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Depression and cognitive impairment are adverse men-
tal conditions commonly associated with older age. 
Both predict reduced quality of life, increased self-
neglect and caregiver burden, and heightened mortality 
risk (Vinkers, Gussekloo, Stek, Westendorp, & van der 
Mast, 2004). In populations of community-dwelling 
older adults, prevalence estimates for both depression 
and cognitive impairment range from 10% to 15% (Cole 
& Dendukuri, 2003; Petersen et al., 2009). Numerous 
cross-sectional studies have shown that age-related dif-
ferences in depressive symptoms and cognitive perfor-
mance are robustly negatively associated (Perrino, Mason, 
Brown, Spokane, & Szapocznik, 2008). Longitudinal stud-
ies have shown that even a slight reduction in life satis-
faction predicts cognitive decline (e.g., Rabbitt, Lunn, 
Ibrahim, Cobain, & McInnes, 2008) and also that lower 
baseline cognitive ability predicts poorer prognosis for 

depression (Vink, Aartsen, & Schoevers, 2008). Yet, to 
date, there has been very little research on reciprocal 
associations between changes in cognition and depres-
sive symptoms. This is important because a clearer 
understanding of temporal precedence in cognition-
depression associations may expedite interventions to 
mitigate age-related worsening in mental health.

Empirical descriptions of these associations are etio-
logically complex (Bennett & Thomas, 2014). One plau-
sible scenario is that neurodegenerative processes and 
cerebrovascular disease, as well as related white-matter 
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Abstract
We examined reciprocal, time-ordered associations between age-related changes in fluid intelligence and depressive 
symptoms. Participants were 1,091 community-dwelling older adults from the Lothian Birth Cohort 1936 study who were 
assessed repeatedly at 3-year intervals between the ages of 70 and 79 years. On average, fluid intelligence and depressive 
symptoms worsened with age. There was also a dynamic-coupling effect, in which low fluid intelligence at a given 
age predicted increasing depressive symptoms across the following 3-year interval, whereas the converse did not hold. 
Model comparisons showed that this coupling parameter significantly improved overall fit and had a correspondingly 
moderately strong effect size, accounting on average for an accumulated 0.9 standard-deviation increase in depressive 
symptoms, following lower cognitive performance, across the observed age range. Adjustment for sociodemographic 
and health-related covariates did not significantly attenuate this association. This implies that monitoring for cognitive 
decrements in later life may expedite interventions to reduce related increases in depression risk.
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lesion burden, underlie worsening both in depressive 
symptoms and in cognitive abilities (Butters et al., 2008). 
However, some studies have shown that cognition-
depression relations persist after statistical adjustment 
for vascular disease and related risk factors (e.g., Jajodia 
& Borders, 2011). Genetic traits, such as presence of the 
epsilon-4 type allele of the apolipoprotein E gene, may 
also predispose individuals to increased risk for both 
depression and cognitive impairment (Delano-Wood 
et al., 2008). Alternatively, greater depressive symptom 
load may be an independent risk factor for cognitive 
decline. One possible mechanism would be that depres-
sion is associated with neuroendocrine changes similar 
to those observed in animal models of chronic stress, 
including hypothalamic-pituitary-adrenal dysregulation, 
which, if prolonged, can lead to memory deficits (Butters 
et al., 2008). On the other hand, cognitive decrements 
could lead to increased difficulty in activities of daily 
life, such as management of personal finances or social 
interactions (Baltes & Lang, 1997), which in turn pro-
vokes increased depression risk. Some older adults may 
become increasingly depressed when confronted with 
their own cognitive decline (Carpenter et al., 2008).

The above scenarios are not mutually exclusive; how-
ever, each does imply a different temporal ordering of 
influence. It may be that cognitive impairment and 
depression arise concurrently, or elevated depressive 
symptoms precede cognitive impairment, or cognitive 
impairment leads to increased risk for depression (Bennett 
& Thomas, 2014). Longitudinal research of reciprocal 
associations between depressive symptoms and cognitive 
performance may therefore shed light on the relative 
plausibility of these scenarios.

We know of 11 such studies (for a review, see Aichele 
& Ghisletta, 2018). Six of these used latent growth curve 
models (LGCMs) to evaluate relations of stability (i.e., base-
line levels) and long-term change (i.e., slopes) in depres-
sive symptoms and cognitive performance. But LGCMs do 
not establish time-ordered effects in the way that lead-lag 
or dynamic models do (Ghisletta & Lindenberger, 2004). 
This is an important distinction, particularly in longitudinal 
observational studies wherein temporal precedence is 
often implicitly assumed. Also, lead-lag analyses are prone 
to bias when applied to data at only two time points when 
variables have different reliabilities (Hamaker, Kuiper, 
& Grasman, 2015). This leaves three cognition-
depression studies that applied lead-lag models to data 
across three or more time points. Results from these 
studies showed that lower cognitive performance pre-
ceded subsequent increases in depressive symptoms 
across 1-year intervals (Perrino et al., 2008) and 2-year 
intervals (Aichele & Ghisletta, 2018; Jajodia & Borders, 
2011), whereas the converse did not hold.

More generally, depression risk has most frequently 
been examined in relation to cognitive decrements 

indicative of Alzheimer’s disease and vascular dementia 
(e.g., memory deficits, slowed information processing). 
However, decrements in abstract reasoning (i.e., fluid 
intelligence), which are closely related to functional 
impairment and poor treatment compliance, may better 
characterize elevated depression risk in nonclinical 
populations of older adults (Klojčnik, Kavcic, & Vukman, 
2017). Results from two recent studies support this 
hypothesis. In a sample of 71 seniors (ages 69–85 years), 
Klojčnik et al. (2017) observed that depression was more 
strongly associated with decrements in visuospatial rea-
soning than with decrements in recall memory, verbal 
fluency, attention, and processing speed. In a longitu-
dinal study of 6,203 middle-age and older adults, 
Aichele, Rabbitt, and Ghisletta (2017) found that fluid-
intelligence decrements better predicted elevated 
depressive symptoms than did decrements in memory, 
processing speed, or verbal ability. In an earlier meta-
analysis of five UK cohorts of community-based older 
persons, which included a cohort related to that of the 
current study, Gale et al. (2011) found that fluid reason-
ing was significantly negatively associated with depres-
sion risk, even after statistical adjustment for verbal 
intelligence, social class, and health-related variables.

Scope and Aims of the Current Study

To date, we have been unable to identify a single study 
of time-ordered, reciprocal associations between fluid 
intelligence and depressive symptoms. This gap in the 
literature motivated the current work. In a narrow-age 
cohort of community-dwelling older adults (N = 1,091 at 
age 70 years; N = 550 remaining at age 79 years), mea-
sured repeatedly at 3-year intervals between the ages 
of 70 and 79 years, we used bivariate latent-change-score 
models (BLCSMs; McArdle, 2001) to examine dynamic 
associations between age-related changes in fluid intel-
ligence and depressive symptoms. These associations 
were statistically adjusted for sex, education, smoking 
status, and concurrent diagnoses of cardiovascular dis-
ease, stroke, and diabetes. On the basis of outcomes 
from previous lead-lag depression-cognition studies 
(summarized above), we hypothesized that decrements 
in fluid intelligence at a given age would precede sub-
sequent increases in depressive symptoms, whereas 
elevated depressive symptoms would not predict sub-
sequent declines in fluid intelligence.

Method

Data for the analyses came from the Lothian Birth Cohort 
1936 (LBC1936) study, which is an ongoing follow-up 
study of some surviving members of the Scottish Mental 
Survey 1947 (Scottish Council for Research in Education, 
1949). The broader aims and methods of the LBC1936 
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study have previously been described at length (Deary, 
Gow, Pattie, & Starr, 2012; Deary et  al., 2007; Taylor, 
Pattie, & Deary, 2018). We therefore briefly summarize 
participants and measures, whereas we describe the sta-
tistical methods in greater detail. All variables (and levels 
thereof) analyzed for this article’s target research ques-
tion are reported below. No observations were excluded, 
nor was a stopping rule imposed on data collection 
(which remains ongoing, subject to available funding). 
The large sample size for the study was more than suf-
ficient for estimating the current statistical models.

Participants

In its first wave of testing, the LBC1936 study included 
1,091 participants who had a mean age of 70 years. 
Most of them had completed a valid test of intelligence 
(Moray House Test No. 12) as part of the Scottish Mental 
Survey 1947 at a mean age of 11 years. Most were 
recruited from the City of Edinburgh and the surround-
ing area (the Lothians). The study protocol was 
approved by the Multi-Centre Research Ethics Commit-
tee for Scotland (MREC/01/0/56; 07/MRE00/58) and by 
the Lothian Research Ethics Committee (LREC/2003/2/29). 
Research was carried out in compliance with the 
Helsinki Declaration, and all participants gave written, 
informed consent. The Lothian Health Board made ini-
tial contact with potential study candidates (i.e., indi-
viduals born in 1936 and who likely completed the 
Scottish Mental Health Survey in 1947). Of 3,686 indi-
viduals identified, 1,703 (46.2%) responded, and 1,091 
ultimately became participants following additional 
screening for eligibility based on year of birth, country 
of schooling, and being generally healthy enough to 
attend a hospital research clinic for extensive cognitive 
and medical evaluation.

Measures

LBC1936 participants were assessed once between 2004 
and 2007 (Wave 1; mean age approximately 70 years; 
N = 1,091) and up to three additional times at approxi-
mately 3-year intervals (Waves 2–4; mean ages approxi-
mately 73 years, N = 866; 76 years, N = 697; and 79 
years, N = 550). Attrition was mainly due to death, 
chronic incapacity, and permanent withdrawal. Partici-
pants were tested individually, at each wave, by a 
trained psychologist and a research nurse at the Well-
come Trust Clinical Research Facility at the Western 
General Hospital, Edinburgh. This included cognitive, 
physical, and other tests (fully described by Taylor 
et al., 2018). Current analyses used longitudinal data 
from three measures of fluid intelligence and one mea-
sure of depressive symptoms.

Fluid intelligence.  Fluid intelligence was assessed with 
three measures of nonverbal ability: Matrix Reasoning and 
Block Design subtests of the Wechsler Adult Intelligence 
Scale–Third UK Edition (WAIS-III UK; Wechsler, 1998a) 
and the Spatial Span (forward and backward) subtest from 
the Wechsler Memory Scale–Third UK Edition (WMS-III 
UK; Wechsler, 1998b). The Matrix Reasoning test requires 
participants to correctly identify missing elements from 
geometric patterns arranged according to logical rules. In 
the Block Design test, participants replicate a visuospatial 
model from component parts within a specified time limit. 
In the Spatial Span task, participants replicated (recalled) 
spatial-temporal sequences (2–9 items long) in the same 
order (forward) or in the reverse order (backward). The 
Spatial Span score used here was the average of forward 
and backward performance. Cognitive scores were stan-
dardized (within measure, across time) for consistent scal-
ing, using mean and standard deviation at Wave 1 (i.e., 
score at wave t minus mean at Wave 1, divided by standard 
deviation at Wave 1).

Depressive symptoms.  Depressive symptoms were mea-
sured using the Hospital Anxiety and Depression Scale 
(HADS; Zigmond & Snaith, 1983), which consists of 14 
items (7 related to depressive symptoms, 7 for anxiety). 
Items are scored in increasing severity from 0 to 3. These 
scores are summed, giving possible totals of 0 to 21 symp-
toms for depression and anxiety, respectively. Current 
analyses used the scores for only the depressive symp-
toms. A meta-analysis of more than 700 studies using the 
HADS previously identified a score of 8 as the cutoff for a 
clinical diagnosis of depression (Bjelland, Dahl, Haug, & 
Neckelmann, 2002). An advantage of the HADS for the 
current research objective is that it excludes items related 
to problems with memory and concentration, which may 
conflate depressive symptoms with cognitive performance. 
Previous use of the HADS in community samples of older 
adults can be found, for example, in Gale et al. (2011).

Covariates.  We statistically controlled for sex, education 
level (number of years of formal full-time education), 
smoking status (never smoked, former smoker, current 
smoker), social class (based on the Office of Population 
Censuses and Surveys’ Classification of Occupations, 1980), 
and the diagnosis at each wave of cardiovascular disease, 
stroke, and diabetes.

Statistical analyses

Analyses were based on BLCSMs (McArdle, 2001), 
which are structural equation models that combine 
LGCMs (Meredith & Tisak, 1990) and autoregressive 
cross-lag models ( Jöreskog, 1970). LGCMs estimate con-
currently variables’ levels and changes (i.e., intercepts 
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and slopes) using information taken from all time 
points. These static parameters summarize stability and 
trendlike change across the entire window of observa-
tion. In contrast, dynamic cross-lag models estimate 
time-point-to-time-point couplings between variables, 
such that variable X at time t predicts change in variable 
Y between times t and t + 1, and vice versa. Thus, a 
dynamic cross-lag study with four measurement occa-
sions would estimate couplings from three sequential 
change associations. Common cross-lag models assume 
that variables do not exhibit trendlike change, so data 
must often be detrended prior to analysis. However, 
this can bias estimates of association. BLCSMs are 
designed to overcome this limitation by simultaneously 
estimating long-term trends and dynamic lead-lag asso-
ciations. We direct interested readers to Grimm, Ram, 
and Estabrook (2017), who provide step-by-step guid-
ance for constructing and interpreting BLCSMs. We pro-
vide the Mplus code used for the current models in the 
Supplemental Material available online.

At the measurement level, fluid intelligence was 
modeled as a latent construct, indicated by performance 
on the three measures of nonverbal intelligence and 
estimated under strict factorial invariance (Widaman & 
Reise, 1997), and applied across measurement occa-
sions, which held statistically (see Table S2 in the Sup-
plemental Material). Depressive symptoms were 
modeled as an observed variable, scaled in its raw 
metric. At the structural level of the model, latent 
change scores (reliable components of changes in fluid 
intelligence and in depressive symptoms between suc-
cessive measurement occasions) were specified, from 
which levels and linear changes (static components), 
auto-proportional effects (the effect of a variable on its 
own upcoming change), and coupling effects (the effect 
of a variable on the upcoming change of the other vari-
able) were estimated. All participants were approxi-
mately the same age at testing, so for purposes of 
interpretability, we refer to the modeled time metric in 
terms of chronological age rather than measurement 
occasion.

Model development proceeded in stages. First, we 
estimated a model (BLCSM0) that included only static 
parameters (intercept and linear slope) for fluid intel-
ligence and depressive symptoms. This model is statisti-
cally equivalent to a bivariate LGCM because it does 
not estimate any dynamic effects. To test time-dependent 
coupling effects between fluid intelligence and depres-
sive symptoms, we created four additional models, 
BLCSM1 through BLCSM4. These latter models included 
dynamic (auto-proportional and coupling) parameters. 
We note that the addition of auto-proportional effects 
respecified static linear changes in cognitive perfor-
mance and depressive symptoms as nonlinear or expo-
nential changes.

For model-comparison purposes, BLCSM1 served as 
the baseline, or no-coupling, model because it did not 
include cross-lagged paths between fluid intelligence 
and depressive symptoms. BLCSM2 was identical to 
BLCSM1 except for the addition of a unidirectional cou-
pling from fluid intelligence predicting subsequent 
changes in depressive symptoms. BLCSM3 was identical 
to BLCSM1 except for the addition of a unidirectional 
coupling from depressive symptoms predicting subse-
quent changes in fluid intelligence. Finally, BLCSM4 
(see Fig. 1) was the full bidirectional couplings model 
(i.e., with fluid intelligence → Δdepressive symptoms 
and depressive symptoms → Δfluid intelligence).

To determine whether couplings were significant, we 
performed likelihood-ratio tests of change in model fit, 
as outlined by Grimm et al. (2017), and we examined 
the couplings’ parameter estimates in the best-fitting 
model. This was possible because statistically the com-
pared models were nested within the full bidirectional 
couplings model (BLCSM4). Also, we first ran all models 
without inclusion of sociodemographic and health vari-
ables. We then reran all models adjusting statistically 
for these covariates, with sociodemographic variables 
specified as time-invariant predictors of baseline levels 
and static linear changes for fluid intelligence and 
depressive symptoms, and with health conditions speci-
fied as time-varying predictors of true scores for fluid 
intelligence and depressive symptoms at each wave.

We chose an alpha criterion of .01 for significance 
testing of changes in model fit and for parameter esti-
mates. Although studies in the behavioral sciences typi-
cally select an alpha criterion of .05, it is not uncommon 
to find more conservative alpha criteria in population-
based lifespan psychology studies, given their relatively 
large sample sizes (e.g., Aichele & Ghisletta, 2018; 
Jajodia & Borders, 2011). Selection of each model was 
guided by its Schwarz weight, that is, its weighted 
Bayesian information criterion, or w(BIC), rescaled as 
a relative probability of model preference, as explained 
by Wagenmakers and Farrell (2004).

We fitted the statistical models using Mplus software 
(Version 6; Muthén & Muthén, 2012) with full-informa-
tion maximum-likelihood estimation (FIML). FIML 
accounts for uncertainty due to missing data, which is 
especially useful in longitudinal studies in which data 
are often missing because of attrition, as was the case 
here (Deary et al., 2012). FIML is tenable when missing-
ness for a given variable does not just depend on that 
variable itself but can be related to other variables in 
the model (Schafer & Graham, 2002). This is one reason 
that we included sociodemographic and health-related 
covariates in a second series of BLCSM analyses (i.e., 
as a check against sensitivity to possible sources of 
missingness). FIML is generally robust to deviations 
from the assumption that data are normally distributed, 
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especially when using relatively large sample sizes 
(Hoogland & Boomsma, 1998). Nevertheless, because 
depressive symptoms were positively skewed, we con-
ducted a follow-up analysis using log-transformed 
HADS scores as a further check against model fit.

Results

Raw data are summarized in Tables 1 and 2. On aver-
age, fluid intelligence and depressive symptoms wors-
ened between ages 70 and 79 years in both completers 
(those who remained in the study through Wave 4—
about half of the sample) and all comers (everybody). 

Correlations among observed variables are reported in 
Table S1 in the Supplemental Material. For all longitu-
dinal measures, within-variable across-wave correla-
tions were, in general, strongest at Lag 1 and fell off 
slightly at increased lags (i.e., Lags 2 and 3). For cogni-
tive measures, within-variable correlations ranged from 
.56 (Spatial Span) to .77 (Block Design). Between-vari-
able correlations were strongest between Block Design 
and Matrix Reasoning (rs = .51–.58) and less pro-
nounced between Spatial Span and Block Design (rs = 
.35–.45) and between Spatial Span and Matrix Reason-
ing (rs = .33–.44). Depressive symptoms correlated 
strongly with themselves across time (rs = .61–.73). 
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Fig. 1.  Bivariate latent-change-score model. Fluid intelligence (GF) and depressive symptoms (DS) are modeled across 
3-year age intervals (i.e., ages 70, 73, 76, and 79 years—indicated by subscripts). Unlabeled paths with single-headed 
arrows show regression effects fixed at 1. Unlabeled paths with double-headed arrows show freely estimated variances 
and covariances. Labels on paths show model-parameter constraints. Time-invariant covariates (e.g., sex, education) and 
time-varying covariates (e.g., cardiovascular disease) are not shown. Lagged correlations for Gf uniquenesses (ris) are 
shown only for 3-year intervals (Lag 1), but the models also included correlated uniquenesses for 6-year (Lag 2) and 9-year 
(Lag 3) intervals. Slope = static linear change; i1 = Block Design; i2 = Matrix Reasoning; i3 = Spatial Span observed scores.
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Within-wave correlations (rs) between depressive 
symptoms and cognitive variables were always negative 
and became stronger over time, ranging from −.10 
(Wave 1) to −.22 (Waves 3 and 4).

Statistical fit for all models was respectable (see 
Table 3), with estimates of comparative fit index greater 
than .95 and root-mean-square error of approximation 
estimates less than 0.06. BLCSM0, equivalent to a bivari-
ate LGCM, provided unstandardized estimates of static 
linear change, per 3-year interval, in fluid intelligence 
(scaled, as described above: M = −0.13, 99% confidence 
interval, or CI = [−0.15, −0.11]) and depressive symp-
toms (using raw scores: M = 0.14, 99% CI = [0.07, 0.21]). 
Baseline levels of fluid intelligence and depressive 
symptoms were significantly negatively correlated (r = 
−.17, 99% CI = [−.27, −.07]), whereas static linear 
changes were not significantly correlated (r = −.10, 99% 
CI = [−.48, .30]). There was also significant between-
person variation in levels and linear changes for fluid 

intelligence and depressive symptoms (see Table A1 in 
the Appendix). Thus, this first commonly used model 
predicted that, on average, fluid intelligence decreased 
by 0.39 (scaled) units and depressive symptoms 
increased by 0.42 (raw) units across the observed 9-year 
period and that, whereas baseline levels of depressive 
symptoms and fluid intelligence were significantly cor-
related, long-term changes therein were not signifi-
cantly correlated (despite significant between-person 
variability in changes).

Comparison tests for the dynamic models, BLCSM1 
through BLCSM4, are summarized in Table 3. Models 
with couplings (BLCSM2–BLCSM4) were tested against 
the model without couplings (BLCSM1). Likelihood-
ratio tests showed significant improvement in fit with 
addition of the fluid intelligence → Δdepressive symp-
toms coupling (BLCSM2 vs. BLCSM1). This was true for 
models tested with and without adjustment for sociode-
mographic and health covariates (covariate-specific 

Table 2.  Longidutinal Summaries by Wave

Characteristic

All comers (N = 1,091) Completers (N = 550)

70 years 73 years 76 years 79 years 70 years 73 years 76 yearsa 79 years

N (% at wave)  
Cardiovascular disease 268 (24.6) 250 (28.9) 236 (33.9) 204 (37.1) 125 (22.7) 155 (28.2) 185 (34.3) 204 (37.1)
Stroke 54 (4.9) 55 (6.4) 73 (10.5) 69 (12.5) 20 (3.6) 33 (6.0) 55 (10.2) 69 (12.5)
Diabetes 91 (8.3) 95 (11.0) 82 (11.8) 71 (12.9) 35 (6.4) 44 (8.0) 59 (10.9) 71 (12.9)

Mean (SD)  
Depressive symptoms   2.8 (2.2) 2.6 (2.2)   2.9 (2.3) 3.0 (2.3) 2.7 (2.2) 2.5 (2.2) 2.8 (2.3) 3.0 (2.3)
Matrix Reasoning 13.5 (5.1) 13.2 (5.0) 13.0 (4.9) 12.9 (5.0) 14.4 (5.0) 13.8 (4.9) 13.3 (4.9) 12.9 (5.0)
Block Design 33.8 (10.3) 33.6 (10.1) 32.2 (10.0) 31.2 (9.6) 35.6 (10.2) 34.6 (10.1) 32.7 (9.8) 31.2 (9.6)
Spatial Span   7.4 (1.4)   7.3 (1.4) 7.3 (1.4) 7.1 (1.4) 7.5 (1.4) 7.5 (1.3) 7.4 (1.3) 7.1 (1.4)

Note: Ns for “all comers” at each wave were 1,091 (70 years), 866 (73 years), 697 (76 years), and 550 (79 years). Completers were individuals who 
remained in the study through Wave 4.
aEleven of the completers were absent at Wave 3 (76 years) but returned for Wave 4 (79 years). The corresponding percentages reflect this.

Table 1.  Characteristics of the Sample

Characteristic All comers (N = 1,091) Completers (N = 550)

Women n = 543 (49.8%) n = 275 (50.0%)
Years of education M = 10.7, SD = 1.1 M = 10.9, SD = 1.2
Smoking  
  Never n = 501 (45.9%) n = 297 (54.0%)
  Yes, but quit n = 465 (42.6%) n = 229 (41.6%)
  Currently smoke n = 125 (11.5%) n = 24 (4.4%)
Social (occupational) class  
  Professional n = 190 (17.4%) n = 125 (22.7%)
  Managerial, technical n = 402 (36.8%) n = 213 (38.7%)
  Skilled, nonmanual n = 246 (22.5%) n = 107 (19.5%)
  Skilled, manual n = 188 (17.2%) n = 77 (14.0%)
  Partly skilled n = 38 (3.5%) n = 16 (2.9%)
  Unskilled n = 6 (0.5%) n = 3 (0.5%)
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outcomes are reported in Sections S3 and S4 in the 
Supplemental Material). Addition of the depressive 
symptoms → Δfluid intelligence coupling did not 
improve model fit (BLCSM3 vs. BLCSM1). Although the 
bidirectional couplings model showed better fit than 
the no-coupling model (BLCSM4 vs. BLCSM1), this 
appeared to be mostly because of the addition of the 
fluid intelligence → Δdepressive symptoms coupling 
alone. We confirmed this in a follow-up test of BLCSM4 
versus BLCSM2, which showed a nonsignificant change 
in model fit (i.e., when adding the depressive symptoms 
→ Δfluid intelligence coupling to BLCSM2). Schwarz 
weights, w(BICs), favored BLCSM2 above all other mod-
els. BLCSM2 accounted for 68.1% (without covariates) 
and 80.2% (with covariates) of relative predictive accu-
racy. In contrast, BLCSM3 accounted for only 1.2% 
(without covariates) and 2.4% (with covariates) of pre-
dictive accuracy. Because depressive symptoms vari-
ables were positively skewed, we reran the models 
using log-transformed depressive symptoms scores. 
Model comparison results from this follow-up analysis 
(reported in Section S5 in the Supplemental Material) 
showed a nearly identical outcome. Thus, overall, tests 
of improvement in model fit clearly favored only inclu-
sion of the fluid intelligence → Δdepressive symptoms 
coupling (i.e., BLCSM2 was most parsimonious).

Estimated trajectories of depressive symptoms and 
fluid-intelligence scores from BLCSM2 are based on both 
static parameters (levels, linear changes) and dynamic 
parameters (auto-proportional and coupling effects). 
Therefore, to facilitate interpretation, we plot and 
describe trajectories of fluid-intelligence scores within 
subsamples of participants stratified by baseline levels 
of depressive symptoms (see Fig. 2a) and trajectories of 
depressive symptoms within subsamples of participants 
stratified by baseline levels of fluid-intelligence scores 

(see Fig. 2b). On average, fluid-intelligence trajectories 
for individuals with fewer baseline depressive symptoms 
were higher but parallel to fluid-intelligence trajectories 
for individuals with higher baseline levels of depressive 
symptoms. Thus, between-person differences in fluid 
intelligence attributed to baseline differences in depres-
sive symptoms were generally preserved across the 
observed age range (i.e., depressive symptoms did not 
have a dynamic influence on fluid intelligence). In con-
trast, depressive-symptoms trajectories for individuals 
with higher baseline fluid intelligence were lower and 
increased less than those of individuals with lower base-
line fluid intelligence (who had higher and steeper tra-
jectories). This pattern indicates that prior fluid-intelligence 
scores modified the predicted increases in depressive 
symptoms, and parameter estimates for BLCSM2 (see 
Table A1) provide evidence that this was primarily a 
dynamic (coupling) rather than static (level-slope) effect.

The effects of static linear changes, auto-proportional 
effects, and coupling parameters can also be repre-
sented in a vector field plot (Boker & McArdle, 1995) 
to show the expected direction and magnitude of 
change in depressive symptoms contingent on a given 
fluid-intelligence score, and vice versa (see Fig. 3). 
Left-to-right across each row (increasing depressive 
symptoms), changes in magnitude and in direction 
(length and orientation of the arrows) along the vertical 
plane appear relatively small, consistent with the non-
significant depressive symptoms → Δfluid intelligence 
coupling. But from top-to-bottom within each column 
(decreasing fluid-intelligence scores), there is both 
change in magnitude and flipping of directionality 
along the horizontal plane, such that higher fluid-
intelligence scores predicted subsequent reductions in 
depressive symptoms, and lower fluid-intelligence 
scores even more strongly predicted subsequent 

Table 3.  Changes in Fit of Bivariate Latent-Change-Score Models With the Addition of Coupling Parameters

Model Parameters χ2 df CFI BIC w(BIC) RMSEA Δχ2 Δdf p

Without covariates
No coupling 33 186 119 .990 34,194 .251 0.023  
Fluid intelligence → Δdepressive symptoms 34 178 118 .991 34,192 .681 0.022 −8 1 .003
Depressive symptoms → Δfluid intelligence 34 185 118 .990 34,200 .012 0.023 −1 1 .282
Full coupling 35 176 117 .992 34,197 .056 0.021 −10 2 .005

With covariates
No coupling 77 415 347 .987 21,775 .066 0.019  
Fluid intelligence → Δdepressive symptoms 78 404 346 .989 21,770 .802 0.018 −11 1 .001
Depressive symptoms → Δfluid intelligence 78 411 346 .988 21,777 .024 0.019 −4 1 .040
Full coupling 79 401 345 .989 21,774 .108 0.018 −14 2 .001

Note: Parameter = estimated model parameter; χ2 = deviance (−2 × log-likelihood); CFI = comparative fit index; BIC = Bayesian information 
criterion; w(BIC) = Schwarz weight (i.e., relative probability of model preference); RMSEA = root-mean-square error of approximation; Δχ2 = 
change in model misfit with addition of coupling (or couplings) compared with no-coupling model (lower values = better fit); p = p value for 
likelihood-ratio test of change in model fit. The RMSEA 95% confidence interval was within ±.007 for all models.
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increases in depressive symptoms. This is consistent 
with the statistical importance ascribed to the fluid 
intelligence → Δdepressive symptoms coupling.

To provide effect size estimates for the fluid intelli-
gence → Δdepressive symptoms coupling, we com-
pared the predictions of depressive symptoms scores 
from the BLCSM without any coupling (BLCSM1) with 
those from the model with the coupling effect of inter-
est (BLCSM2). Because the coupling effect cannot be 
estimated prior to the first assessment, the expected 
scores of depressive symptoms at age 70 years do not 
differ between BLCSM1 and BLCSM2.1 However, the 
subsequent scores should be expected to differ across 
these models because of the influence of prior cognitive 
performance on upcoming changes in depressive symp-
toms (present in BLCSM2 vs. absent in BLCSM1). The 
corresponding standardized effect sizes (ds) for these 
differences were 0.02, 99% CI = [−0.08, 0.12] at age 73 

years, 0.27, 99% CI = [0.17, 0.37] at 76 years, and 0.88, 
99% CI = [0.78, 0.98] at age 79 years. Thus, the estimated 
coupling association was itself time invariant (fluid 
intelligence → depressive symptoms γ = −1.37, 99%  
CI = [−2.40, −0.34]), but when multiplied by cognitive 
scores that on average worsened with time, it accounted 
for an accumulated 0.9 standard-deviation increase in 
depressive symptoms across the observed age range.

Discussion

We examined time-ordered, reciprocal associations 
between longitudinal changes in fluid intelligence and 
depressive symptoms in a large sample (N = 1,091) of 
community-dwelling older adults. Both fluid intelli-
gence and depressive symptoms worsened on average 
between ages 70 and 79 years. Additionally, there was 
a significant temporally dependent association, in 
which poorer fluid intelligence at a given age predicted 
subsequent increases in depressive symptoms, whereas 
elevated depressive symptoms were not predictive of 
subsequent decrements in fluid intelligence. This was 
shown by improvement in model fit (i.e., with addition 
of the fluid intelligence → Δdepressive symptoms cou-
pling), by the corresponding parameter estimate for the 
coupling effect, and by effect-size estimates for differ-
ences in depressive-symptoms scores estimated from 
models with versus without the fluid intelligence → 
Δdepressive symptoms coupling. Sociodemographic 
and health-related covariates did not significantly influ-
ence the strength of this dynamic association.
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tive magnitude (longer = stronger effect) of expected changes in fluid 
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the 90% highest-probability-density region for the estimated true scores.
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Until now, the few longitudinal studies to examine 
reciprocal lead-lag relations between cognition and 
depressive symptoms have primarily focused on memory 
deficits (Aichele & Ghisletta, 2018; Jajodia & Borders, 
2011; Perrino et al., 2008). Apart from the difference in 
cognitive measures used (i.e., fluid intelligence vs. mem-
ory), the current results are consistent with these earlier 
studies in showing that cognitive deficits temporally pre-
cede increases in depressive symptoms in older adults. 
Why this should be so remains an open question. It 
could be that cognitive deficits and age-related elevation 
in depressive symptoms share a common basis in neu-
rodegenerative processes or cerebrovascular disease and 
that cognitive deficits simply manifest behaviorally prior 
to mood-related changes. There is, however, mixed evi-
dence as to whether cognition-depression associations 
persist after statistical control for vascular diseases and 
related risk factors (e.g., Jajodia & Borders, 2011; van 
den Kommer et al., 2013). The current results show that 
statistical adjustment for prior diagnosis of diabetes, car-
diovascular disease, and stroke had little effect on esti-
mates of temporal associations between fluid intelligence 
and depressive symptoms. Notwithstanding, prior studies 
using subsamples of LBC1936 participants have demon-
strated that reduction of cerebral white-matter structural 
connectivity is associated with both elevated depressive 
symptoms (McIntosh et al., 2013) and decline in general 
fluid intelligence (Ritchie et al., 2015).

Genetic susceptibility may also play a role in 
depression-cognition associations. Kievit et  al. (2016) 
proposed that many small, independent genetic influ-
ences act through numerous mediating endophenotypes 
(e.g., such as cerebral white-matter loss) to affect 
“downstream” behavioral phenotypes, such as fluid 
intelligence. Thus, the contribution of a single genetic 
marker within the causal cascade will be largely 
obscured when joined by influences more proximal to 
a given behavioral phenotype. This implies that identi-
fication of genetic risk factors that affect the associations 
between fluid intelligence and depression will require 
sophisticated research methodologies and very large 
sample sizes. The scale of such a study was demon-
strated in recent work from Hill and colleagues (2018), 
who used a meta-analytic approach to pool information 
from two large genome-wide association studies (for an 
effective N = 248,482) to identify 187 loci (538 genes) 
that accounted for approximately 7% of variation in 
intelligence. This methodology and result are evidence 
that the sample size and analytical framework neces-
sary to identify genes influencing cognition–depression 
associations are well outside the scope of the current 
study.

More pragmatically, preserved fluid intelligence is 
strongly linked to independent functioning in activities 
of daily life (Tucker-Drob, 2011). Older adults may 
become distressed with increased awareness of their 
own cognitive decline and the implications for day-to-
day functioning (Vinkers et al., 2004). There is currently 
little evidence to support this hypothesis (Carpenter 
et al., 2008), but, if true, treatment for depression could 
protect against diminished quality of life for individuals 
already confronted with cognitive impairment (Perrino 
et  al., 2008). Alternatively, fluid-intelligence-related 
impairment of behaviors important for self-care and 
day-to-day functioning may give rise to undesirable 
conditions (social isolation, financial instability, poor 
health) that in turn lead to worsening emotional well-
being. To disambiguate these hypotheses, it will be 
important for cognition-depression studies to include 
measures of subjective mental decline and also for such 
studies to take advantage of statistical models that allow 
testing time-ordered relations alongside mediating or 
moderating influences (e.g., difficulties in activities of 
daily living).

Along these lines, inclusion of measures of subjective 
cognitive decline may have allowed for a stronger inter-
pretation of the fluid intelligence → Δdepressive symp-
toms coupling. Note, however, that in the BLCSM, 
couplings are fixed effects (estimated only at the group 
level) and thus cannot be used directly in predictor–
outcome associations. This means that a multiple-groups 
framework is needed to compare cognition–depression 
couplings across subsamples defined by a categorical 
moderating variable, such as high versus low subjective 
cognitive decline. Similarly, it would be worthwhile to 
estimate time-ordered effects of mediating variables, 
such as difficulties in activities of daily living. This 
would require modeling covariates as processes in their 
own right. Both approaches would add substantial sta-
tistical complexity to an already complex series of analy-
ses. We therefore view further explorations of moderating 
and mediating variables in the associations between fluid 
intelligence and depression as topics for future study.

Other limitations of the study include use of a single 
self-report measure of depressive symptoms, a rather 
homogeneous participant sample with respect to socio-
economic status and ethnicity (all were Caucasian), and 
the observation of change associations across a rela-
tively narrow age range (approximately 70–79 years). 
Interpretation of the findings is further constrained in 
that depressive symptoms were assessed at relatively 
long (3-year) intervals. Further discussion of strengths 
and limitations of the Lothian Birth Cohort Studies can 
be found in Deary et al. (2012).
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Conclusion

To our knowledge, this is the first study to examine 
time-ordered, reciprocal associations between changes 
in depressive symptoms and fluid intelligence. The pri-
mary contribution of the study is that it demonstrates 
that fluid-intelligence decrements beginning at age 70 
years precede increases in depressive symptoms, 

whereas elevated depressive symptoms in later life do 
not appear to affect subsequent changes in fluid intel-
ligence. Statistical adjustment for sociodemographic and 
health-related covariates had only a small effect on the 
strength of this association. We conclude that proactive 
monitoring for cognitive decrements in later life may 
expedite interventions to reduce associated increases 
in depression risk.

Table A1.  Parameter Estimates From Two Bivariate Latent-Change-Score Models: BLCSM0 and BLCSM2

Parameter type and parameter

BLCSM0 (bivariate latent 
change without couplings or 

auto-proportional effects)

BLCSM2 (bivariate 
latent change with fluid 

intelligence → depressive 
symptoms coupling)

Estimate 99% CI Estimate 99% CI

Means  
Level of fluid intelligence 0.008 [−0.067, 0.083] 0.000 [−0.075, 0.075]
Slope of fluid intelligence −0.131 [−0.152, −0.110] −0.109 [−0.148, −0.070]
Level of depressive symptoms 2.730 [2.560, 2.900] 2.784 [2.609, 2.959]
Slope of depressive symptoms 0.139 [0.069, 0.209] 0.540 [−0.861, 1.941]

Variances  
Level of fluid intelligence 0.632 [0.521, 0.743] 0.628 [0.517, 0.739]
Slope of fluid intelligence 0.008 [0.003, 0.013] 0.040 [−0.042, 0.122]
Level of depressive symptoms 3.436 [2.900, 3.972] 3.452 [2.906, 3.998]
Slope of depressive symptoms 0.138 [0.056, 0.220] 1.151 [−0.523, 2.825]

Covariances (standardized)  
Level of fluid intelligence with slope of fluid intelligence −0.235 [−0.427, −0.023] −0.941 [−0.957, −0.919]
Level of depressive symptoms with slope of depressive 

symptoms
−0.077 [−0.291, 0.144] −0.121 [−0.732, 0.598]

Level of fluid intelligence with level of depressive 
symptoms

−0.173 [−0.269, −0.074] −0.164 [−0.262, −0.062]

Level of fluid intelligence with slope of depressive 
symptoms

−0.145 [−0.341, 0.063] 0.870 [0.781, 0.924]

Level of depressive symptoms with slope of fluid 
intelligence

−0.076 [−0.306, 0.163] 0.111 [−0.054, 0.270]

Slope of fluid intelligence with slope of depressive 
symptoms

−0.103 [−0.475, 0.300] −0.822 [−0.897, −0.702]

Proportional changes (β)  
Fluid intelligence → Δfluid intelligence 0.219 [−0.072, 0.510]
Depressive symptoms → Δdepressive symptoms −0.193 [−0.703, 0.317]

Coupling effects (γ)  
Fluid intelligence → Δdepressive symptoms −1.369 [−2.397, −0.341]

Fluid intelligence factor loadings (Wave 1, standardized)  
Block Design 0.796 [0.752, 0.840] 0.796 [0.752, 0.840]
Matrix Reasoning 0.706 [0.671, 0.741] 0.703 [0.657, 0.749]
Spatial Span (forward and backward) 0.551 [0.499, 0.603] 0.551 [0.499, 0.603]

Residual variances  
Block Design 0.365 [0.301, 0.429] 0.364 [0.300, 0.428]
Matrix Reasoning 0.490 [0.433, 0.547] 0.492 [0.435, 0.549]
Spatial Span (forward and backward) 0.687 [0.628, 0.746] 0.686 [0.627, 0.745]
Depressive symptoms 1.606 [1.446, 1.766] 1.583 [1.423, 1.743]

Note: Values in brackets are 99% confidence intervals. Slope refers to static linear change per 3-year interval (between ages 70 and 79 years). 
Except where noted, estimates shown are unstandardized and based on scaled scores for fluid intelligence (see the Method section) and raw 
scores for depressive symptoms. Proportional changes and coupling effects reflect scores at time t as predictive of change in score between time t 
and t + 3 years.
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