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INTRODUCTION 
 

Gastric cancer (GC) is the third leading cause of cancer-

related deaths and the fifth most common type of 

malignancy worldwide [1]. About 50% of GC cases 

occur in East Asia, and it is the most common 

gastrointestinal malignancy in China [2]. Poor dietary 

habits, history of Helicobacter pylori infection, genetic 

factors, pre-malignant gastric lesions, and smoking have 

been identified as risk factors for gastric cancer [3]. 

Unfortunately, early gastric cancer diagnosis is not 

feasible in the majority of patients. As a result, most 

gastric cancers are diagnosed at advanced stages, and 

25–50% of patients develop metastases during the 

course of the disease [4]. 

 

To date, the main treatment for gastric cancer includes 
surgical excision plus standard D2 lymph node dissection 

[5]. Currently, no chemotherapy or molecular therapy, 

alone or in combination with other treatments, 
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ABSTRACT 
 

Background: Gastric cancer is associated with high mortality, and effective methods for predicting prognosis are 
lacking. We aimed to identify potential prognostic markers associated with the development of gastric cancer 
through bioinformatic analyses. 
Methods: Gastric cancer-associated gene expression profiles were obtained from The Cancer Genome Atlas and 
Gene Expression Omnibus databases. The key genes involved in the development of gastric cancer were 
obtained by differential expression analysis, coexpression analysis, and short time-series expression miner 
(STEM) analysis. The potential prognostic value of differentially expressed genes was further evaluated using a 
Cox regression model and risk scores. Hierarchical clustering was applied to validate the impact of key genes on 
the overall survival of gastric cancer patients. 
Results: A total of 1381 genes were consistently dysregulated in the development of gastric cancer. Among 
them, 186 genes affected the overall survival of gastric cancer patients. The following genes had areas under 
the receiver operating characteristic curve greater than 0.9 in both datasets and were therefore considered key 
genes: ADAM12, CEP55, LRFN4, INHBA, ADH1B, DPT, FAM107A, and LOC100506388. LRFN4, DPT, and 
LOC100506388 were identified as potential prognostic genes for gastric cancer through a nomogram. 
Overexpression of LRFN4 and LOC100506388 was associated with a higher risk of gastric cancer. Finally, we 
found that tumors were infiltrated with high levels of Th2 cells and mast cells, and the infiltration levels were 
associated with overall survival in gastric cancer patients. 
Conclusions: We found that key dysregulated genes may have a prognostic value for the development of gastric 
cancer. 
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consistently leads to an objective, lasting tumor response. 

Gastric cancer immunotherapy is another potentially 

effective therapeutic approach [6]. Although 

chemotherapy regimens have improved progression-free 

survival and overall survival in patients with advanced 

gastric cancer, their median survival tends to be less than 

one year [7]. The incidence of gastric cancer has 

decreased over the past decades, but the five-year survival 

rate remains only around 10% for patients with advanced 

disease [8]. Therefore, understanding the mechanism of 

disease progression and finding new and effective 

prognostic factors and targets for intervention are of great 

significance for improving long-term survival. 

 

Gastric cancer is characterized by hypoxia and 

immunosuppression, thereby hindering the ability of the 

immune system to fight cancer [9]. Inflammatory 

mediators and cytokines play a crucial role in the 

formation of the tumor microenvironment, further 

stimulating tumor development [10]. 

 

In recent years, the application of high-throughput 

technologies has led to a new understanding of the 

molecular pathogenesis of GC, and potential markers 

and therapeutic targets can be explored based on the 

genomic characteristics of tumors [11]. In recent 

studies, many oncogenes or suppressor genes associated 

with GC have been reported [12, 13]. The protein 

“leucine rich repeat and fibronectin type III domain 

containing 4” (LRFN4) is expressed in a variety of 

cancers and leukemia cells [14]. LRFN4 signaling plays 

an important role in monocyte/macrophage migration 

[15]. Dermatopontin (DPT) can promote the formation 

of collagen fibers and improve the biological activity of 

TGF-β [16, 17]. The expression level of DPT may be 

closely related to the pathogenesis of cancer [18]. 

 

In the present study, we took gene expression data in GC 

from The Cancer Genome Atlas (TCGA) and Gene 

Omnibus (GEO) databases in order to search for 

prognostic genes and immune cells associated with GC 

development. To further explore dysregulated molecular 

mechanisms in GC, we performed enrichment analysis. 

Potential prognostic genes were evaluated using 

nomograms and risk scores. The effects of key genes on 

the survival of gastric cancer patients were validated by 

hierarchical clustering. These results may provide a new 

reference for predicting and understanding the prognosis 

of patients with gastric cancer.  

 

MATERIALS AND METHODS 
 

Data sources 

 

We collected gastric cancer data from TCGA and GEO 

databases (GSE26942, GSE27342, and GSE66229). 

GSE26942 included gene expression profiling data 

from 205 gastric tumor tissues and 12 surrounding 

normal gastric tissues. Gene expression data were 

normalized by quantile normalization and log2 

transformation. GSE27342 included gene expression 

profiling data of paired tumor and adjacent normal 

tissues from 80 gastric cancer patients. The raw probe 

intensities were normalized using the quartile 

normalization approach, and the probe signal was 

summarized to the level of gene expression using the 

pathway-level information extractor (PLIER) method 

[19]. GSE66229 included gene expression profiles 

from 300 gastric tumors and 100 normal controls. Raw 

expression data were normalized and summarized 

using the robust multichip analysis (RMA) method [20] 

along with log2 transformation. TCGA included 

RNAseq gene expression data of 373 cases of primary 

lung adenocarcinoma and 32 cases of normal samples. 

Count data were normalized using the DESeq2 package 

in R [21]. 

 

Differentially expressed gene (DEG) analysis 

 

DEGs between GC and controls in GEO datasets were 

identified using the limma package in R [22]. DEGs in 

the TCGA dataset were obtained using DESeq2. DEGs 

were defined as genes showing a > xx-fold difference 

with a P-value < 0.05. 

 

Co-expression analysis 

 

Weighted gene coexpression network analysis 

(WGCNA) [23] was used to construct the gene 

coexpression network for DEGs. The soft-thresholding 

power we chose was used as the correlation coefficient 

threshold. The parameters were set as follows: 

minModuleSize = 30, verbose = 3, and mergeCutHeight 

= 0.25. Then, we built the minimum number of genes in 

gene modules. Module-trait correlation analysis was 

performed based on Pearson correlation. 

 

Enrichment analysis 

 

Enrichment analysis of Gene Ontology (GO) terms and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways was performed for gene modules using the 

clusterProfile package in R [24]. GO terms included 

biological processes, cellular components, and 

molecular functions. ClusterProfiler was also used to 

conduct gene set enrichment analysis (GSEA) [25]. P 

value < 0.05 was chosen as the cut-off criterion for 

enrichment. Gene set variation analysis (GSVA) with 

KEGG pathways was performed using the GSVA 
Bioconductor package [26]. Activated or inhibited 

states of signaling pathways were calculated using 

limma. 
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Single-sample GSEA 

 

We obtained a set of marker genes for immune cell types 

from a previous publication [27]. The infiltration level of 

each immune cell type was calculated by single-sample 

GSEA using the GSVA tool in R. We calculated 

differences in immune cell infiltration between gastric 

cancer and control samples. Hierarchical cluster analysis 

was used to group tumors with different patterns of 

immune cell infiltration with the same invasion direction 

and significance for patients' survival. 
 

STEM analysis 

 

First, we used the STEM algorithm and software 

(v1.3.11) to organize genes into distinct clusters based 

on expression patterns [28]. To filter out gene sets that 

were significantly correlated with the time series, the 

gene count in each cluster was set to >30, and the 

correlation coefficient of gene expression in each cluster 

was set to >0.8. All significant gene sets were 

associated with P < 0.05, and all showed similar 

expression trends. 

 

Identification of CpG sites and somatic mutation of GC 

 

Infinium HumanMethylation450 BeadChip data of the 

GC and normal tissue samples were obtained from 

TCGA. The chAMP package [29] in R was used to 

identify differences in methylation between the GC and 

normal in TCGA. The β value of methylation was 

calculated for all CpG probes (sites) with a detection P 

value ≤ 0.05. DNA methylation level at each site was 

calculated based on the methylation signal intensity (M) 

and non-methylation signal intensity (U). Somatic 

mutations in GC samples in TCGA were identified 

using maftools [30]. 

 
Prediction of gene prognostic value 

 
Kaplan-Meier estimator and log-rank tests were 

performed using the functions surv, survfit, and survdiff 

in R. Multivariate Cox regression analyses were used to 

test the independent prognostic value of the genes using 

the survival package and coxph function in R. Areas 

under the receiver operating characteristic curve 

(AUCs) were calculated for those genes using the 

pROC package [31]. 

 

Data availability 

 

The datasets presented in this study can be found in 

TCGA and GEO databases (accession numbers 

GSE26942, GSE27342, and GSE66229). 

 

RESULTS 
 

Differential expression analysis of gastric cancer and 

normal tissue samples 

 

The flowchart of the study is shown in Figure 1. 

According to the screening criteria of DEGs, we 

obtained 14375 DEGs in TCGA data, 9969 DEGs in 

GSE26942, 8516 DEGs in GSE27342, and 14843 

DEGs in GSE66229, all with P-values <0.05 (Figure 

2A). The sample sizes of TCGA and GSE66229 were 

relatively large (Figure 2B). In these two datasets, 9,188 

common DEGs (either up- or downregulated) were 

identified (Figure 2C). 

 

 
 

Figure 1. The study flowchart. Abbreviations: AUC: area under the receiver operating characteristic curve; C1: cluster 1; C2: cluster 2; GC: 

gastric cancer; GSEA: gene set enrichment analysis; GSVA: gene set variation analysis; ssGSEA: single-sample gene set enrichment analysis; 
STEM: short time-series expression miner; TCGA: The Cancer Genome Atlas; WGCNA: weighted gene co-expression network analysis. 



 

www.aging-us.com 23640 AGING 

Immune cell infiltration 

 

To identify the potential role of immune cells in gastric 

cancer, we analyzed differences in immune cell 

infiltration between tumors and normal tissues 

(Figure 2D). Among the differentially infiltrated 

immune cells, Th2 and mast cells affected the overall 

survival of gastric cancer patients (Figure 2E). 

Construction of coexpression networks for DEGs 

 

Common genes with | log2(fold change) | >0.5 were 

further screened to construct the coexpression network. 

β = 6 was chosen as the soft threshold power to 

construct a scale-free network (Figure 3A). We 

identified a total of 13 modules containing 4440 genes 

(Figure 3B). By correlating the expression of genes in 

 

 
 

Figure 2. Differentially expressed genes (DEGs) and immune cell infiltration in gastric cancer and normal tissues. (A) DEGs 

between gastric cancer and normal tissues in The Cancer Genome Atlas (TCGA) as well as GSE26942, GSE27342, and GSE66229 datasets. (B) 
Petal plots of sample size for four sets of gastric cancer-related data. (C) Overexpressed (left panel) and under expressed (right panel) genes 
considered as DEGs in the TCGA data. (D) Differential infiltration of immune cells between gastric cancer and normal tissues. (E) Kaplan–
Meier curves showed that immune cell infiltration was related to overall survival of gastric cancer patients.  
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modules to different stages of gastric cancer, we 

identified up- or downregulated modules (Figure 3C). 

Furthermore, the relationship between the modules and 

the clinical traits was evaluated to identify hub modules 

(Figure 3D). Significant correlations were found 

between modules and gastric cancer, as well as immune 

cells. Notably, the module named as 'blue' had the 

highest negative correlation with tumors and Th2 cells, 

but the highest positive correlation with normal and 

mast cells. The correlation between the brown module 

and traits was the opposite. 

Biological functions of module genes 

 

Performing enrichment analysis of module genes, we 

identified GO functions and KEGG signaling pathways 

associated with gastric cancer. Among the 1003 

biological processes with P-value < 0.05, we found that 

“regulatory T cell differentiation”, “type I interferon 

signaling pathway”, “response to interleukin-21”, 

“inhibition of hepatic immune response”, “apoptotic 

nuclear changes”, and “activation of MAPK activity” 

were enriched (Figure 4A) Among the 116 KEGG 

 

 
 

Figure 3. The weighted gene coexpression network analysis (WGCNA) network for selected genes. (A) Analysis of the scale-

free fit index and the mean connectivity for various soft-thresholding powers (β). (B) Cluster dendrogram of differentially expressed genes 
(DEGs) showing similar expression trends. (C) Up- or downregulation trend of gene modules. (D) Heatmap of the correlation between gene 
modules and clinical traits. 
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pathways enriched for module genes, pathways 

involving PI3K-Akt, JAK-STAT, and Toll-like 

receptor (TLR) were activated, while pathways 

involving Th1 and Th2 cell differentiation, apoptosis, 

and tumor necrosis factor (TNF) were inhibited 

(Figure 4B). GSEA identified activation of the cell 

cycle and inhibition of gastric acid secretion in GC 

(Figure 4C). 

 

 
 

Figure 4. Main enrichment results of module genes. (A) Main biological processes (BPs) of module genes. (B) Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway analysis for module genes. (C) Gene set enrichment analysis (GSEA) terms of up- and down-regulated 
genes. The first 10 terms corresponded to up-regulated genes, and the last 10 terms to down-regulated ones.  
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Persistently dysregulated genes in the development 

of gastric cancer 

 

Clustering of module genes by STEM software according 

to the development of gastric cancer revealed 10 groups of 

clusters with different dynamic gene expression patterns 

(Figure 5A and 5B). We found 1381 genes that exhibited 

consistently up- or downregulated expression patterns 

during the development of gastric cancer. SubtypeGSEA 

showed that TLR signaling pathway, mRNA surveillance 

pathway, and rheumatoid arthritis pathway were 

consistently activated with the development of gastric 

cancer, while histidine metabolism, alpha linolenic acid 

metabolism, and peroxisomes were consistently inhibited 

(Figure 5C and 5D). 

 

Key genes associated with gastric cancer progression 

 

Principal component analysis found that the TCGA and 

GSE66229 data showed the greatest separation between 

 

 
 

Figure 5. Sets of genes showing persistent up- or down-regulation during gastric cancer development. (A) Heatmap of gene 

sets with persistent under- or overexpression from normal to stage IV of gastric cancer. (B) The top four genes with the greatest fold-
change in transcription level in 10 clusters. (C) Signaling pathways that are consistently up-regulated as tumors develop. (D) Signaling 
pathways that are consistently down-regulated as tumors develop.  
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tumor and normal samples (Supplementary Figure 1). We 

selected survival-related genes with AUCs greater than 0.9 

as key genes (Figure 6A). Compared with normal tissues, 

ADAM12, CEP55, LRFN4, and INHBA were up-regulated 

in gastric cancer samples, while ADH1B, DPT, FAM107A, 

and LOC100506388 were downregulated. In addition, our 

correlation analysis showed that key gene expression was 

significantly associated with age and overall survival of 

GC patients (Figure 6B). Interestingly, ADH1B, DPT, 
FAM107A, and LOC100506388 belonged to the blue 

module, whereas CEP55 and LRFN4 belonged to the 

brown module.  

 

Prognostic model of key genes 

 

Survival information of gastric cancer patients was 

analyzed using a Cox regression survival nomogram 

(Figure 7A). The results showed that elevated 

expression of DPT and LRFN4 predicted good 

prognosis, while overexpression of LOC100506388 was 

associated with poor prognosis. The calibration curve 

showed that the nomogram performed well compared to 

an ideal model (Figure 7B). 

 

Risk scores were calculated based on the expression of 

key genes, and the median risk score was used to classify 

patients into high- or low-risk groups. The results showed 

that ADAM12, INHBA, LOC100506388, FAM107A, and 

ADH1B were upregulated in the high-risk group, while 

CEP55 and LRFN4 were highly expressed in the low-risk 

group (Figure 7C). 

 

Supervised hierarchical clustering of key genes that 

discriminated the prognosis of gastric cancer patients  

 

 
 

Figure 6. Screening of key genes. (A) Identification of key genes with areas under the receiving operating characteristic curve (AUCs) 

greater than 0.9 in The Cancer Genome Atlas (TCGA) and GSE66229. Red indicates up-regulated expression and blue, down-regulated. (B) 
Correlation of key gene expression with age and overall survival of gastric cancer patients in the TCGA dataset. Red indicates a positive 
correlation and blue, a negative correlation. *P < 0.05, **P < 0.01.  
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generated two clusters (Figure 7D) that were associated 

with overall survival (Figure 7E). Compared with 

cluster 2, cluster 1 gene expression in gastric cancer 

patients correlated with good prognosis. Interestingly, 

Th2 cells were upregulated in cluster 1, whereas mast 

cells were downregulated (Figure 7F). These immune 

cells clustered into three categories, with a significant 

negative correlation between Th2 cells and mast cells 

(Figure 7G). CEP55 expression was most positively 

associated with Th2 cells and negatively associated with 

mast cells (Figure 7H). FAM107A and ADH1B were 

positively associated with mast cells but negatively 

associated with Th2 cells. 

DISCUSSION 
 

The identification of early diagnostic and prognostic 

markers has important diagnostic and therapeutic 

implications for patients with gastric cancer [32]. In this 

study, we searched relevant genes that may have an 

impact on the overall survival of gastric cancer patients 

by identifying those persistently dysregulated during 

tumor development. Then, we identified potential 

marker genes for the diagnosis and prognosis of gastric 

cancer. Importantly, based on the expression of key 

genes, high- and low-risk patients groups with different 

overall survival were established. 

 

 
 

Figure 7. Key genes associated with the prognosis of gastric cancer patients. (A) The nomogram predicting overall survival in 

gastric cancer patients. (B) Plots depicting the calibration of the model in terms of agreement between predicted and observed one- and 
two-year outcomes. (C) Distribution of risk score, overall survival, and heatmap of the key genes in The Cancer Genome Atlas (TCGA) 
dataset. (D) Dendrogram of key genes in the TCGA dataset distinguished survival status by supervised hierarchical clustering. (E) Two 
clusters were associated with overall survival. (F) Differences in immune cell infiltration between clusters 1 (C1) and 2 (C2). (G) Correlation 
and clustering for immune cells. (H) Correlation between the expression of key genes and immune cell infiltration. 
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Our results showed that Th2 and mast cells were 

significantly infiltrated in gastric cancer patients. Strong 

infiltration by Th2 cells may be associated with early 

carcinogenesis and promote the activation of a tumor 

microenvironment that favors angiogenesis and 

metastasis [33]. Studies have shown that Th2 cell 

responses are associated with the development and 

progression of human gastric cancer [34]. Our analysis 

showed that infiltration by mast cells was lower in GC 

than in controls in all three datasets. This contrasts with 

reports that mast cell infiltration increases in gastric 

cancer tissues [35, 36]. This difference may be 

explained by the small sample size of normal tissues in 

our data. Survival analysis previously showed that mast 

cell infiltration was associated with worse prognosis in 

gastric cancer [37]. 

 

We screened DEGs with similar expression patterns by 

co-expression network analysis, and found significant 

correlations between them and gastric cancer or 

immune cells. The enrichment results of these genes 

showed that they were associated with immune 

inflammation and cancer-related biological functions. 

Recent studies have shown that T cell immunity may 

play an important role in the progression and prognosis 

of gastric cancer [38], including stage based on the 

“tumor, node and metastasis” system, depth of invasion, 

lymph node metastasis rate, and tumor immunity [39]. 

The proinflammatory cytokine interferon-β can exert 

antitumor activity by inhibiting angiogenesis, tumor 

growth, and metastasis [40]. The serum concentration of 

IL-21 in patients with gastric cancer is significantly 

higher than that in controls, so the cytokine may play 

some role in the development and progression of gastric 

cancer [41]. Activation of mitogen activated protein 

kinase (MAPK) p38 amplifies the inflammatory 

process, which in turn increases gastric cancer cell 

migration and invasion [42]. Inhibition of the 

JAK/STAT3 pathway in gastric tumor tissues reduces 

the inflammatory response, inhibits the inflammatory 

cytokines IL-1L, IL-6, and IL-1β, and decreases tumor 

volume [43]. In gastric cancer cells, activated PI3K/Akt 

signaling leads to NF-κB activation, which ultimately 

promotes cell migration and invasion [44]. TNF, a 

proinflammatory cytokine that can suppress some 

tumors when present at high concentrations, has 

attracted some attention as an anticancer therapy [45]. 

 

Given that gastric cancer is diagnosed at a late stage and 

has a poor prognosis, it is important to identify the 

molecular mechanisms and markers that influence its 

development. TLRs are recognized to be involved in 

different periods of gastric cancer progression and are 
gradually upregulated. Activation of TLR signaling 

pathways induces inflammatory cytokines and signaling 

pathways that play important roles in diseases such as 

cancer [46]. TLR2 is involved in the pathogenesis of 

gastric cancer, and high levels of TLR4 are also associated 

with a higher risk of this tumor type [47]. However, further 

studies are needed to determine the exact role of each TLR 

in the developmental mechanism of gastric cancer. 

 

In the present work, comprehensive survival analysis 

and Cox regression analysis found that upregulation of 

DPT and LRFN4 correlated with good prognosis in 

gastric cancer patients. DPT is significantly 

downregulated in gastric cancer tissues [48], and it may 

contribute to oral cancer metastasis [49]. DPT is also 

involved in the inhibition of proliferation of 

keratinocytes, osteosarcoma cells, and papillary thyroid 

carcinoma cells in mice [50]. The expression of LRFN4 

protein in cancer tissues is higher than in paracancerous 

tissues and benign gastric disease tissues [2]. Patients 

with high expression of LRFN4 had a higher survival 

rate than a low-expression group, and thus the potential 

protective role of LRFN4 in gastric cancer should be 

further explored [51]. Although we found no evidence 

that LOC100506388 affects prognosis in gastric cancer, 

our results suggest that expression of LOC100506388 

may help to predict the disease. 

 

We established an eight-gene hierarchical clustering 

based on signature genes associated with survival in 

gastric cancer. Survival curves showed that the overall 

survival of patients expressing cluster 1 was 

significantly longer than that of patients expressing 

cluster 2. This clustering analysis further demonstrates 

the important role of these feature genes when 

evaluating the survival of gastric cancer patients. 

 

Our study presents several limitations. The data for this 

study come from public databases and our results lack 

experimental validation. Our results should be validated 

in large studies. Our results considered only the 

developmental stage of gastric cancer and did not take 

into account other clinical features such as metastatic 

recurrence. More in-depth analysis is needed in future 

studies. 

 

CONCLUSIONS 
 

This bioinformatic study identified potential prognostic 

genes related to the development of gastric cancer that 

may be useful as potential markers and therapeutic 

targets. Our data support the potential of key genes, 

especially LRFN4, as diagnostic and prognostic 

biomarkers of gastric cancer. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. The principal component analysis for gastric cancer samples in The Cancer Genome Atlas (TCGA) 
and GSE66229 datasets. PC1: Principal component 1; PC2: Principal component 2. 


