to regulate genes involved in a range of cancer-related pathways, including those
related to breast, and colorectal cancers (Ren et al., 2014; Zheng et al., 2019; Peng et al.,
2020; Fuso et al., 2021; Ye et al., 2021). Furthermore, miRNAs were overrepresented for the
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“early stage solid tumor” pathway (FDR P = 4.59 × 10−8). Many of the salivary miRNAs
detected in this study have been previously implicated in, or identified as potential
biomarkers for, colorectal cancer, HCC, and other cancers. miR-122 has emerged as one of
the most promising biomarkers for HCC and treatment response (Köberle et al., 2013;
Amr et al., 2017). It is estimated that approximately 50% of HCC tumors exhibit
downregulation of miR-122 compared to surrounding tissue (Kutay et al., 2006), and
has also been shown to be reduced in the plasma of HCC patients (Amr et al., 2017).
Here, we found that mir-122 (logFC = −4.88; FDR P = 3.57 × 10−4) and miR-122-5p
(logFC = −4.86; FDR P = 3.57 × 10−4) were expressed with high confidence and
significantly down-regulated in the saliva of HCC patients compared to those with
cirrhosis. Interestingly, studies have shown that the hepatitis C virus (HCV) is dependent
on miR-122 for replication, and that the subsequent sequestration of miR-122 by HCV has
been linked to decreases in circulating miR-122 (Luna et al., 2015). Additional work
will be needed to determine if the sequestration of miR-122 in patients with HCV is
observed in saliva, and if that is driving the findings observed here. Zhou et al., 2016,
previously reported that miR-98 was downregulated in HCC tissue compared to adjacent
normal tissue, and displayed a negative correlation with tumor size, metastasis, and
overall survival through modulation of SALL4. In saliva from patients with HCC, no
detectable changes were observed for miR-98 expression. Other studies have also found
discordance between salivary miRNA levels and their corresponding intra-tumor
expression, although the mechanisms driving these differences are unknown (Fang et al.,
2017; Li et al., 2018). miR-21 has been shown to be significantly upregulated in HCC
tissue and commonly used cell lines, and targets PDCD4 and PTEN, resulting in increased
cell proliferation (Meng et al., 2007; Frankel et al., 2008). Interestingly, although miR-21
has been detected in the saliva of colorectal cancer patients, prostate cancer patients,
esophageal cancer patients, and head and neck cancer patients (Rapado-González et al.,
2018), miR-21 was expressed with high confidence, but not significantly different between
HCC and cirrhosis patients (logFC = 0.06; FDR P = 0.88) (Fig. S2).

The most significant differentially expressed salivary miRNAs were: hsa-mir-3198-2
(logFC = −5.00, FDR P = 6.81 × 10−6), hsa-miR-3198 (logFC = −5.01, logFC = 6.80 × 10−6),
hsa-mir-1246 (logFC = −6.03, FDR P = 7.98 × 10−6), hsa-miR-1246 (logFC = −6.86,
FDR P = 7.98 × 10−6) and hsa-mir-3648-2 (logFC = −7.10, FDR P = 1.24 × 10−5). These
miRNA have been previously associated with HCC and other cancers (Du et al., 2009;
Brunet Vega et al., 2013; Nagpal & Kulshreshtha, 2014; He et al., 2018; You et al., 2018;
Nuoroozi et al., 2021). Expression of hsa-miR-3198 has been implicated in HCC recurrence
(Itami-Matsumoto et al., 2019), epithelial ovarian cancer (Chong et al., 2015), metastatic
colorectal cancer (Xiao et al., 2017) and inhibition of nasopharyngeal carcinoma
proliferation (Yang et al., 2020). Additionally, upregulation of hsa-miR-1246 is linked
with more aggressive HCC (Huang et al., 2020), metastasis of non-small-cell lung cancer
(Kim et al., 2016, p. 12), and chemoresistance in oral carcinomas (Lin et al., 2018).
Previously, the serum expression of miR-1246 has been proposed as a biomarker for both
HCC and early tumor recurrence of HCC (Chuma et al., 2019; Chen et al., 2021).
Expression of hsa-miR-191 in particular has been found to be associated 16 different
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cancers, including HCC (Nagpal & Kulshreshtha, 2014). Based on these findings, the
following miRNAs, miR-122, miR-93, miR-125 and mir-1246 were significantly
differentially expressed in patients with HCC, have prior associations with cancer, have
putative mechanistic roles in HCC, and therefore present opportunities for future studies
in HCC.

Several miRNAs demonstrated discriminatory ability between HCC and cirrhosis,
although they were not always the most significantly differentially expressed miRNAs
(Table 4). The best model was highly accurate in differentiating HCC and CLD
(AUC = 0.87) (Fig. 4B). The addition of demographic and lifestyle variables substantially
improved the accuracy of both models (Fig. 4). Although it is unknown whether this
accuracy can be achieved in larger prospective cohorts, it does indicate that combinations
of salivary miRNAs can successfully discriminate HCC and cirrhosis, warranting
additional investigation.

As with any study, there are limitations that should be considered. The patients with
HCC were all enrolled post-HCC diagnosis and it is not clear whether these miRNAs
would have been detected earlier than with current clinical approaches. The biomarker
potential was evaluated using SVM and leave-one-out cross-validation. However, the
association results and the predictive model need to be validated in a larger, independent
cohort, and ultimately in a prospective cohort, before salivary miRNAs can be considered
clinically actionable. This exploratory pilot study utilized a real-world clinical cohort,
and some patients have received previous treatments, and there were increases in
certain conditions such as ascites, encephalopathy, and thyroid disorders in the cirrhosis
cohort. However, these patient numbers were quite small and we were not powered to
investigate their influence on miRNA expression. This analysis also included precursor
hairpin miRNAs, which require additional processing to form mature miRNAs (Lee et al.,
2008; Annese et al., 2020). Precursor miRNAs have been shown to be dysregulated in
certain cancers (Thomson et al., 2006), although the mechanisms impacting these
precursor miRNAs is not well understood. Furthermore, precursor miRNAs may be less
stable and prone to degradation, making them poor biomarker candidates. However,
studies have identified precursor miRNA configurations that are stable (Krol et al., 2004),
indicating that additional research is needed to determine which precursor miRNAs may
be stable in saliva and are potential biomarker candidates for HCC. However, because
many of the salivary miRNAs detected here have been previously detected in the blood and
tissue of patients with HCC, this lends additional support that many of the dysregulated
salivary miRNAs observed here are indeed specific to the presence of HCC. The most
significant miRNAs appear to cluster individuals based on HCC status rather than the
presence of CLD or BCLC stage (Fig. 2), and the pathway analysis supports that most
dysregulated miRNAs are enriched for cancer pathways. In addition, although we
performed a stratified analysis comparing only patients with CLD, it is still possible
that etiology of cirrhosis impacted miRNA expression. Additional studies with larger
sample sizes will be needed to investigate the impact of cirrhosis etiology on miRNA
expression and biomarker performance.
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CONCLUSIONS
Overall, this study provides the first evidence that salivary miRNAs may serve as useful,
non-invasive biomarkers for HCC. In addition, many of the identified miRNAs in
saliva are concordant with previous findings of miRNAs in both plasma from HCC
patients and HCC tissue. Future work should consider whether salivary miRNAs can help
to improve detection of HCC either alone or in combination of other non-invasive
biospecimens such as breath (Miller-Atkins et al., 2020), or in combination with other-
omics technologies such as metabolomics or proteomics, to develop a more comprehensive
and accurate screening approach for HCC.
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