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Affective pictures are widely used in studies of human emotions. The objects or scenes
shown in affective pictures play a pivotal role in eliciting particular emotions. However,
affective processing can also be mediated by low-level perceptual features, such as local
brightness contrast, color or the spatial frequency profile. In the present study, we asked
whether image properties that reflect global image structure and image composition
affect the rating of affective pictures. We focused on 13 global image properties that
were previously associated with the esthetic evaluation of visual stimuli, and determined
their predictive power for the ratings of five affective picture datasets (IAPS, GAPED,
NAPS, DIRTI, and OASIS). First, we used an SVM-RBF classifier to predict high and
low ratings for valence and arousal, respectively, and achieved a classification accuracy
of 58–76% in this binary decision task. Second, a multiple linear regression analysis
revealed that the individual image properties account for between 6 and 20% of the
variance in the subjective ratings for valence and arousal. The predictive power of the
image properties varies for the different datasets and type of ratings. Ratings tend to
share similar sets of predictors if they correlate positively with each other. In conclusion,
we obtained evidence from non-linear and linear analyses that affective pictures evoke
emotions not only by what they show, but they also differ by how they show it. Whether
the human visual system actually uses these perceptive cues for emotional processing
remains to be investigated.

Keywords: experimental aesthetics, affective pictures, image properties, emotion, subjective ratings

INTRODUCTION

Affective pictures have become increasingly popular in psychological, neuroscientific and clinical
research on emotions over the last two decades (Horvat, 2017). According to the Web of Science
database, the number of articles that cite publications retrieved under the topic “affective picture”
rose from 34 articles in the year 2000 to 3,590 articles in the year 2018. Researchers have
studied the role of affective pictures in cognitive and physiological processes such as fluency,
autonomic arousal, pupil size and facial expression (Bernat et al., 2006; Bradley et al., 2008;
Albrecht and Carbon, 2014; Lang et al., 1993; Lench et al., 2011; Snowden et al., 2016). Their effect
on neurophysiological processes has been investigated using event-related potentials (Junghöfer
et al., 2001; Olofsson et al., 2008; Weinberg and Hajcak, 2010) and fMRI (Satpute et al., 2015).
In group studies, emotional pictures have been used, for example, to study gender differences
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(Sabatinelli et al., 2004; Lithari et al., 2010), mental
illness (Shapira et al., 2003) and child development
(McManis et al., 2001).

Visual material is particularly effective in eliciting emotions
in human observers (Lench et al., 2011). It is generally believed
that pictorial content plays a decisive role in evoking emotions
when humans view affective images (Weinberg and Hajcak,
2010). However, physical image properties that represent low-
level perceptual features can also have an effect on emotional
processing (Delplanque et al., 2007; Satpute et al., 2015). The
human visual system processes low-level features fast and
automatically, allowing humans to recognize not only the general
meaning of scenes (Oliva and Torralba, 2006) at a glance (“gist
perception,” Bachmann and Vipper, 1983), but also to evaluate
affective aspects of images, such as their esthetic value (Cupchik
and Berlyne, 1979; Mullin et al., 2017; Verhavert et al., 2017;
Schwabe et al., 2018). Examples of low-level features studied
in affective pictures are image brightness (Lakens et al., 2013;
Kurt et al., 2017), color (Bekhtereva and Muller, 2017) and
spatial frequency content (Delplanque et al., 2007; De Cesarei and
Codispoti, 2013; Muller and Gundlach, 2017). In a recent study,
Rhodes et al. (2019) compared the Fourier amplitude spectra of
aversive and neutral pictures. The authors showed that a support
vector machine (SVM) can learn to discriminate between the two
picture categories with an accuracy of 70%, based on the spectral
amplitude information. However, because swapping amplitude
spectra between picture categories did not affect the ratings, the
authors concluded that the amplitude differences were actually
not used by the human visual system to discriminate between the
affective picture categories.

Less well investigated is the question of whether image
properties of higher order, which reflect global image structure
or image composition, may be involved in emotional processing
of affective pictures. For example, a gun presented in a blurry,
low-contrast and almost colorless photograph may evoke a higher
aversive reaction than the same object presented in a attractive
advertisement that is well balanced in brightness, color and image
composition. By the same token, intrinsically pleasant scenes may
be photographed in various ways that follow esthetic principles.
As an example, erotic pictures, which are rated as positive and
highly arousing, usually depict more or less symmetric bodies
arranged in a stereotypically ordered manner. The influence
of stimulus properties that are independent of specific content
may be particularly relevant for studies demonstrating effects
that arise as early as 100–200 ms during the neurophysiological
processing of emotional stimuli (Junghöfer et al., 2001; Hindi
Attar and Müller, 2012). To summarize and to put it simply,
affective pictures are likely to evoke emotions not only by what
they show, but also by how they show it.

The dichotomy between the processing of pictorial content
and form has been an issue also in the field of experimental
esthetics. On the one hand, it is clear that esthetic experience
depends on image content, cultural context and the viewer’s
familiarity and expertise, which are subject to cognitive
processing to a large extent (Jacobsen, 2006; Cupchik et al., 2009;
Redies, 2015). For example, Gerger et al. (2014) demonstrated
that the esthetic judgments of both artworks and affective images
depend on whether the stimuli are presented in an art context

(“This is an artwork.”) as compared to a non-art context (“This
is a press photograph.”). On the other hand, researchers have
identified several formal image properties that are associated
with visually pleasing images, such as high-quality photographs
and artworks (Graham and Redies, 2010; Sidhu et al., 2018).
Not surprisingly, many of these properties represent global
features in images, i.e., they reflect the spatial arrangement of
pictorial elements across the image (Brachmann and Redies,
2017). The search for stimulus properties that render stimuli
visually pleasing originated in the 19th century, when the founder
of experimental esthetics, Gustav Theodor Fechner, investigated
whether human observers generally prefer rectangles whose sides
follow the golden ratio (Fechner, 1876). However, his conclusions
on the role of the golden ratio in visual preference was not
confirmed by rigorous psychological testing (McManus et al.,
2010). Recently, modern computational methods have allowed
us to identify a number of global image properties that can
be associated with visually pleasing images (for a review, see
Brachmann and Redies, 2017). For example, some properties
reflect summary statistics of luminance changes, such as edge
complexity (Forsythe et al., 2011; Bies et al., 2016; Güclütürk
et al., 2016), color statistics (Palmer and Schloss, 2010; Mallon
et al., 2014; Nascimento et al., 2017), or particular Fourier spectral
properties (Graham and Field, 2007; Redies et al., 2007b). Other
properties describe the fractal nature and self-similar distribution
of luminance and color gradients (Redies et al., 2012; Spehar
et al., 2016; Sidhu et al., 2018; Taylor, 2002; Taylor et al., 2011)
or other regularities in the spatial layout of such basic pictorial
features across images (Brachmann et al., 2017; Redies et al.,
2017). Several of the above-mentioned properties of pleasing
images exhibit regularities that are shared by natural scenes
(Graham and Field, 2007; Redies et al., 2007b, 2012; Nascimento
et al., 2017; Taylor, 2002; Taylor et al., 2011), but differences
between the image categories have also been described (Redies
et al., 2007a; Schweinhart and Essock, 2013; Montagner et al.,
2016). The human visual system is adapted to process the
statistics of the natural environment efficiently (Olshausen and
Field, 1996). Because natural and visually pleasing images share
some formal characteristics, it has been speculated that efficient
processing might be the basis of esthetic perception as well
(Redies, 2007; Renoult et al., 2016). A causal link between some
of the image properties and visual preference has been established
experimentally (Schweinhart and Essock, 2013; Jacobs et al., 2016;
Spehar et al., 2016; Nascimento et al., 2017; Grebenkina et al.,
2018; Menzel et al., 2018). Interestingly, human observers often
perceive images with Fourier spectra that deviate from natural
(scale-invariant) statistics as unpleasant (Juricevic et al., 2010;
O’Hare and Hibbard, 2011).

In summary, global image properties have been linked to
visual preference and/or esthetic experience in diverse types of
natural, artificial and artistic visual material. In the present study,
we show that these properties can be used to predict emotional
responses to affective pictures from five published datasets. The
details of the datasets are listed in Table 1.

One of the most widely used datasets in behavioral research
is the International Affective Picture System (IAPS; Lang et al.,
2008). It contains 1182 color pictures of pleasant, neutral and
unpleasant content across the entire affective space, including
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human faces, landscapes, animals, various objects, erotica, press
photographs of war and catastrophes, severe injuries, mutilation
and corpses. The IAPS was established as a dataset freely available
to researchers, in order to enable a comparison between studies.
Together with each image, Lang et al. (2008) published ratings for
valence (ranging from pleasant to unpleasant), arousal (ranging
from calm to excited) and aspects of dominance or control. For
an assessment of these three emotional dimensions, the authors
used a self-assessment manikin (SAM). SAM is a non-verbal
method that permits intercultural comparisons and the inclusion
of participants at a very young age (Bradley and Lang, 1994). To
complement and extend the IAPS database, e.g., to increase the
number of images with specific content, a number of additional
databases have been developed in recent years (e.g., for EEG
studies; Dan-Glauser and Scherer, 2011; Horvat, 2017). In the
present study, we did not attempt to analyze all of these datasets
because they are too numerous and diverse. Instead, we focused
on the following datasets (Table 1), which have been widely used
in recent years.

The Geneva Affective Picture Database (GAPED; Dan-Glauser
and Scherer, 2011) contains 730 pictures that focus on four
specific negative contents: Spiders, snakes, and scenes that relate
to violation of moral/ethical (internal) or legal (external) norms.

Two other subsets depict images with neutral or positive content
(Table 1). With the dataset, the authors provide scores for
valence, arousal and for acceptability with respect to internal
or external norms.

The Nencki Affective Picture System (NAPS; Marchewka et al.,
2014) contains 1356 high-quality photographs divided into five
categories (people, faces, animals, objects, and landscapes), which
were rated according to their valence and arousal and along the
approach-avoidance dimension. Moreover, some basic physical
properties (luminance, contrast, complexity and entropy of the
gray-level intensity histograms) are available for this dataset.
The authors also published a partially overlapping dataset of
886 pictures, which focused on fear induction and can be used
in phobia research (NAPS-SFIP; Michalowski et al., 2017), as
well as a dataset of 200 unrated erotic pictures (NAPS-ERO;
Wierzba et al., 2015).

The Open Affective Standarized Image Set (OASIS; Kurdi et al.,
2017) comprises 900 color images in four distinct categories
(humans, animals, objects and scenes) that cover a wide variety
of themes and were rated for valence and arousal.

Finally, the Disgust-Related Images (DIRTI) constitute a
dataset of 240 high-quality pictures that focus on disgust
(Haberkamp et al., 2017) and were rated for valence, arousal, and

TABLE 1 | Details of the affective image datasets analyzed.

Database Image categories n Image size (pixel) Rating terms Rating scale References

International
Affective Picture
System (IAPS)

Humans, animals,
objects and scenes

1182 1024 × 768 valence, arousal
dominance

1–9 (SAM) Lang et al. (2008)

Geneva Affective
Picture Database

728 640 × 480 valence, arousal Continuous rating
scale from 1 to100

Dan-Glauser and
Scherer (2011)Subsets:

(GAPED) - animal mistreatments
(GAPED-A)

124 external/internal
norms

- human concerns
(GAPED-H)

105 external/internal
norms

- neutral (GAPED-N) 89

- positive (GAPED-P) 120

- snakes (GAPED-Sn) 132

- spiders (GAPED-Sp) 158

Nencki Affective
Picture System
(NAPS)

People, faces, animals,
objects and landscapes
(NAPS-H)

1356 1600 × 1200 valence
arousal
avoiding/approaching
behavior

1–9 steps Marchewka et al.
(2014)

- set of fear-inducing
pictures (NAPS-SFIP)

886 1024 × 768 valence
arousal
fear

1–5 (also with SAM) Michalowski et al.
(2017)

- set of erotic pictures
(NAPS-ERO)

200 1600 × 1200 - (no rating available) Wierzba et al.
(2015)

Open Affective
Standarized Image
Set (OASIS)

humans, animals,
objects and scenes

900 500 × 400 valence
arousal

1–7 (Likert scale) Kurdi et al. (2017)

Disgust-Related
Images (DIRTI)

Food, body products,
(dead) animals,
injuries/infections and
hygiene

300 1024 × 768 valence
arousal
disgust
fear

1–9 steps Haberkamp et al.
(2017)

n, number of images; SAM, self-assessment manikin.
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fear. The authors proposed that this dataset might be particularly
useful for psychiatric studies.

In the present study, we ask whether global image properties
allow us to predict the ratings of the five affective picture
databases introduced above. The set of predictors used in our
study cover aspects of color, symmetry, complexity and self-
similarity as well as the distribution and variances of color and
luminance edges in the images. These properties were selected
because they cover a wide range of global image features that
were previously shown to be associated with esthetic judgments
of images. In the present study, we investigate to what extent
the five datasets differ in their image properties and whether
particular patterns of image properties can predict the ratings
of specific emotions. We use two independent approaches for
this purpose. First, by using machine learning, we study to
what degree a non-linear approach can predict valence and
arousal ratings. Second, we use multiple linear regression to assess
which linear combination of properties predicts the affective
ratings best. We conclude by discussing the implications of
our findings for future experimental studies using the affective
picture datasets.

MATERIALS AND METHODS

Affective Picture Datasets
The datasets were downloaded from the webpages mentioned in
the original publications (DIRTI1, GAPED2, IAPS3, NAPS4, and
OASIS5). The characteristics of the datasets are listed in Table 1.
Two images from the GAPED database were not included in the
analysis for technical reasons.

We considered it inappropriate to analyze the datasets
together as one joint dataset because they differ in several
important aspects. First, the scales for the rating terms (valence,
arousal etc.) diverge between the datasets (Table 1). Second, we
observed differences in the mean values for almost all image
properties between the datasets (except for 2nd-order entropy;
Table 2). Third, the correlations between the ratings vary between
the datasets (Table 3).

Image Properties
For each image, we calculated thirteen image properties that
covered diverse aspects of global image structure, as described in
the following paragraphs. These properties were selected from an
even larger set of image properties, which our group has studied
previously in visual artworks and other visually pleasing images
(for references, see below). From the original set, we omitted
properties that correlated strongly with each other (Braun et al.,
2013; Redies et al., 2017; Brachmann, 2018). Overall correlations
between the remaining properties used in the present study are
listed in Supplementary Table S1 for all datasets together.

1https://zenodo.org/record/167037#.XegL5y2$\times$9E4
2https://www.affective-sciences.org/researchmaterial
3https://csea.phhp.ufl.edu/Media.html
4http://naps.nencki.gov.pl
5https://db.tt/yYTZYCga

Color Values (HSV Color Channels)
Color plays an important role in human preference for
images (Palmer and Schloss, 2010; Mallon et al., 2014;
Nascimento et al., 2017), and in the rating of affective
pictures (Bekhtereva and Muller, 2017). In the present study,
color was analyzed in the Hue-Saturation-Value (HSV) color
space, which consists of channels for hue (H), saturation (S),
and value (V), respectively. In a previous study, our group
demonstrated that the three channels in this space relate
to the beauty ratings of abstract artworks (Mallon et al.,
2014). We converted the original RGB-coded pictures into the
HSV color space and calculated the average pixel value for
each of the three channels by using the rbg2hsv algorithm
of the MATLAB Toolbox (The MathWorks, Natick, MA,
United States, Release 2012a).

Symmetry
Scientists and artists have claimed that symmetry is a
fundamental and universal principle of esthetics, to which
the human brain is particularly sensitive (for a review, see Bode
et al., 2017). To measure symmetry, we used filter responses
from the first layer of a convolutional neural network (CNN)
that closely match responses of neurons in the visual cortex of
higher mammals (Brachmann and Redies, 2016). This approach
has the advantage that it captures a higher-order symmetry not
only based on the color, edges and texture of images, but also on
shapes and objects, thereby performing closer to human vision.
We calculated left-right and up-down symmetry according to the
algorithm provided by Brachmann and Redies (2016).

Edge Density
In general, human observers prefer an intermediate level of
complexity in visual stimuli (Berlyne, 1971; Spehar et al., 2016),
but there are large between-subject differences (Güclütürk et al.,
2016). As a measure of image complexity, we summed up all
edge responses in Gabor-filtered images in the present study,
as described in detail by Redies et al. (2017). Our complexity
measure correlates highly with other complexity measures that
are based on luminance gradients and relate to subjective
complexity (Braun et al., 2013).

Self-Similarity
Traditional Western oil paintings are characterized by
an intermediate to high degree of self-similarity (Redies
et al., 2012). In the present study, we calculated self-
similarity with a derivative of the PHOG descriptor, which
measures how similar the histograms of orientated gradients
(HOGs; Dalal and Triggs, 2005) for parts of an image are
compared to the histogram of the entire image. We reduced
each image to 100,000 pixels size and used 16 equally
sized orientation bins covering 360◦ for the histograms.
Histograms at levels 1–3 were compared to the ground level
histogram. For a detailed description of the method, see the
appendix in Braun et al. (2013).

Fourier Slope
In radially averaged log-log plots of spectral power versus spatial
frequency, the slope of a straight line (here called Fourier slope)
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TABLE 2 | Mean values (±standard deviation) of the statistical image properties for each dataset of affective pictures.

Image property IAPS (n = 1,182) GAPED (n = 728) NAPH-H (n = 1,356) NAPS-SFIP (n = 886) OASIS (n = 900) DIRTI (n = 300)

H-channel*** 0.300 (0.153) 0.296 (0.154) 0.316 (0.116) 0.317 (0.125) 0.291 (0.175) 0.270 (0.113)

S-channel*** 0.451 (0.177) 0.327 (0.153) 0.524 (0.148) 0.349 (0.163) 0.338 (0.199) 0.282 (0.141)

V-channel*** 0.510 (0.154) 0.524 (0.133) 0.332 (0.123) 0.529 (0.123) 0.521 (0.152) 0.600 (0.114)

Symmetry left/right*** 0.449 (0.089) 0.480 (0.092) 0.465 (0.089) 0.481 (0.089) 0.467 (0.107) 0.474 (0.010)

Symmetry up/down*** 0.418 (0.084) 0.451 (0.090) 0.419 (0.089) 0.427 (0.096) 0.418 (0.108) 0.453 (0.099)

Edge density*** 101.07 (41.91) 100.38 (41.59) 108.62 (37.57) 110.81 (40.68) 99.79 (47.98) 93.14 (46.12)

Self-similarity*** 0.609 (0.106) 0.692 (0.132) 0.629 (0.105) 0.634 (0.114) 0.609 (0.132) 0.637 (0.117)

Fourier slope*** −2.86 (0.34) −2.88 (0.32) −2.73 (0.34) −2.67 (0.34) −2.75 (0.41) −2.71 (0.35)

Fourier sigma*** 0.020 (0.027) 0.072 (0.055) 0.010 (0.011) 0.011 (0.012) 0.034 (0.029) 0.011 (0.013)

1st-order entropy** 4.28 (0.32) 4.25 (0.38) 4.25 (0.33) 4.23 (0.35) 4.23 (0.36) 4.27 (0.34)

2nd-order entropy 4.39 (0.19) 4.39 (0.22) 4.40 (0.17) 4.40 (0.17) 4.38 (0.19) 4.36 (0.23)

Variance Pa (× 10−5)*** 25.03 (12.62) 22.99 (11.62) 22.06 (10.9) 22.95 (12.0) 29.21 (17.83) 23.06 (12.84)

Variance Pf (× 10−5)*** 2.02 (0.66) 1.64 (0.67) 2.01 (0.67) 1.89 (0.68) 1.88 (0.76) 1.83 (0.72)

Values differ significantly between datasets at ∗∗p < 0.01, ∗∗∗p < 0.001 (Kruskal-Wallis test, df = 5).

TABLE 3 | Mean, SD, Spearman Coefficients r (upper segments) and p-values (lower segments) for the subjective ratings of the affective image datasets.

Dataset Range of Scale Rating Mean SD 1 2 3 4

IAPS 1–9 1. Valence 5.03 1.77 - −0.24 0.05

2. Arousal 4.81 1.15 <0.001 – −0.02

3. Dominance 5.16 1.08 0.08 0.52 –

GAPED 1–100 1. Valence 44.38 25.19 – −0.87

2. Arousal 47.74 19.46 <0.001 –

GAPED-A 1–100 1. Valence 21.26 12.40 – −0.80 0.83 0.74

2. Arousal 60.63 12.01 <0.001 – −0.70 −0.71

3. Int. Norms 26.98 13.94 <0.001 <0.001 – 0.85

4. Ext. Norms 36.38 15.57 <0.001 <0.001 <0.001 –

GAPED-H 1–100 1. Valence 27.95 17.54 −0.85 0.88 0.84

2. Arousal 58.71 15.02 <0.001 – −0.77 −0.81

3. Int. Norms 29.84 17.76 <0.001 <0.001 – 0.92

4. Ext. Norms 35.42 17.44 <0.001 <0.001 <0.001 –

NAPS-H 1–9 1. Valence 5.39 1.62 – −0.79 0.97

2. Arousal 5.10 1.06 <0.001 −0.79

3. AP-AV 5.36 1.48 <0.001 <0.001 –

NAPS-SFIP 1–9 1. Valence 5.30 0.92 – −0.03 −0.50

2. Arousal 1.46 0.50 0.30 – 0.53

3. Fear 1.05 0.13 <0.001 <0.001 –

OASIS 1–7 1. Valence 4.33 1.23 – 0.002

2. Arousal 3.67 0.84 0.96 –

DIRTI 1–9 1. Valence 4.43 1.61 – −0.92 −0.72 −0.97

2. Arousal 2.51 0.72 <0.001 – 0.88 0.90

3. Fear 1.72 0.42 <0.001 <0.001 – 0.73

4. Disgust 3.46 1.49 <0.001 <0.001 <0.001 –

Bolded letters indicate significant correlations.

is indicative of the relative strength of high spatial frequencies
(fine detail) versus low spatial frequencies (coarse structure) of
luminance changes across an image. In general, this slope is
around -2 for natural scenes as well as for large subsets of
artworks and other visually pleasing images. Human observers
thus prefer statistics that are similar to those of natural scenes
(Graham and Field, 2007; Redies et al., 2007b). We converted

each image to grayscale with the Photoshop CS5 program and
padded the images according to square ones, followed by Fast
Fourier Transformation, as described in Redies et al. (2007b).
After radially averaging the power spectrum, we plotted Fourier
power versus spatial frequency. For equally spaced intervals in
log-log space, the data points were averaged and fitted to a
straight line by least-square fitting (Redies et al., 2007b).
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Fourier Sigma
The deviation of the log-log Fourier power spectrum from a
straight line is here called Fourier sigma. In most natural images
and artworks, spectral power decreases linearly with increasing
spatial frequency so that the Fourier sigma is small (Graham
and Field, 2007; Redies et al., 2007b). Interestingly, larger values
for Fourier sigma, i.e., larger deviations from a straight line,
have been described for some unpleasant images (Fernandez and
Wilkins, 2008; O’Hare and Hibbard, 2011). We calculated Fourier
sigma as the sum of the squared deviations of the data points,
which were binned in log-log space, from the fitted straight line,
divided by the number of data points (Redies et al., 2007b).

First-Order and Second-Order Edge-Orientation
Entropies
First-order entropy of edge orientations is a measure of
how uniformly the orientations of luminance edges in
an image are distributed across all orientations (Redies
et al., 2017). If all orientations are represented at equal
strength, first-order entropy is maximal. Values become
smaller as particular orientations predominate the image.
Second-order entropy is a measure of how independent
or randomly edge orientations are distributed across an
image. Values are close to maximal if edge orientations at
given positions in an image do not allow any predictions of
orientations at other positions of the image. Values for both
entropies are high in some photographs of natural objects
(for example, lichen growth patterns) and in artworks of
different cultural provenance (Redies et al., 2017). Moreover,
the edge-orientation entropies are predictors for esthetic
ratings in diverse other types of man-made visual stimuli,
for example, photographs of building facades or artificial
geometrical and line patterns (Grebenkina et al., 2018). We
calculated the two entropies by the method described in detail by
Redies et al. (2017).

Variances of Feature Responses in Convolutional
Neural Networks (CNNs)
The response characteristics of lower-layer CNN features
resemble neuronal responses at low levels of the visual
system, such as the primary visual cortex (Brachmann et al.,
2017). The CNN features show regularities when responding
to traditional artworks; they possess a high richness and
variability, two statistical properties that can be expressed in
terms of the variances Pa and Pf, respectively (Brachmann
et al., 2017). Richness implies that many features tend to
respond at many positions in an image (low Pa). Despite this
overall richness, the feature responses are relatively variable
between the sections of an image (high to intermediate Pf) in
traditional artworks. The two variances differ between artworks
and several types of natural and man-made images. In the
present study, we calculated the variances as described in
Brachmann et al. (2017).

Code to calculate the above measures is available via the Open
Science Framework6.

6https://osf.io/p6nuq, ./csvta, ./bd8ma, and ./xb983

Statistical Methods
Classification Analysis
To find out whether the set of image properties contains any
information that contributes to the prediction of the affective
ratings, we carried out a classification experiment using a SVM
with a radial basis function (RBF) kernel. SVM is a widely-used
machine-learning algorithm, which partitions the feature space
of the input data by using hyperplanes in a way that maximizes
the generalization ability of the classifier. We used the Scikit-
learn library (Pedregosa et al., 2011) in Python to implement this
classifier and compute the results.

The classifier was trained separately on each of the five
datasets. The analysis was restricted to the two rating terms
that were common to all five datasets (valence and arousal).
For each dataset and rating term, the affective pictures
were ranked according to the rating. Rated images were
binned into three equally-sized clusters, which represented
the pictures with the lowest ratings, intermediate ratings, and
the highest ratings. The intermediate cluster was not used
in the classification experiment. The SVM-RBF classifier was
trained to distinguish between the pictures of low ratings
and high ratings. A 10-fold cross-validation paradigm was
used with 90% of the low/high rated images used for the
training and 10% for testing in each round. Ten rounds
of cross-validation with different partitions were performed.
The validation results were averaged for each dataset and
rating term separately and provided an estimate of the mean
accuracy rate.

Multiple Linear Regression Analysis
We used multiple linear regression to determine the dependence
of the ratings on the thirteen independent variables for each
dataset. For this task, we used the lm package in the R
project (R Development Core Team, 2017). R2 values were
calculated for each image property to estimate how much of
the variability in the outcome is mediated by the predictors of
each model. R2 values were adjusted to account for the number
of predictors in each model (R2

adj). As an index for the effect
of the independent variables on the outcome, we calculated
standardized regression coefficients βi, which provide an estimate
of the number of standard deviations, by which the outcome will
change as a result of a change of one standard deviation in the
predictor, assuming that the effects of all other predictors are held
constant. Values for βi were calculated with the lm.beta package
of the R project.

Moreover, we aimed at reducing the number of independent
variables in the multiple linear regression by excluding image
properties that correlated highly. Using Akaike’s entropy-based
Information Criterion (AIC), which considers the fit of the
model as well as the number of parameters, we identified
image properties that shared a similar prediction quality as
other variables in the model. By a stepwise elimination,
these variables were dropped from the model, as long as
the model improved (i.e., the AIC value decreased). For
the final models, R2

adj and bi values were calculated again.
The R2

adj values of the original and reduced (final) models
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were of similar magnitude, indicating that the predictive
power was comparable.

Regression Subset Selection
Finally, as an alternative method to determine which of the
variables plays the largest role in the different regression models,
we carried out a regression subset selection with the leaps package
of the R project (Miller, 2002). This algorithm performs an
exhaustive search for the subset of variables that best predicts
the model outcomes, without penalizing for model size. For
each model size (between 1 and 13 predictors), we identified
the variables in the 10 best models and plotted them in a single
graph to visualize how often a given variable is predictor in the
different models.

RESULTS

Statistical Image Properties
The values for the global image properties of each image
analyzed in the present study can be accessed at the Open
Science Framework7. Mean values for the statistical image
properties are listed in Table 2. Each of the image properties
differs significantly between the five datasets, except for 2nd-
order entropy. For example, differences between the databases
are prominent between the NAPS-H and DIRTI datasets for
the S-channel color values (p < 0.0001, Kruskal-Wallis test
with pairwise Wilcox post-test, Bonferroni-Holmes corrected)
and the V-channel values (p < 0.0001). This result implies
that the DIRTI pictures are less saturated and lighter than
the NAPS-H pictures on average. There is also a prominent
difference between the NAPS-H and GAPED datasets in the
Fourier sigma values (p < 0.0001). The GAPED pictures
deviate more strongly from a scale-invariant Fourier spectrum
than the NAPS-H pictures. Note that the image properties
are not independent of each other and correlate to varying
degrees, as revealed for the entire dataset of images in
Supplementary Table S1. In general, color values (H-, S-,
and V-channel), Fourier sigma and 1st-order entropy correlate
weakly with the other variables (Spearman coefficients r smaller
than 0.3). 1st-order entropy correlates strongly with 2nd-order
entropy (r = 0.71). The two variances Pa and Pf correlate
moderately and inversely with left/right symmetry (r = −0.50
and −0.65, respectively), up/down symmetry (r = −0.63 and
−0.69), edge density (r = −0.59 and −0.46), and self-similarity
(r =−0.70 and−0.61).

Ratings
The ratings were taken from the five previous studies. They
were obtained separately for each dataset using different scales
(Table 1). Therefore, we cannot assume that the rating scales
are comparable between datasets, even after normalization. As
a consequence, we did not compare the ratings between the
datasets and analyzed the relation between the dependent and
independent variables within the datasets only.

7https://osf.io/r7wpz

Mean values for the affective ratings are listed in Table 3.
Except for the NAPS-SFIP and OASIS datasets, the ratings
for valence and arousal show negative correlations for the
other datasets (r > −0.79; but r = −0.24 only for the IAPS
dataset), confirming results from previous studies (Dan-Glauser
and Scherer, 2011; Marchewka et al., 2014; Haberkamp et al.,
2017). Some of the correlations between the other ratings are
also of interest. For example, in the NAPS-H dataset, ratings
for avoidance/approaching behavior correlate positively with
valence (r > 0.97) and negatively with arousal (r > −0.79),
as described by Marchewka et al. (2014). A similar pattern
of dependency is found for ratings of acceptance of internal
and external norms for the GAPED-A and GAPED-H subsets
(Dan-Glauser and Scherer, 2011). An opposite pattern of
dependency on arousal and valence ratings was observed for
the fear ratings in the NAPS-SFIP dataset (Michalowski et al.,
2017) and DIRTI dataset (Haberkamp et al., 2017), respectively,
and for the disgust ratings in the DIRTI dataset (Table 3;
Haberkamp et al., 2017).

Classification
As a first step toward assessing whether the statistical image
properties can predict emotional ratings of the affective pictures,
we used a classification approach. An SVM-RBF classifier was
trained to recognize images that belong to the one third of
images with the highest ratings (high) and the one third with
the lowest ratings (low), respectively. Ratings for valence and
arousal were considered separately. In this binary task, the mean
accuracy is 50% for a random assignment of the labels high
and low. Results from a 10-fold cross-validation experiment
(Table 4) reveal that mean classification accuracies for all datasets
and each rating (valence and arousal) range from 57.4% ± 6.5
SD to 75.5% ± 12.3 SD. All mean accuracies are significantly

TABLE 4 | Mean accuracy of classifying pictures of low and high ratings for
valence and arousal in each dataset (SVM-RBF classifier with 10-fold
cross-validation).

Dataset Mean 95% CI t1 p1

Valence

IAPS 58.2% 52.5–63.9% 3.44 0.0101

GAPED 65.1% 55.2–75.0% 3.62 0.0074

NAPS-H 64.3% 58.1–70.5% 5.23 0.0005

NAPS-SFIP 59.5% 51.2–67.8% 2.59 0.0291

OASIS 58.7% 55.3–62.0% 5.83 0.0003

DIRTI 75.5% 66.2–84.8% 6.20 0.0002

Arousal

IAPS 59.3% 50.0–59.3% 3.82 0.0041

GAPED 62.4% 52.7–72.1% 2.90 0.0175

NAPS-H 57.4% 52.6–62.3% 3.45 0.0073

NAPS-SFIP 62.0% 59.0–65.1% 8.85 <0.0001

OASIS 57.5% 51.8–63.2% 2.97 0.0157

DIRTI 71.5% 63.1–79.9% 5.76 0.0003

The by-chance classification accuracy is 50% for this binary task. 1 t statistics and
p values for difference to random accuracy rate of 50% (two-sided one sample
t-test, df = 9).
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higher than the random classification rate. We conclude that
the image properties predict the ratings for valence and arousal
in part. However, the prediction rates differ between the image
datasets. For example, predictability is higher for the DIRTI
dataset compared to the OASIS dataset for valence (75.5% vs.
58.7%; t[18] = 4.06, p = 0.0007) and for arousal (71.5% vs. 57.5%;
t[18] = 3.27, p = 0.004).

Regression Analysis
To investigate which of the image properties contributed
to the prediction of the affective ratings, we subjected the
data to a multiple linear regression analysis, considering the
ratings as dependent variables and the image properties as
independent variables.

To begin with, full models with all thirteen image properties
were studied. Results are listed in Supplementary Tables S2, S3.
For each model, we calculated R2 values, which indicate the
percentage of predicted variance that is contributed by the image
properties, and adjusted them to account for the number of
predictors (R2

adj). Values range from 0.017 to 0.195. Moreover,
standardized regression coefficients βi were calculated. In the
tables, bold letters indicate the variables that have a significant
effect on the ratings when the other variables are controlled for.
Not all independent variables have the same predictive power in
the full models. Therefore, to eliminate less influential variables
from the models by stepwise iterations, we calculated the Akaike
Information Criterion (AIC), which allows us to compare the
relative quality of the fit for different original and reduced models,
when applied to the same set of data (Akaike, 1974). Results for
the reduced models are presented in Tables 5, 6. R2

adj values for
the full and restricted models are of similar magnitude (range
0.020 to 0.195) for each dataset and rating. To simplify the
description, we will explore the restricted models only in the
following sections.

Additionally, in view of the correlations between some of
the independent variables (Supplementary Table S1), we asked
how much arbitrariness is reflected in the specific subsets of
image properties that were selected for the reduced models
in the multiple linear regression analysis. We therefore used
regression subset selection as another method to identify the
most predictive subset of image properties by an exhaustive
search (Miller, 2002). Exemplary graphical representations of the
results for the DIRTI datasets are shown in Figure 1. Results for
the other datasets are visualized in Supplementary Figures S1–
S3. In the plots, more solid black columns indicate variables
that play a role in a larger number of models. A comparison
with the results from multiple linear regression (Tables 5, 6)
reveals that both types of analyses converge on a similar set of
predictors. This convergence indicates that the variables selected
in the multiple linear regression analysis represent the most
predictive ones indeed.

We observe a high variability in the image properties that
predict the ratings in the different datasets in the following
respects: First, the datasets differ in the image properties that
predict their ratings. Second, image properties differ in which
of the individual ratings they predict within a given dataset.
All variables predict ratings for some of the datasets, but some

variables, such as the color parameters (H-, S-, and V-channel),
1st-order entropy, the symmetry measures (left/right symmetry
and up/down symmetry), and the CNN variances (Pa and Pf)
serve as predictors in all datasets, albeit for different ratings. None
of the image properties is a significant predictor for all ratings
over all five datasets.

Interestingly, the independent variables contribute to the
ratings of valence and arousal with opposite algebraic signs
for three of the datasets (see bi values in Tables 5, 6). The
positive and negative effects on the ratings are indicated by
green dots and red squares, respectively, on top of the predictors
in Figure 1 and Supplementary Figures S1–S3. A graphical
synopsis of these results is provided in Figure 2. An opposite
predictive pattern for the valence and arousal ratings is observed
for the DIRTI dataset (Figure 1 and Table 6), the GAPED dataset
(Supplementary Figures S2A,B and Table 5), and the NAPS-
H dataset (Supplementary Figure S3 and Table 5). The ratings
for valence and arousal correlate strongly and inversely for each
of these datasets (Table 3), as reported previously (Marchewka
et al., 2014; Haberkamp et al., 2017). For the NAPS-H dataset,
the ratings along the dimension of avoidance/approach are
predicted by a pattern of variables similar to the valence ratings
(Supplementary Figures S3A,C). Also, the ratings correlate
strongly with each other (Table 3; Marchewka et al., 2014).
The fear and disgust ratings for the DIRTI dataset show a
pattern of predictors similar to those of the arousal ratings
(Figures 1B–D, 2; for correlation coefficients, see Table 3;
Haberkamp et al., 2017).

The GAPED database (Dan-Glauser and Scherer, 2011)
contains 6 subsets of different content (89–158 pictures per
subset). We analyzed all subsets together (Table 5), but also each
subset separately (Supplementary Table S4). Probably because of
the limited number of pictures per category, the predictive power
of the image properties reached significance for a few of the image
properties only in the subsets. Nevertheless, the subset analysis
sheds some additional light on the differences between the
affective image categories. The image properties have relatively
low predictive power for ratings of valence and arousal (R2

adj
values between 0.022 and 0.076) for the GAPED-A (animals
mistreatment scenes) subset, the GAPED-Sn (snakes) subset and
the GAPED-Sp (spiders) subset. Predictive power is higher for the
GAPED-H (scenes violating human rights) subset (R2

adj values
of 0.223 for valence and 0.194 for arousal). For the GAPED-A
and GAPED-H datasets, ratings of acceptability with respect to
internal (moral) and external (legal) norms (Dan-Glauser and
Scherer, 2011) were analyzed in addition. The predictors for
these ratings are largely shared with the valence and arousal
ratings, with the same algebraic sign for the valence ratings and an
opposite sign for the arousal ratings (Supplementary Table S4).

DISCUSSION

We studied to what extent global image properties predict
emotional responses to stimuli from five affective picture datasets
(IAPS, GAPED, NAPS, OASIS, and DIRTI). The datasets were
analyzed separately because they differ in important respects
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(see section “Materials and Methods”). Nevertheless, the datasets
share some features, as outlined below.

The present study confirms previous findings that some of the
ratings are correlated with each other in a given database (Dan-
Glauser and Scherer, 2011; Haberkamp et al., 2017; Kurdi et al.,
2017; Lang et al., 2008; Marchewka et al., 2014). In particular,
the valence ratings correlate inversely with the arousal ratings
in the IAPS, GAPED, NAPS-H, and DIRTI datasets in general
(Figure 2 and Table 3). Moreover, the valence or arousal ratings
correlate also with some of the other the ratings (Figure 2

and Table 3). In particular, ratings of internal/external norms
(GAPED-A and GAPED-H; Dan-Glauser and Scherer, 2011)
and approach/avoidance (NAPS-H; Marchewka et al., 2014)
correlate positively with valence ratings. By contrast, ratings of
fear or disgust (NAPS-SFIP, DIRTI; Marchewka et al., 2014;
Haberkamp et al., 2017) correlate positively with arousal ratings.
These correlations are mirrored by similar sets of predictive
image properties (Figure 2 and Tables 5, 6). As expected, if the
correlation between two ratings is negative for a given dataset,
the predictive properties tend to have regression coefficients

TABLE 5 | Adjusted R2 Values and Standardized Regression Coefficients βi for the IAPS, GAPED, NAPS-H and NAPS-SFIP datasets.

Variable/ Parameter IAPS (n = 1182) GAPED (all) (n = 728) NAPS-H (n = 1356) NAPS-SFIP (n = 886)

Valence Arousal Dominance Valence Arousal Valence Arousal AV-AP Valence Arousal Fear

Adjusted R2 0.060*** 0.087*** 0.020* 0.190*** 0.185*** 0.141*** 0.132*** 0.146*** 0.102*** 0.076*** 0.051***

AIC 1287.7 232.3 174.4 4556.5 4184.2 1125.3 −28.5 853.0 −235.6 −1296.1 −3664.8

H-channel 0.117 −0.092 0.172 −0.160 0.174 0.139 −0.049 −0.079

S-channel 0.134 0.044 0.179 −0.084 0.253 −0.21 0.234 0.132 −0.054

V-channel 0.102 0.046 −0.048 0.132 −0.165 0.071

Symmetry left/right 0.060 −0.116 −0.065 0.095 −0.072 0.164 −0.145 0.154 196 −0.105

Symmetry up/down −0.145 −0.097 −0.182 0.079 −0.146 0.148 −0.191 −0.145 −0.203

Edge density 0.097 0.155 −0.078 0.159 0.127 −0.226 −0.193

Self-similarity 0.076 −0.065 0.074 −0.072 0.111

Fourier slope 0.137 −0.153 0.101 −0.159 −0.052 0.062 −0.055

Fourier sigma −0.098 0.048 −0.159 0.132 −0.092

1st-order entropy −0.095 0.105 0.090 0.088 0.137 −0.04 0.214 0.105

2nd-order entropy 0.127 −0.16 0.062 −0.065 0.133

Variance Pa 0.112 0.14 0.171 −0.13 0.183 −0.154 0.191 0.142 −0.088 −0.119

Variance Pf −0.141 0.128 −0.224 −0.062 −0.167

Results are for models, in which the number of variables was reduced according to the Akaike Information Criterion (see section “Materials and Methods”). Bolded
variables had a significant effect on the ratings when the other variables were controlled for. AIC, Akaike Information Criterion (compare to Supplementary Table S2).
Significant at level ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

TABLE 6 | Adjusted R2 Values and Standardized Regression Coefficients βi for the OASIS and DIRTI datasets.

Variable/ Parameter OASIS (n = 900) DIRTI (n = 300)

Valence Arousal Valence Arousal Fear Disgust

Adjusted R2 0.094*** 0.154*** 0.166*** 0.195*** 0.195*** 0.194***

AIC 287.8 −459.7 237.9 −254.7 −576.9 182.5

H-channel −0.094 −0.061

S-channel 0.163 0.119 0.231 −0.177 −0.184

V-channel 0.101 −0.171 0.214 0.289 0.208

Symmetry left/right

Symmetry up/down −0.027 −0.237 0.215 0.240

Edge density 0.095 0.099

Self-similarity

Fourier slope 0.09 −0.225

Fourier sigma −0.092 −0.085 −0.091

1st-order entropy 0.183 0.173 −0.135 0.189 0.214 0.153

2nd-order entropy −0.148

Variance Pa −0.084

Variance Pf 0.21 −0.185 −0.238

Results are for models, in which the number of variables was reduced according to the Akaike Information Criterion (see section “Materials and Methods”). Bolded
variables had a significant effect on the ratings when the other variables were controlled for. AIC, Akaike Information Criterion (compare to Supplementary Table S3).
Significant at level ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

Frontiers in Psychology | www.frontiersin.org 9 May 2020 | Volume 11 | Article 953

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00953 May 11, 2020 Time: 18:51 # 10

Redies et al. Global Image Properties of Affective Pictures

FIGURE 1 | Results of regression subset selection for ratings of valence (A), arousal (B), fear (C), and disgust (D) for the DIRTI dataset. Along each horizontal line in
the graphs, results for one model are shown. Model size was varied systematically from 1 variable (bottom of the graphs) to all 13 variables (top). For each model
size, the 10 models with the highest R2

adj values are represented. The image properties are indicated below the panels. The bars represent image properties that are
predictors in the respective model. The intensity of the bar shadings indicate the magnitude of the R2

adj value of each model. On top of each graph, green dots and
red squares indicate variables that were significant predictors with positive and negative effects on the ratings, respectively, in the multiple linear regression analysis
(variables with bolded βi values in Table 6).

βi of opposite algebraic signs. With a positive correlation, the
regression coefficients βi tend to have the same algebraic sign.
For the IAPS and OASIS datasets, such systematic relations are
not observed, as correlations between the ratings are weaker or
absent (Table 3).

Prediction of Affective Ratings by Global
Image Properties
The image properties studied by us have been associated
with preference judgments in previous studies (see section
“Introduction”). We therefore speculated that they might predict
emotional responses, such as valence and arousal, as well. The
results from the present study confirm this notion in general.

We made use of two different methods to examine whether
the image properties can predict the ratings. To start with, we
used deep learning with an SVM-RBF classifier in a binary
task, in which pictures with high versus low ratings for valence
and arousal had to be distinguished (Table 4). The obtained
classification rates differ between the datasets. For example,
predictive power is relatively low for the IAPS dataset (58.2 and
59.3% classification rate for valence and arousal, respectively),
but high for the DIRTI dataset (75.5 and 71.5%). Moreover,
to specify which of the image properties has an effect on the
ratings, we carried out linear regression analyses. The percentage
of predicted variability (R2

adj) ranges from 2 to 20%. Again,

the predictive power differs between datasets. For example, it
is relatively low for the ratings of the IAPS dataset (2.0–8.7%;
Table 5), compared to the DIRTI dataset (16.6–19.5%; Table 6).
These results imply that global perceptual cues in the IAPS
pictures predict the affective ratings less strongly than the pictures
of the DIRTI dataset. In other words, the images of the IAPS
dataset are more balanced with regard to their image properties
and, consequently, formal image structure represents less of a
potential confounding factor in the evaluation of the emotional
content than for the DIRTI database.

The origin of the correlations between image properties
and affective ratings is unclear. One possibility is that people,
who photograph or select pictures for affective datasets,
(un)consciously choose pictures that are congruent at the
perceptual and semantic levels. For example, someone might take
a photograph of a pleasing landscape by carefully selecting a well-
balanced and appealing detail of the scene while a photograph
of vomit in a dirty sink might be less esthetically motivated and
composed. In a similar vein, Sammartino and Palmer (2012)
postulated that people prefer images if their spatial composition
optimally conveys an intended or inferred meaning of the image
(“representational fit”), which enhances their esthetic impact.

The magnitude of the present results can be compared to
ratings in the field of visual esthetics. Here, sets of objective image
properties similar to the ones used in the present study have been
used to predict diverse esthetic ratings, such as linking, beauty
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FIGURE 2 | Schematic diagram of the results from the linear regression analysis with all 13 image properties (as indicated on top) for the ratings of different datasets
(as indicated on the left-hand side). Results for the reduced models are shown, and only for properties that had a significant effect on the ratings when the other
variables were controlled for (bolded variables in Tables 5, 6). The symbols indicate image properties that correlate positively (green circles) or negatively (red
squares) with the respective rating. The yellow shadowing indicates image properties with opposite effects on the ratings of valence and arousal. The green
shadowing for the NAPS-H dataset marks image properties with similar predictive effects on the ratings of valence and avoidance/approach, respectively. The cyan
shadowing for the NAPS-SFIP and DIRTI dataset marks image properties with similar predictive effects on the ratings of arousal, fear and disgust, respectively.

or visual preference. As in the present study, results depend on
the datasets analyzed. For example, in the study by Sidhu et al.
(2018), predicted variances ranged from 4% (for beauty ratings
of abstract art) to 30% (for liking rating of representational art).
Grebenkina et al. (2018) reported predicted variances between 5%
(for pleasing ratings of CD album covers) and 55% (for liking
ratings of building facade photographs). Schwabe et al. (2018)
analyzed abstract artworks and non-artistic images and obtained
predicted variances that ranged from 27 to 46% for ratings of
how harmonious and ordered the images were, respectively. The
variances predicted in the present study are thus comparatively
low to moderate (up to 20%), depending on the dataset analyzed.

Evidence for a direct role of low-level image properties in
affective evaluations of images has been obtained, for example,
by Bekhtereva and Muller (2017) who found that picture color
can facilitate higher-level extraction of emotional content. In
this context, it is of interest that the cortical representation of
emotional categories, such as fear, anger and desire, was recently

shown to be intertwined with the processing of visual features
in visual cortical areas (V1–V4) (for example, see Kragel et al.,
2019). One possible interpretation of this finding is that low-
level visual features are directly associated with the processing
of distinct emotion categories already at the level of visual
cortex (Sabatinelli et al., 2004; Kragel et al., 2019). Our finding
that specific combinations of image properties can be linked to
different affective ratings is compatible with this notion.

Studies regarding scene perception reached similar
conclusions. Short and masked presentations of 100 ms
and less are sufficient for viewers to comprehend and describe
complex scenes such as line drawings, but also naturalistic
scenes (Dobel et al., 2007; Glanemann et al., 2016; Zwitserlood
et al., 2018). This finding applies even to scenes containing
interacting persons. Although the gist (a coarse understanding
and categorization of the scene as a whole) of a scene and
its coherence can be rapidly extracted using features such as
body orientation of involved agents, a more refined semantic
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analysis of a scene requires additional processing. Most
authors in this field agree that a first sweep of feed-forward
processing can account for the high ability to categorize and
sometimes even recognize complex images (Potter et al.,
2014; Wu et al., 2015), but that reentrant processing from
higher cognitive functions is necessary for representations in
high detail. As a neural mechanism underlying interactions
between objective image properties and subjective (cognitive)
evaluations, the “multiple waves” model proposed by Pessoa
and Adolphs (2006) is compatible with our assumptions. In
this model, multiple pathways of processing become activated
simultaneously already at an early stage of visual processing.
By extensive feedback loops, the pathways enable a “complex
ebb-and-flow of activation” thereby “sculpting” (p. 19) the
activation profile of a specific stimulus throughout the visual
cortex and the amygdala. In this vein, the proposed image
properties evoke an initial activation profile, which, at later
stages, becomes refined by higher-order cognitive processes.
It was proposed for overlearned emotional stimuli, such as
emotional words, that the outer appearance of a word is
tightly linked to an “emotional tag” triggering processes of
emotional attention (Roesmann et al., 2019). Similarly, the
here-described image properties could trigger initial processing
channels that operate in parallel, which in turn activates higher
cognitive functions.

Similarly, low-level image properties were shown to play a
role in esthetic judgments. A particularly well-studied example
is the preference of curved over angular objects or line patterns
(Bar and Neta, 2006; Palumbo et al., 2015). This preference can
be observed in different cultures (Gómez-Puerto et al., 2017)
and was even demonstrated in great apes (Munar et al., 2015).
Another example is the observation that the spatial frequency
content of face images and their surround has an effect on
ratings of face attractiveness (Menzel et al., 2015). In the color
domain, Nascimento et al. (2017) studied visual preferences
for paintings with different color gamuts and found maximal
preference for images with color combinations that matched the
artists’ preferences, suggesting that artists know what chromatic
compositions observers like.

Besides general effects on esthetic preference, there are also
indications that individual taste for low-level features plays a
role in esthetic judgments. Mallon et al. (2014) examined beauty
ratings in abstract artworks, using a set of image properties that
also included several of the present variables. The authors showed
that color values in particular are relatively good predictors
of the beauty ratings in general. Correlations became stronger
after participants had been clustered in groups with similar
preferences, suggesting that individual “taste” for specific image
properties contributes to esthetic judgments. Preferences for
patterns with different degrees of complexity are also subject
to individual variability. While most participants like images of
intermediate complexity, subgroups of participants prefer images
of high and low complexity, respectively (Güclütürk et al., 2016;
Spehar et al., 2016; Viengkham and Spehar, 2018). In studies of
affective pictures, clustering has been applied to the selection of
representative stimuli from the IAPS dataset (for example, see
Constantinescu et al., 2017) but, to our knowledge, not to groups

of observers, perhaps because emotional reactions are considered
less prone to individual variability than esthetic judgments.

Datasets Differ in Which Image
Properties Predict the Affective Ratings
We also noted that the datasets differ widely in how many and
which of the image properties are predictive for the ratings, when
the other image properties are accounted for (bold regression
coefficients in Tables 5, 6). This variability can be readily
appreciated in the plots of the regression subset selection analysis
(Figure 1 and Supplementary Figures S1–S3), as summarized
in Figure 2. For example for the IAPS dataset, almost all image
properties contribute to one or more of the ratings, except for
the H-channel. Thus, the relatively low percentage of predicted
variability of this dataset (R2

adj values of 0.02–0.09) is associated
with many different variables. By contrast, only 4 out of the 13
properties are predictive for the DIRTI dataset (2 color values,
up/down symmetry and 1st-order entropy). The relatively large
R2

adj values for the DIRTI dataset (0.17–0.20) are thus mediated
by a few image properties only.

The image properties also differ in how many datasets they
are associated with. For example, self-similarity weakly predicts
the dominance rating in the IAPS dataset only. Other image
properties, such as the S-channel value, up/down symmetry
and 1st-order entropy of edge orientations, are associated with
specific ratings in all subsets.

Makin (2017) alluded to the multiplicity and variability of
image features that determine esthetic preferences as the “gestalt
nightmare” because the different properties are not orthogonal
to each other and differentially interact to mediate esthetic
perception, depending on the types of stimuli studied. The
present results are compatible with this notion. Despite the large
overall variability, we observe the following regularities.

First, a larger S channel value, i.e., more saturated colors,
correlates with positive ratings for valence in all datasets. This
finding is reminiscent of findings in experimental esthetics where
diverse aspects of color perception play a prominent role in
preference judgments (Palmer and Schloss, 2010; Mallon et al.,
2014; Nascimento et al., 2017), in particular, if emotional terms
are used in the esthetic ratings (Lyssenko et al., 2016). Second,
a larger 1st-order entropy of edge orientations coincides with
higher arousal ratings in all datasets. This measure assumes
high values in traditional artworks (Redies et al., 2017) and is
positively correlated with ratings for pleasing and interesting
in photographs of building facades, but less so in other visual
patterns, such as music CD covers (Grebenkina et al., 2018).
Third, the left/right and up/down symmetry ratings correlate
with valence and arousal ratings in all datasets, underlining
the importance of (a)symmetry in esthetic perception (Jacobsen
and Höfel, 2002; Gartus and Leder, 2013; Wright et al., 2017).
Specifically, a more balanced up/down symmetry correlates
with lower valence ratings (except for the OASIS dataset). The
other dependencies are more erratic with no clear pattern of
correlations across the datasets.

In conclusion, the affective picture datasets differ widely in
their low-level perceptual qualities, partially precluding a direct
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comparison of the results across the different datasets, with the
exception of the S-channel value, 1st-order entropy and up/down
symmetry. This variability might be caused by biases in the
selection of the pictures, different photographic techniques as
well as differences in image content.

It should be stressed the present study is descriptive
and does not address the question of whether any of the
image properties actually induce specific emotions or are
used to recognize affective content of pictures. Indeed, the
association of an image property with a specific rating can be
coincidental, as Rhodes et al. (2019) recently demonstrated for
the slope of the Fourier spectrum (see section “Introduction”).
An open question is to what degree image properties can
predict complex evaluative processes in principle. It is very
likely that there are many other predictive image properties
that have not yet been described. Can future researchers
predict viewer’ ratings with a much higher confidence by
taking into account even more image properties? We doubt
that this is the case because we assume, in line with
most other researchers, that individual subjective factors
like familiarity with stimuli, cultural influences, emotional
states as well as personality trait will also mediate how an
individual evaluates a specific image, in addition to objective
image properties.

Recommendations for Experimenters
As outlined above, the described image properties have an impact
on valence, arousal and other affective ratings. We therefore
consider it necessary to control for these factors in research
that addresses emotional stimulus processing. Of the databases
analyzed in the present study, the IAPS database had a relatively
small impact of stimulus properties on the affective ratings and
thus recommends itself.

An alternative approach would be to use the established values
of individual pictures as covariates for statistical analyses. To
foster such an approach, we are making the values available
to the scientific community via the Open Science Framework
(accessible at https://osf.io/r7wpz). Similarly, the provided values
could be used across databases to generate picture sets (e.g., of
positive versus negative valence) that are matched for the image
properties with a prominent effect on the ratings. This way, a bias
for particular image properties can be avoided when subsets of
images are selected from a database.

Moreover, when images for novel databases are collected, we
suggest that researchers establish the described image properties

to control for them and/or to keep their impact on ratings low.
The necessary methods and codes are all open source (see section
“Materials and Methods”). Last but not least, the effect of image
properties on affective ratings might be more prominent if the
idiosyncratic style of one or a few photographers predominates in
a given affective dataset. Presumably, such stylistic particularities
can be avoided by collecting images from a wide range of sources
and photographers.

In conclusion, the interplay between low-level image
properties and their interaction with higher cognitive functions
is a key issue in understanding emotional and esthetic
perception. Here, we stress the impact of global image properties
on emotional ratings and that this should be regarded in
future research by selecting appropriate images from datasets.
Additionally, we show how insights from empirical esthetics may
shed light on basic visual and emotional perception.
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