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Abstract

Background

MicroRNAs (miRs) control gene expression and the development of the immune system

and antiviral responses. MiR-155 is an evolutionarily-conserved molecule consistently

induced during viral infections in different cell systems. Notably, there is still an unresolved

paradox for the role of miR-155 during viral respiratory infections. Despite being essential

for host antiviral TH1 immunity, miR-155 may also contribute to respiratory disease by

enhancing allergic TH2 responses and NFkB-mediated inflammation. The central goal of

this study was to define how airway miR-155 production is related to TH1, TH2, and pro-

inflammatory cytokine responses during naturally occurring viral respiratory infections in

young children.

Methods

Normalized nasal airway levels of miR-155 and nasal protein levels of IFN-γ, TNF-α, IL-1β,

IL-13, IL-4 were quantified in young children (�2 years) hospitalized with viral respiratory

infections and uninfected controls. These data were linked to individual characteristics and

respiratory disease parameters.

Results

A total of 151 subjects were included. Increased miR-155 levels were observed in nasal

samples from patients with rhinovirus, RSV and all respiratory viruses analyzed. High miR-

155 levels were strongly associated with high IFN-γ production, increased airway TH1 cyto-

kine polarization (IFN-γ/IL-4 ratios) and increased pro-inflammatory responses. High airway

miR-155 levels were linked to decreased respiratory disease severity in individuals with high

airway TH1 antiviral responses.
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Conclusions

The airway secretion of miR-155 during viral respiratory infections in young children is asso-

ciated with enhanced antiviral immunity (TH1 polarization). Further studies are needed to

define additional physiological roles of miR-155 in the respiratory tract of human infants and

young children during health and disease.

Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules that control gene expression and

critically regulate the development of the immune system and antiviral responses [1,2]. Nota-

bly, one of the most investigated miRNAs in immunology and virology is miR-155 [3–6]. The

interest in this molecule was initially motivated by the discovery that miR-155 is the only

miRNA substantially induced by the synthetic viral intermediate poly(I:C) or the host antiviral

interferon (IFN) response in macrophages [7]. Over the past decade many studies in humans

and animal models have confirmed that miR-155 is an evolutionarily-conserved molecule con-

sistently induced during viral infections in different cell systems [7–12]. Moreover, miR-155

has also been reported to have potent antiviral actions including the activation of CD4+ and

CD8+ T cell responses [8–10], the inhibition of SOCS1, the negative regulation of JAK/STAT

and IFN signaling [13], and the regulation of multiple TLRs including TLR2, TLR3, TLR4,

TLR7 and TLR8 [1,2]. As a result, miR-155 has been shown to enhance TH1 antiviral

responses against viruses in vivo [8,12].

Studies in human infants conducted by our team [14] and others [15] have identified abun-

dant airway production of miR-155 during naturally occurring infections caused by rhinovirus

(RV) or respiratory syncytial virus (RSV). However, there is still an important unresolved par-

adox for the role of miR-155 during viral respiratory infections. Despite being essential for the

generation of host antiviral TH1 immunity [3–12], miR-155 may also contribute to respiratory

disease by enhancing allergic TH2 responses [16–19] and NFkB-mediated inflammation in

macrophages and other bone marrow-derived immune cells [20–23]. Recent studies have

shown that miR-155 knockout (KO) mice have decreased lung inflammation and recover

faster from influenza infection [22]. Similarly, cigarette smoke-induced lung inflammation is

reduced in miR-155 KO mice and mitigated by anti-miR-155 treatment [23]. Collectively,

these data demonstrate that miR-155 has a powerful but unclear role fine-tuning host TH1/

TH2 antiviral immunity. Human-based studies are still needed to better understand the pro-

tective and/or pathogenic role(s) of miR-155 during viral respiratory infections.

The central goal of this study was to define, for the first time in human infants, how airway

miR-155 production is related to TH1, TH2, and pro-inflammatory cytokine responses during

naturally occurring viral respiratory infections. Our results provide novel evidence that high

miR-155 levels are associated with the presence of strong TH1 cytokine polarization (IFN-γ/

IL-4 ratios) as well as increased airway pro-inflammatory responses. These novel data highlight

the importance of investigating the secretory responses of miR-155 in the respiratory tract of

young children. The latter can have high impact since miR-155 may play a critical regulatory

role for both:1) the generation of protective host antiviral immunity; and 2) the balance of

TH1/TH2 inflammatory responses during viral respiratory infections that occur in early life.
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Methods

Study population

Young children (�2 years; n = 140) were recruited during hospitalization due to PCR-con-

firmed viral respiratory infection at Children’s National Health System (CNHS) in Washing-

ton, DC. We included age-matched controls without viral respiratory infection (negative viral

PCR) recruited during non-respiratory hospitalizations or outpatient/emergency department

visits (n = 11). Characteristics of the study subjects are presented in Table 1. All clinical and

demographic variables were obtained by reviewing electronic medical records (EMR) at

CNHS. The Institutional Review Board (IRB) of CNHS approved the study and granted a

waiver of informed consent given that this research involved materials (data, documents, rec-

ords, or specimens) collected solely for non-research purposes (clinical indications).

Nasal wash collection, viral PCR analysis, and cytokine measurements

Nasal secretions collected at the onset of acute respiratory illnesses for diagnostic purposes

were analyzed by a viral multiplex PCR panel for 12 targets (rhinovirus (RV), RSV A, RSV B,

Human Metapneumovirus (HMPV), parainfluenza 1–3, influenza A and B, H1N1, H1N3,

Adenovirus) (Luminex, TX, USA). Nasal protein levels of IFN-γ, TNF-α, IL-1β, IL-13, and IL-

4 were quantified by electrochemiluminescence (MesoScale, MD, USA).

Quantification of nasal airway miR-155 levels

Total RNA was first extracted from the nasal secretions using MirVana miRNA isolation kit

(Invitrogen, AM1560), following enrichment procedure for small RNAs as per manufacturer’s

protocol. For normalization we added a spike-in (Cel-mir-39-3p, sequence 5’-UCACCGGGU
GUAAAUCAGCUUG-3’, ThermoFisher miRNA mimic, Assay ID# MC10956, cat# 4464066)

to the viral nasal wash prior to mirVana mirna isolation protocol. Extracted RNA was then

reverse transcribed into cDNA. Quantitative real-time RT-PCR was used to measure miR-155

and Cel-mir-39 levels (TaqMan assay, ThermoFisher, MA, USA). The following primers were

used: Cel-mir-39 primer (ThermoFisher MicroRNA assay, Assay ID: 000200) Stem-loop

sequence of primer 5’UAUACCGAGAGCCCAGCUGAUUUCGUCUUGGUAAUAAGCUCGUCAUU
GAGAUUAUCACCGGGUGUAAAUCAGCUUGGCUCUGGUGUC-3’

HSA-mir-155 primer (ThermoFisher MicroRNA assay, Assay ID: 002623)

Table 1. Nasal airway miR-155 levels according to respiratory viruses in young children. RSV = human respiratory

syncytial virus, RV = human rhinovirus, HMPV = human metapneumovirus. �Virus frequency includes single and

mixed viral infections. �� miR-155 levels calculated with ΔΔCt method normalized to a spike in control (cel-miR-39)

and presented as median and IQR. ���p values relative to miR-155 values in the control (uninfected) group. No signifi-

cant differences were observed in miR-155 levels according to virus (Kruskal Wallis p = 0.83).

Virus N� Nasal miR-155 levels�� p-value���

Control 11 1.33 (0.1–3.8) Reference

All viruses 140 7.04 (1.6–37.9) 0.004

RSV 32 10.8 (1.4–34) 0.008

RV 82 4.56 (1.3–32.8) 0.014

Adenovirus 19 14.2 (3.4–234) 0.004

Parainfluenza 10 3.53 (1.2–21.8) 0.14

Influenza 10 25.3 (3.6–94) 0.04

HMPV 22 5.8 (1.3–39) 0.02

Mixed 36 4.54 (1.7–46.5) 0.01

https://doi.org/10.1371/journal.pone.0233352.t001
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Stem-loop sequence of primer 5’UUAAUGCUAAUCGUGAUAGGGGUUGUUCUUAUUAACA-
GACACCUAACAUGUUAGCAUUAGCU-3’

The delta Ct (ΔΔCt) method was used to calculate final miR-155 levels normalized to a

spike-in control (cel-mir-39, ThermoFisher, MA, USA).

Clinical and demographic variables

We collected demographic and clinical information from EMR to evaluate disease severity

including wheezing, retractions, supplemental O2 needs, respiratory rate, and heart rate at the

initial presentation. We combined these parameters into a composite respiratory distress score

as described [24] (S1 Table).

Data analysis

Descriptive statistics included Chi-square test for binary variables and non-parametric tests

(Wilcoxon test) for continuous variables. Comparisons of miR-155 levels and cytokines across

groups were done with Kruskal-Wallis test or Wilcoxon test as appropriate. Linear regression

models (univariate and multivariate) were built to examine the association between miR-155

levels and other molecular/clinical predictors with respiratory severity scores at initial presen-

tation. Significance was taken at the P < 0.05 level. (V.19 Minitab, Inc., PA, USA).

Results

Airway production of miR-155 during viral respiratory infection in early

life

A total of 151 subjects were included in this study. We found that relative to uninfected con-

trols (n = 11), young children (�2 years) hospitalized with viral respiratory infection (n = 140)

had significantly increased nasal levels of miR-155 (Table 1). No significant differences were

observed according to viral pathogen or mixed infections (Table 1). All viruses had increased

miR-155 levels relative to controls (uninfected group), although Parainfluenza did not reach

statistical significance likely due to the small number of cases (Table 1).

Baseline characteristics of all study subjects are shown in Table 2. Due to the presence of

non-parametric distribution and extreme miR-155 values, we used quartiles to define groups

of children with low (<25th percentile), medium (25-50th percentile) or high (>75th percen-

tile) airway miR-155 levels. We did not identify significant differences in demographics or

baseline clinical characteristics among the individuals with low, medium or high airway miR-

155 levels during viral respiratory infections (Table 2).

MiR-155 production is associated with stronger airway TH1 and pro-

inflammatory responses in young children with viral respiratory infections

To begin to understand the physiological function of miR-155 in the airways during early life,

we examined the nasal cytokine responses of the children with viral respiratory infections

(n = 140) according to individual miR-155 levels. As shown in Fig 1, we found that those with

the highest miR-155 airway levels (>75th percentile) had significantly higher TH1 antiviral

cytokine responses (IFN-γ) and increased production of pro-inflammatory (TNF-α, IL-1β)

and TH2 cytokines (IL-4, IL-13). Importantly, we also identified that high miR-155 airway lev-

els were strongly associated with increased TH1 cytokine polarization (IFN-γ/IL-4 ratios, Fig 2

or IFN-γ /IL-13 ratios S1 Fig). The subset of subjects with the highest virus-induced TH1 cyto-

kine polarization (IFN-γ/IL-4 ratios>75th percentile; n = 34) also had significantly higher

pro-inflammatory responses (TNF-α, IL-1β levels) and increased normalized miR-155 levels
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(Fig 3). We did not identify a significant difference in IL-13 responses subjects with the highest

virus-induced TH1 cytokine polarization (p = 0.08). These data indicate that there is a subset

of young children with viral respiratory infections characterized by a distinct airway molecular

signature that includes high miR-155 levels and high TH1/pro-inflammatory responses.

Table 2. Baseline characteristics of study subjects: VRI = viral respiratory infection, RSV = human respiratory syncytial virus, RV = human rhinovirus,

HMPV = human metapneumovirus. �Percentage of each virus includes single and mixed viral infections.��p values obtained by Kruskal-Wallis test for continuous vari-

ables and logistic regression for binary variables (RV reference group for viral pathogens).

Variable Controls VRI High miR-155 VRI Medium miR-155 VRI Low miR-155 ��p-value

Total number of subjects, n 11 35 70 35 -

Age in years, median 0.81 0.99 1.13 1.11 0.36

Male (%) 63 60 65 60 0.94

Black race/ethnicity (%) 64 46 59 66 0.77

Preterm (%<37 weeks gestation) 40 31 50 48 0.18

Viral pathogen �

RV (%) - 63 60 51 0.59

RSV (%) - 25 23 20 0.94

HMPV (%) - 17 16 14 0.85

Parainfluenza (%) - 9 9 3 0.52

Influenza (%) - 3 7 11 0.77

Adenovirus (%) - 6 13 23 0.10

Mixed (%) - 23 25 28 0.97

https://doi.org/10.1371/journal.pone.0233352.t002

Fig 1. Nasal miR-155 levels stratified as high (>75th%ile), medium (25-75th%ile), or low (<25th%ile) demonstrate that young children with high miR-155 levels during

viral respiratory infections (green boxplots) have higher airway production of (A) IFN-γ, (C) TNF- α, (C) IL-1β, (D) IL-4 and (E) IL-13.

https://doi.org/10.1371/journal.pone.0233352.g001

PLOS ONE Airway mir-155 and TH1 cytokine polarization in early-life viral respiratory infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0233352 May 22, 2020 5 / 12

https://doi.org/10.1371/journal.pone.0233352.t002
https://doi.org/10.1371/journal.pone.0233352.g001
https://doi.org/10.1371/journal.pone.0233352


Nasal airway miR-155 levels and clinical severity during viral respiratory

infections in young children

We also examined the association between nasal airway miR-155 responses and the severity

of viral respiratory infections using respiratory distress scores that included wheezing,

retractions, supplemental O2 needs, respiratory rate, and heart rate at the initial presenta-

tion (S1 Table). Given that miR-155 and pro-inflammatory nasal airway responses (TNF-α,

IL-1β) were significantly different in children with high TH1 polarization (IFN-γ:IL-4 ratios

>75th percentile, Fig 3), we subdivided our study subjects according to high TH1 vs. non-

high TH1 status. Notably, we found that higher nasal miR-155 levels and higher IFN-γ anti-

viral responses were significantly associated with lower severity scores independently of age

and RSV status in the subset of young children with high TH1 polarization (Table 3). How-

ever, this association was not present in the rest of the children with viral respiratory infec-

tions (IFN-γ/IL-4 ratios �75th percentile; n = 106, Table 3). In individuals with high TH1

polarization we also found that higher severity scores were linked to previously identified

risk factors for severe viral respiratory infection in young children [24–27] including pre-

term status (<37 weeks gestation), black race and RSV status adjusted by younger age

(Table 3).

Fig 2. Nasal miR-155 levels stratified as high (>75th%ile), medium (25-75th%ile), or low (<25th%ile)

demonstrate that young children with high miR-155 levels during viral respiratory infections (green boxplots)

have higher airway TH1 cytokine polarization (IFN-γ:IL-4 ratios, calculated with protein concentration pg/ml).

https://doi.org/10.1371/journal.pone.0233352.g002
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Discussion

This study provides novel human-based molecular insights about the regulation of antiviral

airway responses during early life. We identified that miR-155 is increased in the nasal aspi-

rates of young children (�2 years) during viral infections independent of the causative respira-

tory virus. We also examined for the first time the in vivo correlation of nasal miR-155

Fig 3. Individuals with a high TH1 polarization profile (IFN-γ:IL-4 ratios>75th%tile; red boxplots; n = 34) have a

distinct airway molecular signature characterized by higher nasal miR-155 levels and increased nasal protein levels

of pro-inflammatory cytokines (TNF-α, IL-1β) relative to the rest of study subjects (IFN-γ:IL-4 ratios�75th

percentile; yellow boxplots; n = 106). Nasal levels (y axis) correspond to protein concentration (pg/ml) for TNF-α, IL-

1β and to normalized expression for miR-155 (ΔΔCt method normalized to a spike in control cel-miR-39).

https://doi.org/10.1371/journal.pone.0233352.g003

Table 3. Airway miR-155, TH1 responses and clinical severity during viral respiratory infections. RV = human rhinovirus, RSV = human respiratory syncytial virus.
�High TH1 group defined as IFN-γ:IL-4 ratios>75th%tile, ��Regression model adjusted by age and RSV status.

High TH1 group (n = 34)� Non-high TH1 group (n = 106)

Univariate Adj. Model�� Univariate Adj. Model��

Respiratory severity

score

Effect estimate

(β)

p-value Effect estimate

(β)

p-value Respiratory severity

score

Effect estimate

(β)

p-value Effect estimate

(β)

p-value

MiR-155 -0.005 0.04 -0.005 0.04 MiR-155 0.002 0.47 0.002 0.46

IFN-γ -0.0004 0.02 -0.0004 0.02 IFN-γ -0.0004 0.24 -0.006 0.11

IL-1β 0 0.96 0 0.98 IL-1β -0.0003 0.52 -0.0003 0.43

TNF-α -0.0007 0.54 -0.001 0.21 TNF-α -0.0001 0.88 -0.0001 0.82

Age -1.31 0.15 -1.64 0.04 Age -0.58 0.14 -0.53 0.18

Sex -1.13 0.32 -0.73 0.49 Sex 0.73 0.28 0.71 0.29

Black race 3.31 0.002 3.0 0.004 Black race -1.005 0.123 -0.96 0.14

Preterm 3.8 0.001 3.07 0.006 Preterm 0.961 0.138 1.27 0.05

RV 0.90 0.44 1.28 0.28 RV -1.2 0.07 -1.2 0.06

RSV 2.60 0.09 3.49 0.02 RSV 0.92 0.28 0.78 0.36

https://doi.org/10.1371/journal.pone.0233352.t003
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responses, individual airway cytokine profiles, and clinical severity during naturally occurring

viral respiratory infections in young children. The importance of these data is that miR-155 is

an evolutionarily-conserved molecule with essential but still unclear roles promoting both

TH1 antiviral immunity [3–12], as well as TH2 allergic inflammation [16–19]. Thus, there is

increasing interest in defining the precise role(s) of miR-155 in human airway immunity and

in the pathobiology of airway diseases such as COPD [23], asthma [28], and viral respiratory

infections in young children [14,15].

Over the past decade many studies have identified that miR-155 is a master regulator of the

immune system [1,2]. Indeed, there is strong evidence that miR-155 controls CD8+ and CD4

+ T cell activation, proliferation, and cytokine production in vitro and in vivo during viral

infection (8–10). MiR-155 also plays a crucial role in the generation of protective adaptive

immune responses in B-cells, including antigen presentation and antibody production [3].

Several studies have reported that miR-155 is essential for the generation of TH2-mediated

inflammation as well [16–19]. Dendritic cells [16] and type 2 innate lymphoid cells [19]

derived from miR-155(-/-) KO mice have limited TH2 priming capacity.Additionally,CD4

+ TH2 cells require intrinsic miR-155 expression for type-2 immune polarization [18]. This

experimental evidence has led to the notion that miR-155 may be a potential target to alleviate

TH2-driven conditions, including allergic asthma [17,28]. Nonetheless, most of this evidence

is derived from animal models and the physiological function of miR-155 in the human air-

ways during health and disease is still poorly understood. Filling this void is critically necessary

before pursuing miR-155-based clinical applications. Our current study begins to address this

gap with new data about the human airway miR-155 responses during viral respiratory infec-

tions in early life. Specifically, we identified that high miR-155 levels are associated with

increased production of TH1 (IFN-γ) and TH2 cytokines (IL4, IL-13) in the nasal airways of

young children with viral respiratory infections. Although miR-155 was linked to smaller

changes in IL-4 and IL-13 (Fig 1), it is possible that subtle changes may be biologically relevant

for allergic inflammation. Thus, these results are in line with the reported dual role of miR-155

promoting TH1 (antiviral) [3–12] and TH2 (allergic) responses [16–19]. However, in our

study we also identified that high miR-155 levels were primarily associated with enhanced

TH1 cytokine polarization (greater IFN-γ/IL-4 ratios, Fig 2), indicating that, although miR-

155 likely has several effects in the airways, the overall physiological role of miR-155 in human

infants and young children appears to be the upregulation of host antiviral immunity during

viral respiratory infections.

MiR-155 is also a robust marker of pro-inflammatory responses in different cell systems

[20–23]. There is compelling evidence demonstrating that miR-155 is highly expressed in mac-

rophages, dendritic cells, as well as T and B lymphocytes [1–3] and is selectively exported by

these cells in exosomes to allow cell-to-cell communication and amplification of pro-inflam-

matory responses in the lungs [29]. Thus we believe that the association between high miR-155

levels and TH1 cytokine polarization in our study is likely the result of multiple processes dur-

ing viral infections: 1) the secretion of exosomes containing miR-155 triggered by respiratory

viruses [14,29]; 2) the effects of miR-155 promoting pro-inflammatory responses and a TH1

bias [3–12]; and 3) the positive feedback generated by TH1 and other pro-inflammatory cyto-

kines that induce miR-155 production [7,30]. Together, these processes may lead to an auto-

crine/paracrine loop in the airways to promote TH1 polarization in individuals with high

miR-155 levels during viral respiratory infections. Nonetheless, there are alternative explana-

tions for the link between miR-155 and TH1 responses. For instance, given that viral loads

were not obtained in this study, it is also possible that the production of miR-155 could have

been driven by higher viral replication. Thus the production of miR-155 and IFN-y (as well as

other cytokines) might be similarly upregulated by another factor (such as viral load or timing
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of infection). In addition, it is important to clarify that our findings only pertain to the nasal

airway mucosa since respiratory viruses may be acting differently in nasal or bronchial cells

inducing miRNA-155.

Our results also suggest that in the setting of a viral respiratory infection, the interplay

between miR-155 and TH1 responses may promote additional pro-inflammatory responses in

the airways. Specifically, we found that: 1) young children with high miR-155 nasal levels dur-

ing viral infection had increased production of pro-inflammatory cytokines (TNF-α, IL-1β);

and 2) the individuals with the highest levels of TH1 cytokine polarization had higher TNF-α
and IL-1β levels. These data indicate that there is a subset of young children with viral respira-

tory infections characterized by high miR-155 levels and high TH1/pro-inflammatory

responses. Notwithstanding the compelling evidence linking miR-155 with pro-inflammatory

responses [20–23], it is relevant to note that the mechanisms by which miR-155 controls

inflammation are complex and appear to be cell specific due to context-dependent miR-155

targeting and regulation of gene expression [5,6]. Certainly, there is compelling evidence dem-

onstrating that in bone marrow-derived immune cells (e.g. macrophages), miR-155 potentiates

NF-κB activity and induces the production of pro-inflammatory cytokines (e.g. TNF-α) via

suppression of SHIP1 and SOCS1 (miR-155 targets) [21]. Conversely, studies in endothelial

cells have identified that miR-155 can inhibit NF-kB-driven inflammation by targeting RELA

(p65/NF-kB) directly [31]. Indeed, RELA contains highly conserved miR-155-binding sites in

its 3’-UTR, and experimental evidence (gene reporter assays) has confirmed that miR-155 can

bind to these target sites to suppress NF-kB activation in endothelial cells [31]. Other studies

have reported additional cytoprotective effects of miR-155 on these cells [32,33]. Thus, we

believe that additional studies are needed to examine the actions of miR-155 in a cell specific

and context-dependent manner because miR-155 targets and companion functional outcomes

may vary across different human airway cell types and in the presence of different immune

and inflammatory mediators.

In concert with the above observations, it is noteworthy that in our study the association

between clinical severity and miR-155 responses during viral infections was context-depen-

dent and varied according to the individual airway TH1 responses. Specifically, we found that

higher miR-155 levels were associated with lower respiratory disease severity in the subset of

children with the highest TH1 responses but not in the rest of children (Table 2). In children

with high TH1 polarization, we also observed that less clinical severity was linked to a higher

production of IFN-γ but not of other cytokines associated high miR-155 levels (TNF-α, IL-1β,

Fig 3 and Table 2). Collectively, these findings suggest that the evolutionarily-conserved func-

tion of miR-155 in the airways of human infants is primarily to provide host protection by

enhancing antiviral immunity during early life (e.g. TH1 responses). Nonetheless, it is possible

that the airway production of miR-155 in different contexts (e.g. smoke inhalation) may

amplify inflammatory responses and lead to greater respiratory disease severity [23], particu-

larly in individuals prone to develop severe airway inflammatory responses (e.g. asthma or

COPD) [23,28].

In conclusion, the present study examined the airway production of miR-155 in young chil-

dren during in vivo viral respiratory infections. The results provide new evidence that miR-155

is strongly linked to high IFN-γ production and enhanced airway TH1 cytokine polarization

(IFN-γ/IL-4 ratios). High airway miR-155 levels were linked to decreased respiratory disease

severity in individuals with high TH1 antiviral responses. These observations are consistent

with the collection of evidence implicating crucial roles for miR-155 in regulating antiviral air-

way responses in several animal models and cell systems [3–23]. Our current results demon-

strate that miR-155 is also relevant to the immunobiology of the human airways during early

life, and they highlight the need to conduct additional studies to better define the physiological
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role(s) of the secretory responses of miR-155 in the respiratory tract of human infants and

young children.
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S1 Fig. Nasal miR-155 levels stratified as high (>75th%ile), medium (25-75th%ile), or low

(<25th%ile) demonstrate that young children with high miR-155 levels during viral respi-

ratory infections have higher airway TH1 cytokine polarization (IFN-γ:IL-13ratios).
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