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Abstract. We have cloned a new mammalian uncon- 
ventional myosin, porcine myosin-VI from the prox- 
imal tubule cell line, LLC-PK~ (CIA). Porcine 
myosin-VI is highly homologous to Drosophila 95F 
myosin heavy chain, and together these two myosins 
comprise a sixth class of myosin motors. Myosin-VI 
exhibits ATP-sensitive actin-binding activities charac- 
teristic of myosins, and it is associated with a 
calmodulin light chain. Within LLC-PK~ cells, 
myosin-VI is soluble and does not associate with the 
major actin-containing domains. Within the kidney, 
however, myosin-VI is associated with sedimentable 
structures and specifically locates to the actin- and 
membrane-rich apical brush border domain of the 

proximal tubule cells. This motor was not enriched 
within the glomerulus, capillaries, or distal tubules. 
Myosin-VI associates with the proximal tubule cyto- 
skeleton in an ATP-sensitive fashion, suggesting that 
this motor is associated with the actin cytoskeleton 
within the proximal tubule cells. Given the difference 
in association of myosin-VI with the apical cytoskele- 
ton between LLC-PK~ cells and adult kidney, it is 
likely that this cell line does not fully differentiate to 
form functional proximal tubule cells. Myosin-VI may 
require the presence of additional elements, only 
found in vivo in proximal tubule cells, to properly lo- 
cate to the apical domain. 

U 
'NCONVENTIONAL myosins have been characterized 

in numerous cell types as players in the actin-depen- 
dent movements of membrane compartments within 

the cell (reviewed in Mooseker, 1993; Pollard et al., 1991). 
To date, nine classes of myosins have been identified (Cheney 
et al., 1993b; Goodson and Spudich, 1993; Bement et al., 
1994a). These classes were separated based on differences 
in their myosin motor domains, but each class also has a 
characteristic and distinct tail domain. It is thought that the 
tail domain is what defines the "cargo" specifically associated 
with each motor. 

We were interested in identifying novel myosins expressed 
within the proximal tubule cells of the kidney. This cell type 
is highly polarized, and it has an actin-rich apical brush bor- 
der. This brush border is similar to that seen in intestinal 
epithelia, and it contains known microvillar components 
such as villin and fimbrin, as well as terminal web proteins 
such as myosin-l] and fodrin (Rodman et al., 1986). The 
proximal tubule is also highly endocytic (Christensen, 
1982). The apical invaginations between the microviUi are 
rich in clathrin, and the subapical region, just below the 
microvilli, is rich in membrane vesicles (Rodman et al., 
1984). We postulated that such an actin- and membrane-rich 
environment would contain multiple unconventional myosin 
species. 
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Using PCR technology, we undertook a characterization 
of the myosin isoforms expressed within the proximal tubule 
cells (Bement et al., 1994a). As a model for the proximal tu- 
bule, we used the porcine kidney cell line, LLC-PK~, clone 
4 (Hull et al., 1976). This cell line, upon cell-cell contact, 
differentiates to form a polarized monolayer with an apical 
brush border. This apical membrane contains a number of 
enzymes and sugar transport systems characteristic of the 
proximal tubule, and as a result, this cell line has been used 
extensively as a proximal tubule model (reviewed in Han- 
dler, 1986). RNA isolated from differentiating LLC-PK~ 
cells was reverse transcribed and amplified by PCR using de- 
generate primers directed against highly conserved regions 
of the myosin motor domain. As a result of this PCR screen, 
nine different myosin-like clones were identified (Bement et 
al., 1994a). These clones included two conventional myosins- 
11, consistent with the observation that myosin-II is ex- 
pressed within the terminal web of the LLC-PK~ cell 
(Temm-Grove et al., 1992). The remaining unconventional 
myosin clones included members from five different myosin 
classes. Here, we characterize one of these myosin clones, 
an unconventional myosin called porcine myosin-VI. 

The Drosophila 95F myosin heavy chain (MHC) ~ protein 
was the first example ofa myosin-VI class motor (95F MHC; 
Kellerman and Miller, 1992). This protein was identified as 
a 140-kD component of fly embryo extracts that bound to 

1. Abbreviation used in this paper: MHC, myosin heavy chain. 
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F-actin affinity columns (Miller et al., 1989). Upon cloning 
and sequencing, it was found that this protein had an NH2- 
terminal domain homologous to other known myosins. The 
tail domain of 95F MHC is unique, however, and it is alter- 
natively spliced to yield motors with three related tail 
domains. Immunofluorescence localization of 95F MHC 
showed a punctate pattern throughout the cytoplasm of the 
fly embryo at all stages. It was proposed that 95F MHC 
served a function in actin-based vesicular movements within 
the developing fly. 

We have cloned and characterized a mammalian homo- 
logue to 95F MHC. Porcine myosin-VI is a ubiquitous ATP- 
sensitive actin-binding protein associated with a calmodulin 
light chain. Within LLC-PK~ cells, myosin-VI is soluble 
and does not associate with actin. Within the kidney, how- 
ever, myosin-VI specifically locates to the actin-rich ~ind 
membrane-rich apical brush border domain of the proximal 
tubule cells. 

Materials and Methods 

Cell Culture 
LLC-PKI (clone 4) cells were generously provided by Dr. C. Slayman 
(Yale Medical School). The cells were maintained at subconfluence in 
~-MEM media (GIBCO-BRL, Gaithersburg, MD) supplemented with 10% 
fetal calf serum, 2% glutamine, and 100 U penicillin-streptomycin- 
fungizone (JRH Biosciences, Lenexa, KS). For immunofluorescence ex- 
periments, the cells were split onto acid-washed coverslips 1 or 13 d before 
use. 

Cloning and Sequencing of Myosin-VI 
A 130-bp PCR product identified as a putative LLC-PKt myosin clone 
(GenBank accession no. L29132; Bement et al., 1994a) was 32P-labeled 
and used to screen a hZAP eDNA library prepared from LLC-PKt cells 
(provided by Dr. Robert Reilly, Yale Medical School; Haggerty et al., 
1988). This screen yielded 14 overlapping partial cDNAs. Two of these 
eDNAs, 3B and 6C, were subcloned and sequenced yielding nucleotides 17- 
2920 of the myosin-VI eDNA. To isolate the 5' sequence, nested oligonucle- 
otides primers antisense to nucleotides 135-154 (primer H1) and 273-290 
(primer H2) were created. Using the eDNA library as a substrate, PCR 
reactions were undertaken pairing primer H2 with sense primers to the T3 
or T7 promoters that flank the insert site. The products from this amplifica- 
tion were tested by PCR using primer HI and the appropriate flanking 
primer. In this manner, a PCR product representing nucleotides (-12)-290 
was isolated, and, once cloned, was used to screen the LLC-PKt hZAP li- 
brary to isolate the larger eDNA clone. Five new clones containing addi- 
tional 5' sequence were isolated, and one clone, no. 23, was subeloned and 
sequenced, yielding the first 120 nt of the myosin-VI eDNA. To isolate 3' 
sequence, the 3' proximal Nsi-R1 fragment from clone 3B was used to 
reprobe the same XZAP eDNA library. 87 positive clones were isolated, 
and one clone, no. 79, was subcloned and sequenced, eDNA no. 79 over- 
lapped with clones 3B and 6C and provided nucleotides 2921-4504 of the 
total eDNA. In all cases, plasmid DNA was isolated as described by Au- 
subel et al. (1989) and sequenced with the 7-deaza Sequenase version 2.0 
kit (United States Biochemical Corp., Cleveland, OH) as recommended by 
the supplier. Both strands of the entire eDNA were sequenced. DNA se- 
quence was entered into the computer using the DNA Inspector IIe program 
(Texlco, Inc., West Lebanon, NH). Comparisons were done using the 
Bestfit program from the Wisconsin Package (Devereaux et al., 1984). 

Antibody Production 
A 430-bp KpnI-NcoI fragment (nt 314%3800) encoding the novel COOH- 
terminal tail of myosin-VI was filled in with T4 DNA polymerase and cloned 
into SmaI cut pGEX2-T (Amrad Corporation, Melbourne, Australia). This 
clone was grown in XL1-Blue bacteria, and upon induction with 0.2 mM 
isopropyl-/~-o-thiogalactopyranoside, produced a 4%kD glutathione-S- 
transferase-myosin-VI tail fusion protein. This fusion protein was soluble, 
and it was purified as described by Smith and Johnson (1988) using a 

glutathione-Sepharose column. The purified protein was concentrated and 
injected into rabbits. To affinity purify the rabbit serum, the same KpnI- 
Ncol fragment was cloned into pQE30 (QIAGEN Inc., Chatsworth, CA). 
The resultant His-tagged myosin-VI tail fusions were insoluble, and they 
were purified as described by the manufacturer over a niekel-Sepharose 
column (QIAGEN Inc.). The His-tagged myosin-VI fusions were dialyzed 
into borate buffer and coupled to cyanogen bromide-activated Sepharose 
(Pharmacia LKB Biotechnology Inc., Piseataway, NJ) as described by the 
manufacturer. Rabbit serum was diluted twofold with phosphate-buffered 
saline and applied to the myosin-VI tail affinity column. Bound antibody 
was eluted with low pH, and was dialyzed into PBS. Affinity-purified anti- 
body was stabilized by the addition of bovine serum albumin (fraction V) 
to 0.1 /~g/ml and sodium azide to 0.02 %. 

Northern Blots 
Total RNA was isolated from LLC-PKI (clone 4) 4 d after confluence 
using the guanidinium lysis-CsCl gradient purification technique (Ausubel 
et al., 1989). 10 ttg RNA was loaded per lane on formaldehyde agarose gels 
and blotted onto Nytran membrane (Sehleicher & SchueU, Inc., Keene, 
NH) as described in Ausubel et al. (1989). Strips were hybridized using 
32P-labeled restriction DNA fragments prepared using a random priming 
kit (Boehringer Mannheim Biochemicals, Indianapolis, IN). The "head" 
probe used for Northern analysis was a 900-bp ClaI-SacI fragment encom- 
passing the 5' end of the eDNA. Identical results were obtained using a 130- 
bp fragment encompassing just the 5' untranslated sequence and a 130-bp 
head fragment, underlined in Fig. 1, which was initially isolated by PCR 
encoding the ATP-binding site. The "tail" probe used for Northern analysis 
was a 575-bp SacI fragment encompassing the COOH-terminal 156 aa of 
myosin-VI. 

Protein Blots 
A freshly slaughtered pig was purchased from a local abattoir, dissected, 
and its tissues were frozen immediately in liquid nitrogen. Tissues were dis- 
rupted using a dounce homogenizer in 0.1 g/2 ml homogenization buffer (10 
mM imidazole, pH 6.9, 4 mM K-EDTA, I mM K-EGTA, 0.02% sodium 
azide, 0.2 mM PMSE 5 #g/ml aprotinin, 5 ~g/ml pepstatin, 4.5/~g/rnl 
chymostatin, and 5 #g/ml leupeptin), and they were denatured by the addi- 
tion of 0.25 vol boiling SDS sample buffer. Boiled samples were stored at 
-70°C for later use. Purified chick brain myosin-V and chicken brush bor- 
der myosin-II were purified by established methods (Mooseker et al., 1978; 
Cheney et al., 1993a). Protein samples were separated by electrophoresis 
through 5-15% SDS-PAGE gels and immunoblotted as described by Car- 
boni et al. (1988). Anti-ealmodulin blots were undertaken as described in 
Sacks et al. (1991). Antibodies were diluted as follows: Affinity-purified 
rabbit anti-myosin-Vl was used at a concentration of 1 #g/ml as a primary 
antibody, monoclonal anti-calmodulin antibody (Upstate Biotechnoiogy 
Inc., Lake Placid, NY) was used at a concentration of 0.5 #g/ml, rabbit 
anti-human platelet myosin-II (Biomedical Technologies, Inc., Stoughton, 
MA) antibody was used at a dilution of 1:100, and mouse monoclonal 
anti-chicken brush border myosin-I (clone CX-I), which reacts with many 
vertebrate myosins-I by immunoblot, was used as undiluted culture super- 
natant (Carboni et al., 1988). 

SubceUular Fractionation 
Confluent LLC-PKz cells were washed with PBS before scraping into 
buffer A (10 mM imidazole, pH 7.2, 75 mM KC1, 5 mM MgCI2, 0.2 mM 
DTT, 1 mM K-EGTA, 0.2 mM PMSF, 5 #g/ml aprotinin, and 1 mM Pefa- 
bloc SC) (Boehringer Mannheim Biochemieals) in the presence or absence 
of 10 mM ATP. Cells were disrupted by 70-80 strokes with a glass dounce 
(Wheaton Scientific, Millville, NJ). Pour mouse kidneys were homogenized 
in 40 ml buffer A + ATP using an Omnimixer at half power for 30 s. After 
the initial homogenization, the whole cell lysate was spun at 480 g for 10 
min, generating the low speed samples. The resultant supernatant was fur- 
ther spun at 12,000 g for 20 min, generating the high speed samples. The 
high speed supernatant was spun a final time at 100,000 g for 60 min to yield 
the ultra speed samples. Pellets were brought up to stoichiometric volume 
with the appropriate buffer, and portions of all samples were mixed with 
0.25 vol boiling sample buffer before gel electrophoresis. The BCA assay 
was used to quantitate the protein concentration of homogenized fractions, 
as described by the manufacturer (Pierce Chemical Co., Rockford, IL). The 
relative concentration of myosin-VI was determined by comparing the im- 
munoreactive bands observed from protein blots of the homogenized cells 
and known concentrations of purified myosin-VI tail fusion protein. 
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A 
-102 C TTATTTGC CC TG TGGTGTGG TGATGA TC AC AG ATGTCTAATFI~ CC CTTGCCTGCCATTGAGTTTACC GAGC TGGGAGATAGT~GATAAC TCACTTCCAAAATGGA GGATGGAAAACCCG~ACACCC T A ~  ~ ~T 48 

M E D G K P V W A P H P T D G F 16 

49 CAGGTGGGCAATATCGTGGATATTGCCCCTGACAGCTTAACAATTGAAC~CTGAAcCAAAAAGGCAAGACc~"VVV~~~G~~GAT~A~ATG 198 
17 Q V G N I V D I G P D S L T I E P L N Q K G K T F L A L I N Q V F P A E E D S K K D V E D N C S L M 66 

199 TAT~AA ATGAAG CC AC AC TC CTCCATAATA TCAAAG~TCGATAC AGTAAAGACAGAAT~ATACATATG~CAACATI~TI~,ATTGCCGT~AACC CATAC~ CA~'f CC ~ T ~ A C ~ ~ T ~ G  ~ A C ~  348 
67 Y L N E A T L L H N I K V R Y S K D R I Y T Y V A N I b I A V N P Y F D I P K I Y S S E T I K S Y Q 116 

349 GGAAAATCTCTTGGGAC CA TGCCAC CTCA TGTC T!~CAATTGCTGATAAGGC~CGAGACATGAAGG~TCAAGC~AGTCAG~CTATCAT~ TATCTG~ ~A~ ~ A G ~ C ~ ~ A G A  498 
117 G K S L G T M P P H V F A I A D K A F R D M K V L K L S Q S I I V S G E S G A G K T E N T K F V t ~ 166 

499 TATCTGACTc~AAT~TATGGAA~GGTCAAGATAT~GATc'ATA~AA~TG~fT~A~cTAAC~cA~TA~&~~~T~AG~~AG~TACA~T~ 648 
167 Y L T E S Y G T G Q D I D D R I V E A N P L L E A F G N A K T V R N N N S S R F G K F V E I H F N E 216 

649 AAGAG ~TCAG~TTGGAGGA'~TC TCACATTAI~C~TCTAGAGAAATCTAGGAT~%~GTGq~fCAAGC~AAAGAGGAAA~A~TA~ ~ A T A ~ ~  ~ T A ~ A ~ G A C ~ A G C  798 
217 K S S V V G G F V S H Y b L E K S R I C V Q G K E E R N Y H I F Y R L C A G A S E D I R E R L H L $ 266 

799 TCC CCAG ATAAI~'I~f CGGTAT~AAAC CGGG GC TGCACTCGATAT'FI~ CTAACAAGGAAACTC~ CAAA C A G A T I ~ A C A G ~ ~ C ~ A G ~ ~  ~ ~ A C ~  ~ C 948 
267 S P D N F R Y L N R G C T R Y F A N K E T D K Q I L Q N R K S P E Y L K A G S L K D P L L D D H G D 316 

949 T~ATTA GAATGTGTAC AGCCATGAAA~TC GGTTTGGATGATGAAGAAAAGC TCGATCTGTTCC GGGTAGTA~ ~ T A ~ T A ~ ~ G ~ A C  ~ ~ C ~ T  1098 
317 F. I R M C T A M K K I G L D D E E K L D L F R V V A G V L H L G N I D F E E A G S T S G G C N L K N 366 

1099 AAA TCTA CTCAGGCA "FI~,GAA TATTGTGCAGAA~AATTACTG~ATCAAGAC GATCTTCGT~TAAG~"~TAAC ~ G A G ~ A ~ T ~ C ~ ~ C A G ~ A T ~ ~ A ~  1248 
367 K S T Q A L E Y C A E K L L G L D Q D D L R V S L T T R V M L T T A G G A K G T V I K V P ~ K V E Q 416 

1249 GCA AACA ATGC CC GGGATGCC TTGGCAAA GA C T G T C T A T A G C C A T C ~ T C A T G T A G T G A A C A G A ~ ~ ~ C ~ A ~ A ~ A G ~  ~ A C A ~ ~ A C ~ T  1398 
417 A N N A R D A L A g T V Y S H L F D H V V N R V N Q C F P F E T S S Y F I G V L D I A G F E Y F E H 466 

1399 AACAGTIqTGAACAATI~TGCATCAACTATTGCAATGAAAAACTTCAACAG~FL~L~L~rAATGA~AGGATTCTGAAGGAGGAA~AT~G~A~G~AC~T~A~ATA 1548 
467 N S F E Q F C I N Y C N E K L Q Q F F N Z R I L K E E Q E L Y Q K E G L G V N E V H ¥ V D N Q D C I 516 

1549 GAT~AA ~TGAAGCAAGATTA GTGGGAATAC TGGA TATTCTGGATGAAGAAAATCGC CT~ ~ C ~ G ~ A ~ C A C ~  ~ A C ~ G ~  ~ A ~  ~ A ~ A G ~ T ~  1698 
517 D L I E A R b V G I L D I L D E E N R L P Q P S D Q H F T S A G H Q K H K D H F R L S I P R K S K ~ 566 

1699 GCAATCCATAGGAACATAGCA TATGAC GAAGGT~CATTATCAGG CATI~AGGGGCAGTI~TGCTATGAAACTACTCAG~TCGTC~T~ATAT~G~ ~ T A ~ A ~ T ~  1848 
567 A I H R N I A ¥ D E G F I I R H F A G A V C Y E T T Q F V E K N N D A L H M S ~ E S L I C E S R D K 616 

1849 TTC ATCCGGG~TTA%"FfGAATC ATCCACAAATAACAACA~GATACTA~ CA~GCAC~C TTAGCT'DCATCAGTGTGC, G A A A ~ G ~ C A C A G ~ ~ T ~ C  ~ A C ~ ~  1998 
617 F I R E L F E S S T N N N K D T X Q K A G K L S F I S V G N K F K T Q L )~ L L b D K I. R S T O A S F 666 

1999 A~rf CG~GTATCAAACC TAAT~AAAGATGA CAAGCCAC CA CT~GAAGGTGC TCAGA~TI~TCTCAA C ' ~ T A ~ L - I - i - I ~ A ~ A G ~ ~ A C ~ A ~ G ~ C  2148 
667 I R C I K P N L K M T S H H F E G A Q I 5 S Q L Q C S G M V S V L D L M Q G G F P S R A S F H E V Y 716 

2149 AACATGTATAA GAAGTC TCTGCC GGATAAGC TTGCAAGA~TAGACCCAAGA CTAT~TAAGGC~ ~ CC ~ ~ A C T A ~ G ~ ~ A ~ A ~ C  ~ G ~  ~ 2298 
717 N M Y K K S 5 P D K L A R L D P R L F C K A L F K A L G L N g I D Y K F G L T K V F F R P G K F A E 766 

2299 T~GATCAGATTA TGAA GTCCGACCC'fGACCAC "FFAGCAGA GCTGGTTAAGAGAGTCAATCACTGGC~TATCT~A~ ~ G ~ ~ ~ ~ C ~ T A ~  2448 
767 F DQ I M K S  DP DH LA E L V K  R V N H W L  IC S R W K K V Q W C S  L S V I  KL K N K I  KY R A E  816 

2449 GCC TGCATTAAAA TGCAGAAAACTA~TCGAATG TGGC TI'DG CAAAAGGAGACACAAACCTCGC ATTGAC~CC~~ACAC ~ ~ C ~ G ~ ~ G A ~ I  2598 
817 A C I K M Q K T I R M W 5 C K R R H K P R I D h V K v G T L K g R 5 D K F N E V V S A L K D G K 866 

2599 ~ GAAA1~AGTA~CAGGTCAAGGACCTTGA~TCTCTA~C~GCTTTAATGGCCA~TTAAGTCTACTA~AC~C~AG~G~TA~A~A~G~~AG~ACAG~ 2748 
867 J E M S K Q V K D L E I S I D A L M A K I K S T M M T R E Q I Q K E Y D A L V K S S A V L L S A L Q K ~ 916 

I I 
2749 1 AAGAAGCAGCAAGAAGAGGAAGCAGAAAGGC TGAGGC GTAT~ AAGAAGAAATGGAAAA G G ~ G ~ G A C ~ G ~ C ~ A ~ A ~ G ~ C ~ ~  ~ 2898 
917 K K Q Q E E E A E R L R R I Q E E M E K E R K R R E E D E Q R R R K E E E E R R M K L E M E A K R 966 

2899 I CAAGAAGAAGAAGAGAGAAAGAA~GGGAAGATGAT~A~CGTAT~AGGCTGAGG~AGGCGCAGCTGGC~CGACAGt~GGA~G~A~A~AG~A~AG~~~1 3048 
967 Q E E E E R K K R E D D E K R I Q A E V E A Q L A R Q R E E E S Q Q Q A V L E Q E R R D R E t A n 1016 

3049 1 ATTGCCCAGAGCGAGGCAGAGCTCATCAGTGACGAGGCGCAGGCCGAICC~GCTGCGCAGAGGCC~TA~GCCA~~AC~G~TA~AGT~TA~CTA~ATACC 3198 
1017 I A Q S E A E L I S D E A Q A D P G L R R G P k V Q A T X A A k G T K K Y D L $ K W K Y k E ~ R D T 1066 

3199 A TCAA TAC~'f GTGATA ~'fGAGCTC C~CA GC TTGCAGAGAAGAAT~ TAGGAGACTAAAAG~GTA~A~CC~C~GA~TAC~CAGA~C~ ~ ~ A ~ A ~ T  3348 
1067 I N T S C D I E L L A A C R E E F H R R 5 K V Y H A W K S K N K K R N T E T E Q R A P K S V T D Y A 1116 

3349 CAGCA GAACCCAGCAG~AGCTCC CTGC CAGGCAGCAGGAGA TC GAAATGAACC GGCA G C A G C G T I ' r C ~ A ~ C G ~  ~AC ~ A C ~ G A C ~ A ~ G ~  ~ ~ A ~  CCA~ 3498 
1117 Q Q N P A v Q L P A R Q Q E I E M N R Q Q R F F R I P F I R S A D Q ¥ K D P Q N K K K G W W Y A H F 1166 

3499 GATGGAC CGTGGA TC GCCC GGCAAATGGAAC~TCA TC CTGACAAA CCAC CCATCCTCCTTGTGGC TC, G T A A G G A T G A ~ ~ A ~ T ~  ~ ~AC ~ ~ ~ ~  ~ 3648 
1167 D G P W I A R Q M E L H P D K P P I L L V A G K D D M E M C E t N L E E T G L T R K R G A E I L P R 1216 

3649 C AGTTCGAA GAAA%~fTGGGAACGCTGTGGAGGCATCCAG TATCTq~-AGAATGCAA'F~GACs%C~AGACAGGC TAGG~ ~ A C ~ A T ~ C  ~ A G ~ C C  ~ A ~  ~ ~G 5798 
1217 Q F E E ~ W E R C G G ~ Q Y L Q N A ~ E S R Q A R P T Y A T k M b Q N L L K * 1254 

3799 C CATC~ACTGGGTAGC, GAGTGT~ C C C A G A C A T T C ~ A C C C A T T ~ A G G A ~ C C A G T T A G A G T T A T G ~ C A ~ A ~ A ~ - ~ u - ~ ~ A C A G ~ ~  ~ A  ~948 
3949 G~TCTTGTATCCAGCTATAACTGTTGAACCTCTCATGATTTTAATACTTG~TACA~TGGGCAGATTCTGAACCA~~C ~ C ~ A ~ A C ~ A ~ G ~  4098 
4099 TGCAGATTT~-~"~'~'~AA GAATC, ACACAGTAC CATATAAC~C, GAATAAAGAAAACTTAGT~-~'*-~CTACAAAACTAAGG~~AC~A~A~ ~A~A~-~'~-~'~-*~ A 4248 
4249 GAAATTAATGGCATITCcGTCAAAGGTAGAAA~*-~i~i~i~A~L"~*-~CTCACTCTTTTGCAGTGTTTTATTTGAGTAAAGCAATTTA~C~~G~T~A~AC~G~T 4398 
4399 AGTATCCTGCAGAGATGTGTTTTGGTTTTCTGT~ACATrGTATTGCTGTAAGAATATGTTTCATGGACAAATAAAGGAAA~A~ 4504 

B 
SN SI45 S N 

I I  III I 
1 kb 

Figure 1. eDNA sequencing of porcine myosin-VI. (A) Nucleotide and deduced amino acid sequence of the porcine myosin-VI cDNA. 
Nucleotides are numbered relative to the start of the initiation codon. Below the sequence, the deduced amino acid sequence is shown 
starting from the initiator methionine. The TAG stop codon is indicated by an asterisk. A possible polyadenylylation signal is located at 
nt 4463 (AATAAA). The original PCR product used to clone the myosin-VI eDNA is underlined (GenBank accession no. L29132). This 
PCR product was obtained using degenerate primers encoding the conserved GESGAGKT and EAFGNAKT motifs (Bement et al., 1994a). 
The amino acids predicted to form a coiled-coil region are boxed (Lupas et al., 1991). The total sequence data are available from 
EMBL/GenBank/DDBJ under accession number Z35331. (B) Schematic representation of the myosin-VI eDNA. Constructed from over- 
lapping clones nos. 23, 3B, 6C, and 79 (see Materials and Methods), this schematic shows the restriction sites used in this study. The 
open reading frame is denoted by a heavier line. K, KpnI; N, NcoI; S, SacI. 
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D Figure 2. Similarities between 
porcine myosin-VI and other 
myosin heavy chains. (A) 
Schematic of the predicted 

Pig M-VI i035 LRRGPAVQATKAAAGTKKYDLSKWKYAELRDTINTSCDIELLAACREEFH 
structure of class VI myosins. 

I I ' . . ' . I  . . 1  I . . l l l l l l l l l . l l l l . l l l l l l l l l l . l l [ ' [ l l  
The stippled box represents 

Dro 95f 1045 LIRSENLRAQQQALGKQKYDLSKWKYSELRDAINTSCDIELLEACRQEFH 
the '~750 aa homologous to 

Pig M-VI 1085 RRLKVYHAWKSKNKKRNT. ETEQRAPKSVTDYAQQNPAVQLPARQQEIEM other myosin motors (HEAD). 
The light chain binding or 

I I I I I I I I I l . l l : l l . I  : . : : 1 1 1 . 1 1  : I . . 1 : :  I 111 : 
neck domain is divided into Dro 95f 1095 RRLKVYHAWKAKNRKRTTMDENERAPPSVMEAAFKQPPLVQPI..QEI.V 
the "50-aa" linker domain and 

Pig M-VI 1134 NRQQRFFRIPFIRSADQYKDPQNKKKGWWYAHFDGPWIARQMELHPDKPP the "IQ" motif. The tail por- 
I ' 1 " 1  I I I 1"1o . . [ : [ . t : l : [ I  I I I I I . I  t l  II II I1 :1  I I I  tion is divided into a coiled- 

Dro 95 f 1142 TAQHRYFRIPFMRA .... NAPDNTKRGLWYAHFDGQWIARQMELHADKPP coil (CC) domain, marked by 
a zig-zag-filled box and a 

Pig M-VI 1184 ILLVAGKDDMEMCELNLEETGLTRKRGAEILPRQFEEIWERCGGIQYLQN unique globular region (TA/L). 
(B) Alignment of myosin-VI l l l l t l . l l l ' l l l l . l l l l l l l l l l l l l [ I . : : l :  I l l  II  . I  

Dro 95 f 1188 ILLVAGTDDMQMCELSLEETGLTRKRGAEILEHEFNREWERNGGKAYKNL motor domains to the motor 
domains ofmyosins-I, -If, and 

pig M-VI 1234 AIESRQARPTYATAMLQN 1251 -V. Using the Pileup and Pretty 
: • I : 1 .  : .  I : 1 .  programs of the Wisconsin 

Dro 95f 1238 G . . . .  AAKPNGPAAAMQK 1251 package (Devereaux et al., 
1984), the head sequence of 

porcine myosin-VI (Pig M-VI) is compared to the head sequences of Drosophila myosin-VI 95F MHC (Dro 95F; Kellerman and Miller, 
1992), bovine brush border myosin-I (Boy BBMI; Hoshimaru and Nakanishi, 1987), mouse dilute myosin-V (Mus M-~, Mercer et al., 
1991), and chicken pectoralis muscle myosin-II (ChkM-ll; Malta et al., 1991). Below the alignment is a consensus sequence. In this con- 
sensus, capital letters indicate identity in two or more myosins. Alignments begin with the first amino acid of the protein sequence of chicken 
muscle M-II to allow comparison with the three-dimensional structure of this motor (Rayment et al., 1993b). The end of the head was 
defined as the last consensus sequence before the light chain binding motifs, TKVFFR. Above the alignment, the conserved ATP-binding 
and actin-binding sites are marked (Walker et al., 1982; Warrick and Spudich, 1987). The sequence phosphorylated in amoeboid myosins 
is boxed (Brzeska et al., 1989). (C) Comparison of the location of light chain binding motifs between myosins-VI and myosins-I, -II, and 
-V. Beginning with the final head consensus sequence TKVFFR, sequences for myosins-I, -II, and -V were aligned to allow for colocation 
of the light chain binding motifs as defined by Cheney and Mooseker (1992) and detailed by the three-dimensional structure of chicken 
skeletal M-H S1 fragment (Rayment et al., 1993b). These IQ motifs are boxed. The precise amino acid numbers are shown to the left 
of each line. Above this alignment, the amino acid sequence of porcine myosin-VI and Drosophila 95F MHC are shown for comparison. 
These myosins-VI harbor only a single "IQ" motif ,,o50 aa downstream from the end of the head (boxed). Alignment algorithms pair this 
single motif with the third IQ motif of myosins-I and -V by introducing gaps in the myosin-VI sequence, but it is equally related to all 
light chain binding motifs (not shown). (D) Alignment of the tail domains of porcine myosin-VI and Drosophila 95F MHC. Tail sequences 
beginning with the first amino acids following the predicted coiled-coil domain were compared using the Bestfit program from the Wisconsin 
package. Precise amino acid numbers are shown to the left of each line. Within the alignment, a dash indicates identity while dots indicate 
degree of similarity. 

Immunoprecipitations 

The ultra speed supernatant from the LLC-PKI cell homogenization was 
used as the source of myosin-VI for these experiments. Before use, the ex- 
tract was precleared by incubation with protein A-Sepharos¢ CL-4B beads 
(Pharmacia LKB Biochemicals; reconstituted in buffer A) for I h at 4°C. 
Approximately 200/~1 of this cleared extract was mixed with 20/~g of 
affinity-purified rabbit anti-myosin-IV antibody, and it was allowed to mix 
overnight at 4°C. 3 nag protein A-Sepharose beads was added to the mix 
for 1 h, and the beads were washed three times with buffer A before 
resuspending the pellet in sample buffer and boiling. 

Cosedimentation Assays 

The ultra speed supernatant from the homogenization of LLC-PKI cells in 
buffer A was concentrated fivefold using a Centricon-30 microconcentrator 
(Amicon Inc., Beverly, MA) before use in actin-binding assays. F-actin (6 
/zM) was added to aliquots in either the presence or the absence of 10 mM 
ATE and was allowed to incubate at room temperature for 20 rain before 
being spun at 100,000 g for 20 min. F-actin alone controls were included. 
Pellets and supernatants were collected, brought up to equivalent volumes, 
and processed for gel electrophoresis. 

Indirect Immunofluorescence of Cultured Cells 

Coverslip-grown LLC-PKI cells were processed for indirect immunofluo- 
rescence in six-well plates essentially as described by Bement et al. (1993). 
Briefly, cells were washed twice with 37°C PBS before fixation for 30 rain 

in room temperature 4% paraformaldelyde in PBS/50 mM EGTA. Cells 
were permeabilized by dipping in -20oc acetone, then rchydrated in PBS- 
EGTA. Cells were then rinsed in PBS-EGTA/I% BSA and blocked for 20 
min in PBS-EGTA/10% BSA before incubations with antibodies. Aflinity- 
purified rabbit anti-myosin-VI was used at a concentration of 10-40 #g/mi. 
Fluorescein-phalloidin was used at a concentration of 120 nM (Molecular 
Probes, Inc., Eugene, OR) and added with the rhodamine-conjugated goat 
anti-rabbit secondary antibody. Fluorescence images of subconfluent LLC- 
PKt cells were obtained as described by Forscher and Smith (1988). Imag- 
ing of confluent cells was done using a laser scanning confocal microscope 
(MRC600; Bio Rad Labs, Hercules, CA). 

lmmunohistochemistry 

Mouse kidney was dissected, minced, and fixed for 5 rain on ice in 4% 
formaldehyde in PBSIEGTA. Tissue was rinsed in PBS-EGTA, quenched 
for 10 min in 0.05% sodium borohydride, rinsed, and then cryoprotected 
in 1 M sucrose before embedding in OCT media (Miles Inc., Elkhart, IN) 
and freezing in liquid nitrogen-cooled isopentane. 4-/tin frozen sections 
were cut and applied to slides coated with Vectabond (Vector Labs, Burlin- 
game, CA) and stored at -20°C until used. The OCT was removed by im- 
mersing slides in -20°C acetone, and rehydrated in water. Anti-myosin-VI 
antibody was added at a concentration of 10/~g/ml in PBS-EGTA with 0.1% 
BSA for 20 min. Nonimmune IgG was used as a negative control. After anti- 
body incubation, the slide was washed three times in PBS-EGTA, and the 
FITC-conjugated secondary and rhodamine phalloidin were applied for 20 
rain. Slides were again washed and then observed with a light microscope 
equipped for epifluorescence (Carl Zeiss, Inc., Thornwvod, NY). 
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Results 

Pig Myosin-VI Is Highly Homologous to Drosophila 
95F MHC 
To initiate our study of the multiple unconventional myosins 
expressed by LLC-PK~ cells, one of the DNA fragments 
identified by PCR as a putative myosin (Bement et al., 
1994a) was used to screen a XZAP cDNA library. After hy- 
bridization screenings, a cDNA of 4.6 kb was compiled (Fig. 
1). The sequence revealed an open reading frame encoding 
a protein of 1,254 amino acids (144.7 kD; Fig. 1). 

Sequence comparison of this open reading frame to other 
known myosins indicated that it did, in fact, encode a 
myosin-like protein with an NH2-terminal motor domain 
similar to other myosin heads (Fig. 2, A and B). In particu- 
lar, this gene product was found to be 70.9% similar to the 
unconventional myosin, Drosophila 95F MHC (Kellerman 
and Miller, 1992). Phylogenetic analysis indicated that these 
myosins together, formed the sixth class of myosin to be 
identified to date (Cheney et al., 1993b), and for this reason 
we named this LLC-PKrderived myosin, porcine myo- 
sin-VI. 

Porcine myosin-VI harbors characteristic ATP-binding 
(GESGAGKT, aa 151-158; Walker et al., 1982) and actin- 
binding motifs (FIRCIKPN, aa 666-673; Warrick and 
Spudich, 1987), and it shares many conserved residues with 
other myosin classes along the entire length of its motor do- 
main (Fig. 2 B). The motor or head domains of the pig and 
fly myosin-VI are most highly related, being 73.2% similar 
and 56.1% identical, while pig myosin-VI is '~53-62% simi- 
lar and 27-39% identical to myosins of other classes. Class 
VI myosins share a 25-aa insert in the myosin head domain 
not seen in other classes of myosins (pig myosin-VI aa 316- 
329). By comparison with the three-dimensional structure of 
chicken muscle myosin-II S1 subfragment (Rayment et al., 
1993b), this insert may add to a surface random coil on the 
myosin head. 

After the myosin-VI motor domain, a neck portion con- 
taining a single light chain binding site (or IQ motif) is found 
(boxed in Fig. 2 C). All of the known myosins contain at least 
one light chain binding sequence (Cheney and Mooseker, 
1992), but the position of the myosin-VI IQ motif is unique. 
In all other myosins described to date, the light chain binding 
site is found immediately distal to the end of the myosin 
head. Instead, both myosins-VI have an '~50-aa linker be- 
tween the motor domain and the single IQ motif (compare 
locations of light chain binding motifs in myosins-I, -II, and 
-V to myosins-VI in Fig. 2 C). No putative calmodulin light 
chain binding motifs are found within this 50-aa domain, al- 
though this region is rich in aromatic and basic residues, as 
is seen with other light chain binding sequences. 

Both myosin-VI proteins have predicted coiled-coil re- 
gions at the proximal part of the tail as judged by the protein 
folding program of Lupas et al. (1991) (boxed in Fig. 1), al- 
though pig myosin-VI has a larger coiled-coil component. 
Of the entire myosin-VI molecule, the most highly conserved 
region between fly and pig is the distal portion of the tall, 
being 63.6 % identical and 76.2 % similar in this region (Fig. 
2 D). This tail portion does not have any homology to any 
other protein in the database. Interestingly, the unique tail 
domain is more highly conserved between pig and fly than 
the motor domain. 

Myosin-VI Is Ubiquitously Expressed 
Northern analysis indicated that the porcine myosin-VI gene 
had a message size of 6.0 kb (Fig. 3 A). This was unexpected 
because the 4.6-kb cDNA appeared to encode the entire 
myosin-VI coding sequence; porcine myosin-VI was homolo- 
gous with Drosophila 95F MHC along its entire length, in- 
cluding the position of the initiator methionine, cDNA 
probes from the 5' untranslated sequence, the head domain, 
and the tail domain all recognized a 6.0-kb mRNA by North- 
ern blot (Fig. 3 A and data not shown). We sequenced two 
different overlapping clones that contained portions of the 5' 
untranslated region of porcine myosin-VI and, because of 
this, we are confident that the open reading frame does not 
continue 5' of the initiator methionine indicated in Fig. 1. 
There are stop codons in all frames upstream of this ATG. 
The nucleotide sequence around this initiation codon (CCA- 
AAATGG) is consistent with the eukaryotic start site con- 
sensus sequence (CC A/GCCATGG; Kozak, 1984), unlike 
the other ATG sequences within the untranslated sequence. 
Furthermore, as described below, the observed molecu- 
lar weight of myosin-VI is similar to its predicted size of 
144.7 kD. 

Figure 3. Expression of porcine myosin-VI in LLC-PKI cells. (A) 
Northern blot analysis using head and tail myosin-VI probes. In- 
dividual lanes containing LLC-PKI cell RNA were probed with 
either a 32p-labeled, 900-bp NH2-terminal SacI fragment (HD) or 
a 575-bp COOH-terminal SacI fragment (TALL) or a mixture of 
both (M/X). All hybridizations detected a single 6-kb mRNA. The 
positions of molecular weight markers are shown to the left. (B) 
Immunoblot showing specificity of myosin-specific antibodies. 
Whole-cell protein from 1.8 x 105 LLC-PK~ ceils (for M6 and 
M2) or 5.4 x 105 LLC-PK~ cells (for M1) was separated on a 
5-16% polyacrylamide gel and transferred to nitrocellulose. In- 
dividual lanes were probed with either affinity-purified rabbit 
anti-myosin-VI antibodies (M6), rabbit anti-human platelet 
myosin-II antibodies (M2), or monoclonal anti-myosin-I antibod- 
ies (M/). The anti-myosin-I antibody recognizes head epitopes 
shared by many myosins-I (Carboni et al., 1988). The three anti- 
bodies detect myosins of different molecular masses: •145 kD for 
myosin-VI, 200 kD for myosin-H, and 110--130 kD for myosins-I. 
Molecular weights are indicated to the right in kilodaltons. 
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Figure 4. Myosin-VI expression in pig and rat tis- 
sues and in other organisms. (A) Detection of 
myosin-VI in pig tissues by immunoblotting. Total 
cell extracts from pig tissues were separated on a 
5-16% polyacrylamide gel and blotted with the 
affinity-purified rabbit anti-myosin-VI antibody. 
Approximately equal mounts of protein were 
loaded in each lane for each protein source. 
Whole-cell extract from LLC-PKt cells was also 
included for comparison. The affinity-purifed anti- 
body recognized a 145-kD polypeptide in all tis- 
sues tested. Tissues were loaded as follows: lane 
1, kidney cortex; lane 2, intestinal mucosa; lane 3, 
liver; lane 4, lung; lane 5, heart; lane 6, jowl mus- 
cle; lane 7, brain cortex; lane 8, brain medulla; 
lane 9, LLC-PK~ (CL4). M , molecular weight 
markers; bullets indicate 200- and 97-kD bands. 

The lower bands seen in these protein blots are attributed to myosin-VI degradation products because they are less prominent in freshly 
prepared samples and they increase in intensity upon storage (not shown). (B) Detection of myosin-VI in rat tissues by immunoblotting. 
Samples were prepared as inA. Tissues were loaded as follows: lane 1, kidney; lane 2, liver; lane 3, heart; lane 4, brain; lane 5, intestine; 
lane 6, stomach; lane 7, colon; lane 8, testes. Molecular weights are presented as in A. In all tissues tested, a 145-kD polypeptide was 
recognized. (C) Detection of myosin-VI-related proteins in other species. Tissues from varied organisms were prepared as described in 
A. The affinity-purified antibody recognized a 140-145-kD polypeptide in all species tested. Samples were loaded as follows: lane 1, pig 
kidney; lane 2, chicken intestine; lane 3, mouse kidney; lane 4, rat kidney; lane 5, the human intestinal cell line Caco-2a~; lane 6, Xeno- 
pus gut; lane 7, rat kidney; lane 8, Drosophila first instar larvae. M, molecular weight markers; bullets indicate 200-, 97-, and 43-kD 
bands. Lanes 7 and 8 are from a different gel than lanes 1-6. 

The Drosophila 95F MHC mRNA is alternatively spliced 
yielding myosins with three different tails (Kellerman and 
Miller, 1992). The splicing event occurs immediately COOH- 
terminal to the coiled-coil domain leading to either an insert 
of 15 aa or a switch to a short hydrophobic tail. Exhaustive 
RNase protection studies indicated that porcine myosin-VI 
was not spliced in this region (not shown). Also, no evidence 
was seen for splicing events in the neck region (not shown). 
Alternative splicing adding additional light chain binding 
motifs has been observed with some mammalian myosins-I 
(Halsall and Hammer, 1990; Ruppert et al., 1993). 

To characterize this unconventional myosin in more de- 
tail, we set out to produce myosin-VI-specific antibodies. A 
KpnI-NcoI DNA fragment (see Fig. 1 B) encoding the 
COOH-terminal 203 aa of the unique myosin-VI globular tail 
was cloned into pGEX-2T to produce a fusion protein con- 
taining glutathione-S-transferase at its NH~ terminus and 
myosin-VI tail at its COOH terminus. Since we were in- 
terested in generating antibodies that would only recognize 
myosin-VI class motors, only the tail sequence unique to 
myosin-VI was used; sequence encoding the coiled-coil do- 
main was not included. Antibodies were raised against this 
fusion protein and were affinity purified using a related 
myosin-VI tail fusion protein that contained only histidine 
residues at its NH2 terminus. The affinity-purified antibod- 
ies were then used to characterize the expression profile of 
myosin-VI. 

By immunoblot, myosin-VI in LLC-PKt cells was found 
to have a mobility of m145 kD, consistent with the 144.7-kD 
predicted molecular weight of the open reading frame (Fig. 
3B). As shown in Fig. 9 A, immunoprecipitated myosin-VI 
was also 145 kD. In protein blots, the mobility of myosin-VI 
was distinct from myosin-II (200 kD) and myosin-I immuno- 
gens (110-130 kD) observed in LLC-PKI extracts (Fig. 3 
B). This protein blot analysis provides further evidence that 
the clonal LLC-PK~ cell line does indeed express multiple 

myosin-like proteins, as was suggested by the identification 
of multiple myosin clones by PCR. 

Myosin-VI was found to be broadly expressed in all tissues 
tested in both pig (Fig. 4 A) and rat (Fig. 4 B), with lowest 
levels seen in smooth muscle and liver. We attribute the 
lower bands seen in these protein blots to myosin-VI degra- 
dation products because they are less prominent in freshly 
prepared tissues and they increase in intensity upon storage 
(not shown). 

The afffinity-purified anti-myosin-VI antibodies reacted 
with immunogens expressed in a wide variety of species 
from mammals to chickens, flies, and frogs (Fig. 4 C). In 
most species, the antibodies recognized a major polypeptide 
of ~145 kD. In humans, chickens, Drosophila, and Xenopus, 
the apparent mobility of myosin-VI was slightly smaller run- 
ning at '~140 kD. This is the observed molecular weight for 
Drosophila 95F MHC (Miller et al., 1989). 95F MHC has 
a shorter coiled-coil region than porcine myosin-VI, which 
may account for their slight difference in molecular weight. 
It is unknown whether a variation in coiled-coil domain size 
exists in other organisms. 

Myosin-VI Is Not Associated 
with Major F-Actin-containing Domains 
in LLC-PKI Cells 

Given the ubiquitous nature of myosin-VI expression, we 
were interested in determining whether this myosin was 
generally associated with F-actin. Upon cell-cell contact, 
LLC-PKt cells form a polarized monolayer with tight junc- 
tions separating apical and basal-lateral domains. Double- 
labeling experiments on these polarizing cells indicated that 
unlike myosin-H, myosin-VI did not colocate with major 
F-actin-containing structures (Fig. 5). As judged by indirect 
immunofluoresence, myosin-VI was not found associated 
with cell-cell junctions in confluent monolayers (Fig. 5, a 
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Figure 5. Localization of myosin-VI in undifferentiated LLC-PKj cells. Confluent (a-b) and subconfluent (c-f) LLC-PK~ cells were 
grown on coverslips, fixed with paraformaldehyde, and subjected to indirect immunofluorescence with 40 #g/ml afffinity-purified rabbit 
anti-myosin-VI tall antibodies (a, c, and e) and fluorescein-phalloidin (b, d, and f ) .  Cell-cell junctions are denoted by arrows (a and b), 
actin cables by open arrows (c and d), and stress fibers by arrowheads (e and f ) .  Myosin-VI is not associated with these actin-rich structures. 
(a and b) Scanning confocal light microscopy. (c-f) Standard fluorescence light microscopy. Bars, 25 #m in a-d; 5 #m in e and f. 
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Figure 6. Localization of myosin-VI and actin in differentiated LLC-PKt cells. Coverslip-grown LLC-PKI cells 13 d after confluence were 
prepared for confocal immunofluorescence microscopy as described in Fig. 5. An optical section through the apical domain of the monolayer 
at the level of the tight junctions is shown. MicroviUi appear as clustered spikes in the actin-stained panel (right panel, brackets). Junctions 
are indicated by small arrows. The myosin-VI (left panel) is not located to these actin-rich structures. Bar, 25 ttm. 

and b, solid arrows), nor was it associated with actin cables 
(Fig. 5, c and d, open arrows) or stress fibers (Fig. 5, e and 
f, arrowheads) in subconfluent LLC-PKt cells. Rather, 
myosin-VI appeared as a diffuse, punctate stain within the 
cytoplasm of LLC-PK1 cells. A similar staining pattern was 
also observed in differentiated CaCo-2B~ cells (a human in- 
testinal epithelial line; Peterson and Mooseker, 1992) and in 
the nonpolarized HeLa and NRK cell lines (not shown). 

Possibly the lack of association of myosin-VI with the 
actin-cytoskeleton resulted from the undifferentiated state of 
the LLC-PK1 cell line. Approximately 2 wk after the initia- 
tion of cell-cell contact, LLC-PKI (CL4) cells differentiate 
and develop an apical brush border. Immunofluorescence ex- 
periments using these differentiated monolayers indicated 
that this actin-rich domain also contained little myosin-VI 
staining (Fig. 6). Confocal imaging through the apical do- 
main of an LLC-PK~ monolayer showed clearly that the 
microvilli lacked myosin-VI staining (Fig. 6, brackets), al- 
though myosin-VI could be detected in the cytoplasm just be- 
low these structures (for example, cells marked with arrows 
in Fig. 6). 

The cytoplasmic location of myosin-VI was also reflected 
in its subcellular fractionation profile. LLC-PKt cells were 
homogenized and fractionated by differential velocity sedi- 
mentation (Fig. 7 A). Visual inspection indicated that frac- 
tionation of LLC-PKt cells in this fashion sedimented api- 
cal brush borders and isolated nuclei into the low speed 
pellet, sheared microvilli, mitochondria, and other large 
membranous organelles into the high speed pellet, and small 
vesicles and organelles into the ultra speed pellet. Soluble 
components were recovered within the ultra speed superna- 

tant. Myosin-H, which associates with the actin-rich subapi- 
cal portion of the brush border and stress fibers within this 
cell line, sedimented into both the low and high speed 
pellets. Myosin-VI, however, in agreement with its cytoplas- 
mic location, fractionated primarily into the ultra speed su- 
pernatant. 

Myosins characteristically associate with microfilaments 
in an ATP-sensitive fashion. This was reflected in the frac- 
tionation profile of myosin-II. When LLC-PKI cells were 
homogenized in buffers containing 10 mM ATE myosin-II 
was released from sedimenting structures and was now found 
primarily within the ultra speed supernatant. The fraction- 
ation profile of myosin-VI, however, was not significantly al- 
tered by the inclusion of ATP in the homogenization buffer. 
In both cases, myosin-VI was found primarily within the ultra 
speed supernatant. By comparison with myosin-VI tail fu- 
sion protein standards on immunoblots, we determined that 
myosin-VI constituted •0.8% of total protein in LLC-PK~ 
cells (data not shown). 

Myosin-VI Binds F-Actin in an ATP-sensitive Fashion 

Since porcine myosin-VI exhibited a high degree of identity 
to other myosins at the amino acid level, we felt it was impor- 
tant to assess whether this protein exhibited any myosin-like 
properties. First, we sought to address whether porcine 
myosin-VI could bind actin. Ultra speed supernatants from 
fractionated LLC-PK~ cells were mixed with F-actin in the 
presence or absence of 10 mM ATP, and the sedimentation 
of extract components assayed by immunoblot. As shown in 
Fig. 8, a portion of both the soluble myosin-VI and -II was 
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Figure 7. Myosin-VI exhibits a different subcellu- 
lar fractionation pattern between LLC-PK~ cells 
and kidney. (,4) LLC-PK1 cells or (B) whole 
mouse kidneys were homogenized and fraetionated 
by differential sedimentation. The initial homog- 
enization was done in the presence or absence of 
10 mM ATP (right side ofpanel, +ATP). Samples 
from this fractionation included the whole-cell ho- 
mogenate (I, input) and low, high, and ultra speed 
supernatants (S) and pellets (P). Fractions were 
brought up to equal volumes, and samples of each 
fraction were separated on a 5"16% poly- 
acrylamide gel and blotted to nitrocellulose. Blots 
were probed with either afffinity-purified rabbit 
anti-myosin-VI antibodies (M6) or rabbit anti- 
human platelet myosin-l] antibodies (M2). Ar- 
rows indicate the appropriately sized bands. MYO- 
sin-II is included as an example of ATP-sensitive 
sedimentation. Myosin-l] sediments into low and 
high speed pellet fractions in the absence of ATE 
but in the presence of ATE this association with 
the actin cytoskeleton is released, and the myosin- 
II immunogens are found within the ultra speed 
supernatant fractions. Myosin-VI exhibits this 
ATP-sensitive sedimentation profile only in kidney 
fractionations. Within LLC-PKm cells, myosin-VI 
is essentially soluble and fractionates into the ul- 
tra speed supernatant in the presence or absence 
of ATE 

capable of binding F-actin in this assay. In both cases, the 
actin-binding activity of the myosin was sensitive to ATE 
Clearly, even though myosin-VI does not associate with 
actin-containlng microfilaments within the cell line, this pro- 
tein is capable of binding F-actin in vitro. 

The association of myosin-VI with actin by cosedimenta- 
tion could be seen on Coomassie-stained gels as well. In par- 
ticular, a single 145-kD polypeptide, which comigrated with 
myosin-VI on immunoblots, was observed to bind F-actin in 
an ATP-sensitive fashion (Fig. 8, arrowhead). 

Myosin-VI Is Associated with a Calmodulin 
Light Chain 

The calcium-binding protein calmodulin is known to func- 
tion as a light chain for many unconventional myosins, in- 
cluding brush border myosin-I, chick brain myosin-V, and 
Drosophila NinaC, a class III myosin (Espreafico et al., 
1992; Howe and Mooseker, 1983; Porter et al., 1993). 
Given the presence of a single IQ motif in the neck domain 
of myosin-VI, we investigated whether porcine myosin-VI, 
like these other unconventional myosins, was associated with 
calmodulin. 

Myosin-VI was immunoprecipitated, and its light chain 
composition was compared to purified chick brain myosin-V 
(p190) and chicken brush border myosin-II (Fig. 9). Eukary- 
otic nonmuscle myosin-II heavy chain is associated with a 
regulatory and an essential light chain. Both light chains are 
distinct from calmodulin, but are members of the calmodulin 
superfamily (reviewed in Korn and Hammer, 1988; Fig. 9 
A). When samples of myosin-VI, -V, and -II were immuno- 
blotted with an anti-calmodulin monoclonal antibody (Sacks 
et al., 1991), both the myosin-V- and myosin-VI-associated 
light chains were reacted with antibody (Fig. 9 B). The 

myosin-II-associated light chains were not recognized by 
this calmodulin-specific probe. The myosin-VI light chain 
also exhibited the Ca~-dependent mobility shift character- 
istic of calmodulin. Calmodulin has been shown to migrate 
at 21 kD in the absence of Ca ~ and 16 kD in the presence 
of Ca ~ (Burgess et al., 1980). A similar shift in mobility 
was observed when immunoprecipitated myosin-VI was in- 
cubated in the presence of 1 mM Ca ~ or 1 mM EGTA be- 
fore electrophoresis (Fig. 9 B). This result confirmed that 
myosin-VI was associated with a calmodulin light chain. 

Myosin-VI Is Associated with the Apical Domain of  
Proximal Tubule Cells in Adult Mouse Kidney 

We also analyzed the location of myosin-VI within the kidney 
to determine whether the location of this myosin within the 
LLC-PKt cell line was reminiscent of its location within the 
proximal tubule. Surprisingly, immunofluorescence labeling 
of frozen thin sections of adult mouse kidney with the 
affinity-purified anti-myosin-VI antibodies identified specifi- 
cally the actin-rich apical domain of proximal tubule cells 
(Fig. 10). In double-labeling experiments, fluorescein- 
labeled phalloidin bound to both the apical brush border and 
basal domains of the proximal tubule cells (p). The myosin- 
VI probe, however, specifically recognized only the apical 
domain. Basal actin-containing domains were not recog- 
nized. 

Myosin-VI appeared to be specific for the proximal tubule 
brush border. Distal tubules (d), which have much sparser 
microvilli and, therefore, a less bright apical stain with phal- 
loidin, were not recognized by the myosin-VI-specific anti- 
body. The myosin-VI antibodies did not bind to other actin- 
rich domains of the kidney, such as the glomerulus (Fig. 10 
g, lower panels) or the capillaries (c). In particular, the 
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Figure 8. Myosin-VI binds F-actin in an ATP-sensitive fashion in 
cosedimentation assays. The ultra speed supernatant from fraction- 
ated LLC-PK~ cells (Fig. 7) was incubated with F-actin, 10 mM 
ATP, or both F-actin and ATP and spun at 100,000 g. The resulting 
supernatants (S) and pellets (P) were resolved on a 5-16% poly- 
acrylamide gel and were either stained with Coomassie blue, or 
immunoblotted and probed with affinity-purified rabbit anti- 
myosin-VI antibodies or rabbit anti-human platelet myosin-II anti- 
bodies. A portion of both myosin-VI and myosin-II are observed to 
cosediment with F-actin in the absence of ATP, but not in its pres- 
ence. The sedimenting myosin-VI can also be visualized on the 
Coomassie-stained gel, and it is marked with an arrowhead. This 
145-kD band is observed within pellet fractions only in the pres- 
ence of F-actin and the absence of ATP, and it precisely comigrates 
with myosin-VI on immunoblots. Bullets indicate the 200-kD mo- 
lecular weight marker (MW) on the immunoblots. Coomassie- 
stained molecular weight markers are delineated on the left in 
kilodaltons. 

glomerulus is rich in actin-containing junctional complexes, 
but these structures were not recognized by the myosin-VI 
antibodies. Nonimmune IgG and secondary antibody alone 
controls did not recognize any of  the kidney components 
(data not shown). In more collapsed proximal tubules, such 
as the structure marked with an asterisk in Fig. 10, it was 
evident that the myosin-VI stain was enriched at the base of 
the microvilli. These results suggest that this protein may be 
enriched within the vesicle-rich subapical cytoplasm of the 
proximal tubule cells. 

This difference in location between LLC-PKt cells and 
kidney was also reflected in the sedimentation profile of 
myosin-VI. Homogenized pig (not shown) and mouse kid- 
neys were fractionated by sedimentation as described previ- 
ously for the LLC-PKI cell line (Fig. 7 B). Unlike the 
myosin-VI within the LLC-PKI cell line, the majority of  the 
protein was found within the low and high speed pellet frac- 
tions, with only a small portion of the myosin within the ultra 
speed supernatant. As expected for an actin-associated myo- 
sin, this sedimentable myosin-VI was released upon homoge- 
nization in the presence of  10 mM ATP. Myosin-II exhibited 
a similar ATP-dissociable sedimentation. These results sug- 

Figure 9. Myosin-VI is associated with a calmodulin light chain. (A) 
Coomassie-stained polyacrylamide gel of protein samples used for 
anti-calmodulin protein blots. Myosin-VI was immunoprecipitated 
from the ultra speed supernatant of fractionated LLC-PKt cells 
using 10 #g affinity-purified rabbit anti-myosin-VI antibodies and 
3 mg protein A-Sepharose CL4 beads. Negative controls included 
identical immunoprecipitations lacking either the primary antibody 
or the ultra speed supernatant. A single 145-kD polypeptide was 
specifically immunoprecipitated from these extracts, and it is 
marked with an arrow. 3 #g purified chicken brush border myo- 
sin-II (M2) and 1/~g purified chick brain myosin-V (MS) are shown 
for comparison. The essential and regulatory light chains asso- 
ciated with myosin-II are pointed out with small arrows. The myo- 
sin-V-associated calmodulin light chains are bracketed. Because 
the myosin-V sample was not prepared in the presence of excess 
Ca ++ or EGTA, the calmodulin light chains run as a set of four 
bands reflecting the different Ca++-bound states of this polypeptide 
(Burgess et al., 1980). Purified calmodulin also exhibits this pattern 
(see B). Molecular weight markers (MW) are shown on the right 
in kilodaltons. (B) Immunoblot probing for calmodulin associated 
with immunoprecipitated myosin-VI and purified myosins-II and -V. 
Samples identical to those shown in A were blotted to PVDF mem- 
brane, and probed with a monoclonal antibody to calmodulin. 1 #g 
purified bovine brain calmodulin was included as a positive control 
(CAM). 3/zg each of purified chicken brush myosin-II and purified 
chick brain myosin-V were used in this experiment. The anti- 
calmodulin antibodies specifically recognized purified calmodulin 
and the calmodulin light chains associated with myosins-V and -VI. 
The regulatory and essential light chains associated with myosin-II 
were not recognized by this calmodulih-specific probe. After im- 
munoprecipitation, the myosin-VI was boiled in sample buffer con- 
taining 10 mM Ca ++ (M6 + Ca ++) or 10 mM EGTA (M6 + 
EGTA) before loading on the gel. The presence or absence of Ca ++ 
did not affect the mobility of myosin-VI (data not shown), but it 
affected the mobility of the calmodulin light chains associated with 
myosin-VI. This shift in mobility from 16 to 20 kD in the absence 
of Ca ++ is characteristic of calmodulin, and it is not seen with 
other calmodulin-like proteins (Burgess et al., 1980). 
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Figure 10. Indirect immunofluorescence localization of myosin-VI and actin within the kidney. Frozen thin sections of formaldehyde-fixed 
adult mouse kidney were incubated with 10 #g/ml aflinity-puriifed rabbit anti-myosin-VI antibodies and were also stained with fluorescein- 
labeled phalloidin to visualize F-aetin. Sections showing proximal (p) and distal (d) tubules as well as the glomerulus (g) and the capillaries 
(c) of the kidney are shown. F-aetin is present within all these kidney structures. Myosin-VI, however, was specifically located only to 
the actin-rich apical brush border domain of the proximal tubules. The myosin was not enriched in distal tubules, glomeruli, or capillaries 
of the kidney. Bar, 25 #m. 

gest that myosin-VI is associated with the apical actin 
cytoskeleton within the proximal tubule cells of the adult 
kidney. 

Discussion 

We have cloned and characterized a new unconventional my- 
osin, porcine myosin-VI, a homologue of Drosophila 95F 
MHC. This is the first myosin of this class isolated from a 
mammalian source. Myosin-VI, like other unconventional 
myosins, is associated with a calmodulin light chain, and it 
exhibits ATP-sensitive actin-binding activity. In cultured 
cells, myosin-VI is not associated with major F-actin-cOn- 
taining structures, but in the kidney, this motor localizes to 
the apical brush border domain of proxirnai tubule ceils. The 
association of myosin-VI with sedimentable compartments 
within the kidney is ATP sensitive, suggesting that myosin-VI 
is associated with the actin cytoskeleton. 

To date, in addition to myosin-H, three unconventional 
myosins have been identified within the kidney. A 105-kD 
calmodulin-binding protein was partially purified from rat 
kidney (Coluccio, 1991). This polypeptide bound F-actin in 
an ATP-sensitive fashion, and it exhibited ATPase activity in 
crude extracts, suggesting that it was a myosin. Antibodies 
directed against a ll6-kD myosin-I purified from bovine 
adrenal glands, and identified by PCR from mouse brain 
recognize a related species in kidney (Sherr et al., 1993; 
Wagner etal . ,  1992; Reizes et al., 1994). Similarly, a 128- 
kD myosin-I, myrlb, identified in rat brain, is also expressed 
in this tissue as judged by Northern analysis and immunoblot 
(Ruppert et al., 1993). As judged by their sizes and differ- 
ences in sequence, these myosins-I are all clearly distinct 
from the myosin-VI described in this work. LLC-PKI cells 
and kidney extracts both contain at least three ll0-130-kD 
myosin-I immunogens when probed by immunoblot with an- 
tibodies that recognize epitopes shared by myosin-I head do- 
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mains (Fig. 3; unpublished data). Our PCR screen for myo- 
sins expressed in differentiating LLC-PK, cells identified 
nine different myosins, but only one myosin-I-like clone (Be- 
ment et al., 1994a). This clone is distinct from myrlb and 
the adrenal myosin-I at the amino acid level. It is likely that 
upon further study, even more myosin species that are ex- 
pressed within this actin-rich tissue will be identified. 

Myosin-VI and Assembly of  the Brush Border 

Myosin-VI does not appear to be required for brush border 
assembly in the proximal tubule cell. LLC-PKI cells ex- 
press what appears to be a fully differentiated brush border 
as judged by the presence of brush border-specific markers 
such as villin, fimbrin, and myosin-I/in the apical domain 
(Hasson, T., and M. S. Mooseker, unpublished observa- 
tions; Temm-Grove et al., 1992). Also, LLC-PKI cells, 
upon differentiation, undergo many of the activities as- 
sociated with proximal tubule kidney cells, including vec- 
torial transport of D-glucose (Misfeldt and Sanders, 1981; 
Rabito and Ausiello, 1980), Na+-H + exhange (Igarashi et 
al., 1991), and targeting of membrane proteins to apical and 
basal-lateral domains (Gottardi and Caplan, 1993). Inspec- 
tion of these cells at the electron microscopic level, however, 
indicates that the brush border expressed by the cell line is 
less lush than that seen within the kidney (Pfaller et al., 
1990; our observations). In addition, LLC-PK, cells grown 
on glass coverslips are much less columnar than the proximal 
tubule cells. The cell line differentiates to a size of ,~4/~m 
tall, compared to the 20-/~m cells observed within the kid- 
ney. Possibly, the soluble nature of myosin-VI within LLC- 
PK~ cells was caused in part by these differences in the 
membrane cytoskeleton. 

Since myosin-VI is tightly associated with the brush border 
in adult kidney proximal tubule cells, it is possible that LLC- 
PK, cells have not fully differentiated and that myosin-VI 
associates with the brush border late in this differentiation 
process. This theory correlates with our recent studies on the 
assembly of myosin-VI into the apical cytoskeleton of the 
proximal tubule during kidney differentiation in rats. We 
have observed that myosin-VI specifically locates to the api- 
cal domain only during the final stages of proximal tubule 
development, when brush border assembly has been com- 
pleted (Hasson, T., and D. Biemesderfer, unpublished obser- 
vations). Clearly, the assembly of myosin-VI into the actin 
cytoskeleton in vivo requires a developmental signal; we 
suggest that this signal is not provided during the differentia- 
tion of LLC-PKt cells induced by cell-cell contact. 

This is not the first example of the late incorporation of a 
myosin into the brush border. In studies of the differentia- 
tion of enterocytes along the crypt/villus axis in chicken, it 
was observed that the microvillar component brush border 
myosin-I also undergoes late association with the apical do- 
main (Heintzelman and Mooseker, 1990). This unconven- 
tional myosin did not assume an apical location until the 
emergence of the enterocyte from the crypt into the villus, 
a stage when brush border assembly was essentially com- 
plete. By comparison, the microvillar components actin, vil- 
lin, and fimbrin were all polarized in their location at the on- 
set of enterocyte differentiation, and they were associated 
with the apical domain along the entire crypt/villus axis 
(Heintzelman and Mooseker, 1990). It is not known what 

Porcine M6 SLTTRVMLTTAGGAKGTVIKPLLKVEQANNARDALAK 426 

Dro 95F ALVSRVMQSKGGGFKGTVIMVPLKIYEASNARDALAK 425 

Aca MIA AGTTYALNLNKMQAIGSRDALAK N.D. 

Aca MIB 

Aca MIC 

Dict MIA 

Dict MIB 

Dict MID 

Dict MIE 

LLFRVLNTGGAGAKKMSTYNVPQNVEQAASARDALAK 335 

LLYRTITTGEQGRGRSSVYSCPQDPLGAIYSRDALSK 331 

SSLVSRQISTGQGARISTYSVPQTVEQAMYARDAFAK 354 

FRVINTGGAGGAGNRRSTYNVPQNVEQANGTRDALAR 352 

CFRTISTGTQGRSARVSTYACPQNSEGAYYSRDALAK 352 

IALCYRSISTGVGKRCSVISVPNDCNQAAYSRDALAK 356 

Figure 11. Comparison of head sequences between myosins-VI and 
amoeboid myosins-I at the site of phospho~lation by amoeboid my- 
osin heavy chain kinase. This analysis expands the alignment of 
amoeboid myosin head domain phosphorylation sites first de- 
scribed in Brzeska et al. (1989). In this study, the sequence sur- 
rounding the phosphorylated amino acid of Acanthamoebae 
myosins-IA, -IB, and -IC was identified by peptide sequencing. In 
our alignment, we have added the amino acid sequences of the more 
recently cloned Dictyostelium myosins-I (Jung et al., 1989, 1993; 
Titus et al., 1989; Urrutia et al., 1993) and the myosins-VI, porcine 
myosin-VI, and Drosophila 95F MHC (Kellerman and Miller, 
1992). All these myosins have a conserved serine or threonine resi- 
due at the presumed phosphorylation site (boldface). Note the high 
degree of identity between the region phosphorylated in Dic- 
tyostelium myosin-IE and the corresponding region of the myosins- 
VI. ND, Not determined to date. 

signal is required to initiate the assembly of this myosin-I 
into the brush border. 

Myosin-VI in Other Brush Border-containing Cells 

Myosin-VI is also expressed in other brush border-contain- 
ing cells. Protein blots indicate that this protein is expressed 
within intestinal epithelial cells and within the epididymus 
of the testes (Fig. 4; Heintzelman, M., unpublished observa- 
tions). We have more carefully characterized the intestinal 
myosin-VI and have found that, as seen in kidney, myosin-VI 
is specifcally associated in an ATP-sensitive fashion with the 
brush border domain of chicken intestinal epithelial ceils 
(Heintzelman et al., 1994). Intestinal myosin-VI was pre- 
dominantly localized to the terminal web domain, while 
lower levels of expression were also seen within the micro- 
villi. Surprisingly, ~30 % of the intestinal myosin was found 
to be soluble within the epithelia. This is in sharp contrast 
with the myosin-VI in kidney, which is much more tightly as- 
sociated with the actin-cytoskeleton. 

To characterize the assembly of myosin-VI into the entero- 
cyte brush border, the association of myosin-VI with the api- 
cal cytoskeleton of intestinal epithelia was observed during 
enterocyte differentiation along the villus/crypt axis. In 
results similar to those described above for brush border 
myosin-I, myosin-VI was observed to locate to the apical do- 
main of the chicken enterocyte only after the cells emerged 
from the crypt into the villus (Heintzelman et al., 1994). 
Within crypt ceils, myosin-VI had a diffuse cytoplasmic stain 
not unlike that observed within the LLC-PK~ cell line. 
Clearly, the association of myosin-VI with the actin cytoskel- 
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eton is highly regulated in both kidney and intestine. This 
forces us to question what signal is required for the proper 
location of myosin-VI to the apical domain. 

Regulation of Myosin-VI : Heavy 
Chain Phosphorylation? 
Among known myosins, only amoeboid myosins-I have been 
shown to be regulated by heavy chain phosphorylation of 
their head domain (reviewed in Tan et al., 1992). As de- 
scribed elegantly by Brzeska and colleagues (1989), a single 
serine or threonine residue within the head domain of Acan- 
thamoeba myosins-I is specifically phosphorylated by amoe- 
boid myosin heavy chain kinase (Fig. 11). Interestingly, as 
pointed out in Bement et al. (1994b), both porcine and 
Drosophila myosins-VI also have a threonine at this con- 
served position. In the case ofDictyostelium myosins-IB and 
-ID, as well as all the Acanthamoeba myosins-I, this phos- 
phorylation is required for maximal actin-activated ATPase 
activity and motility (reviewed in Tan et al., 1992; Lee and 
C6tt, 1993). Crystallographic analysis of myosin S1 bound 
to F-actin indicates that this region of the myosin head makes 
direct contacts with actin (Rayment et al., 1993a; Schrtder 
et al., 1993). Given the evolutionary conservation of charge 
at this actin-myosin contact site, the presence of a threonine 
residue within this domain of the myosin-VI head raises the 
possibility that myosins-VI will also require heavy chain 
phosphorylation at this location for maximal activity. As evi- 
dence for the importance of this domain, humans with a 
single arginine to glutamine missense mutation within this 
domain in/3-cardiac myosin-II exhibit hypertrophic cardio- 
myopathy (Geisterfer-Lowranoe et al., 1990). Expression or 
induction ofa kinase may be the signal required for assembly 
of myosin-VI into the apical cytoskdeton. This need for acti- 
vation by heavy chain phosphorylation may well explain the 
lack of complete binding by myosin-VI to pure F-actin in co- 
sedimentation assays (Fig. 8). 

Regulation of Myosin-Vl: Light Chains? 
Myosin-VI assembly with the apical domain, as well as its 
intrinsic actin-activated ATPase activity, may also be regu- 
lated by its associated light chain(s). Foremost, myosins re- 
quire the presence of their proper regulatory and essential 
light chains to maintain physiological actin-activated ATPase 
activity and motility (Collins et al., 1990; Trybus et al., 
1994, and references therein; Wolenski et al., 1993). The 
conserved 50-aa shift in the location of the myosin-VI cal- 
modulin binding (IQ) motif may indicate that myosins-VI 
bind a unique light chain within this region. Such a novel 
light chain would not have been detected using the caimodu- 
lin-specific antibodies used in this study, and could serve to 
regulate this motor. 

A novel regulatory light chain could also be further 
modified. The phosphorylation of regulatory light chains as- 
sociated with conventional myosins leads to a specific activa- 
tion of the actin-activated ATPase activity of these motors, 
and it induces the assembly of myosin-II filaments (reviewed 
in Korn and Hammer, 1988; Warrick and Spudich, 1987). 
Myosins-VI harbor a coiled-coil domain and, therefore, may 
be found as a dimer or form filaments within the cell. A novel 
light chain could serve to regulate this change in assembly. 

The calmodulin light chain that we have shown to be as- 
sociated with myosin-VI may also serve to regulate the mo- 
tor. The binding of calmodulin light chains to Ca ++ has 
been shown, in vitro, to regulate the actin-activated ATPase 
activity of a number of unconventional myosins, such as 
brush border myosin-I and chick brain myosin-V (Wolenski 
et al., 1993; Collins et al., 1990; Cheney et al., 1993a). 
Myosin-VI was immunoprecipitated from homogenates in 
the presence of EGTA; it is unknown whether the presence 
of Ca ++ would release the calmodnlin light chain from the 
myosin-VI heavy chain, as has been seen for other unconven- 
tional myosins (Cbeney et al., 1993a; Wolenski et ai., 1993). 

Regulation of Myosin-VI: Association with a 
Cellular Cargo? 

The assembly of myosin-VI with the apical cytoskeleton may 
be affected by the binding of a cellular component or "cargo: 
The tail domain of the myosin-VI class is unique and highly 
conserved between pig and fly. Possibly through this novel 
tail, myosin-VI binds to a conserved docking protein ex- 
pressed only in fully differentiated cells. 95F MHC has been 
found to be tightly associated with cytoplasmic particles 
within the developing fly embryo (Mermall et al., 1994). 
These particles have been observed to move within the em- 
bryo in an ATP- and actin-dependent fashion. As these parti- 
cles move into the pseudo-cleavage furrow during mitosis, 
it is possible these structures represent membrane or- 
ganelles. Porcine myosin-VI is not tightly membrane as- 
sociated, however, as judged by its ready extraction from cell 
homogenates with ATP. Mammalian myosins-I, which are 
known to be membrane associated, require high salt or de- 
tergent in addition to ATP to be released from the membrane 
cytoskeleton (Fath and Burgess, 1993; Howe and Mooseker, 
1983). These myosins have also been shown to bind acidic 
phospholipids in vitro (Hayden et al., 1990). We have been 
unable to observe any specific binding of porcine myosin-VI 
to acidic phospholipids in vitro, using either immunoprecipi- 
tated myosin-VI or myosin-VI tail fusion proteins (unpub- 
lished observations). It is conceivable that the tail portion of 
myosin-VI affords an interaction with a membrane-associ- 
ated protein. Such a protein-protein interaction would link 
this membrane compartment with the actin cytoskeleton. 
This protein-protein link could have been disrupted during 
our fractionation procedures. Analysis of myosin-VI location 
at the electron microscope level will be critical to determine 
whether this myosin is indeed associated with a membrane 
compartment within the proximal tubule cell. 

What Is the Function of Myosin-VI? 
Myosin-VI is a ubiquitous protein, and it is expressed in 
many tissues that do not contain a brush border. For exam- 
ple, myosin-VI is expressed in high levels in brain. What 
function might a myosin serve in such varied tissue types? 
The expression of myosin-VI specifically within the apical 
brush border of the proximal tubule cells may give us a clue. 
Unlike distal tubules within the kidney, the proximal tubule 
serves as a major site of endocytosis (reviewed in Christen- 
sen, 1982). As a result, the apical domain of this cell type 
is filled with clathrin-coated vesicles and other membranes. 
This endocytosis is not seen in the LLC-PK1 cell line, and 
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it reflects a major difference between this proximal tubule 
model and functioning kidney. Perhaps myosin-VI serves a 
role in these membrane movements. 

The extensive membrane recycling that occurs within the 
apical domain of the proximal tubule requires an active 
membrane internalization, retrieval, and reutilization ap- 
paratus. The polarized actin filaments present in the brush 
border would provide an excellent roadway for the return of 
membranes to the apical surface. Myosin-VI, if it does in- 
deed assooate with membranes, may serve to transiently an- 
chor these membranes onto the actin cytoskeleton and return 
them to the apical membrane. Such an activity would be re- 
quired within all tissues, including those lacking a brush bor- 
d.er domain. The availability of myosin-VI-specific probes 
should allow us to more fully characterize the role this motor 
plays in the movement of components in both polarized and 
nonpolarized cells. 
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