

Received 29 August 2014 Accepted 2 September 2014

Edited by M. Gdaniec, Adam Mickiewicz University, Poland

**Keywords**: crystal structure; *peri*-aroylnaphthalene; C—H··· $\pi$  interactions; spatial organization

**CCDC reference**: 1022493 **Supporting information**: this article has supporting information at journals.iucr.org/e



OPEN d ACCESS



# Crystal structure of 1,8-dibenzoyl-2,7-diphenoxynaphthalene

### Satsuki Narushima, Saki Mohri, Noriyuki Yonezawa and Akiko Okamoto\*

Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan. \*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

In the title compound,  $C_{36}H_{24}O_4$ , the benzene rings of the benzoyl and phenoxy groups make dihedral angles of 75.01 (4), 75.78 (4), 83.17 (5) and 80.84 (5)° with the naphthalene ring system. In the crystal, two types of  $C-H\cdots\pi$  interactions between the benzene rings of the benzoyl groups and the naphthalene unit, and two kinds of  $\pi-\pi$  interactions between the benzene rings, with centroid–centroid distances of 3.879 (1) and 3.696 (1) Å, are observed.

### 1. Chemical context

Peri-substituted naphthalenes have received much attention as characteristic-structured aromatic-ring-core compounds for a variety of functional materials (Mei et al., 2006; Shinamura et al., 2010; Jiang et al., 2010; Shao et al., 2014). For example, rylene derivatives are fluorophores well known for their exceptional photochemical stability and high fluorescence quantum yields (Würthner et al., 2004; Jiao et al., 2009), and employed in solar cells (Shibano et al., 2009), laser dyes (Gvishi et al., 1993), organic light-emitting field-effect transistors (Seo et al., 2013) and optical switches (Oneil et al., 1992). However, planar aromatic structures containing peri-substituted naphthalenes are prone to intermolecular aggregation that often leads to serious problems including fluorescence quenching (Wang & Yu, 2010). Therefore, development of peri-substituted naphthalene derivatives with aromatic substituents twisted relative to the naphthalene ring system, to inhibit molecular aggregation, has been desired.



The authors have found that *peri*-aroylnaphthalene compounds are afforded smoothly *via* electrophilic aromatic aroylation of a naphthalene derivative in the presence of a suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto *et al.*, 2011). In *peri*-aroylnaphthalene compounds, as a result of steric hindrance, the aroyl groups have to be arranged nearly perpendicular relative to the naphthalene core. Bearing this in mind, we have initiated a crystallographic study of *peri*-aroylnaphthalene compounds in a search for correlation between the molecular structure, the crystal packing and the non-bonding interactions (Okamoto *et al.*, 2014). Herein, the crystal structure of 1,8-dibenzoyl-2,7-diphenoxynaphtahlene, (I), is reported and its structural features are discussed through comparison with the homo-



Figure 1

The molecular structure of title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

logues, 1,8-bis(4-fluorobenzoyl)-2,7-diphenoxynaphthalene (Hijikata *et al.*, 2012) and 1,8-dibenzoyl-2,7-dimethoxy-naphthalene (Nakaema *et al.*, 2008).

### 2. Structural commentary

The molecular structure of (I) is displayed in Fig. 1. The benzene rings of the four substituents are arranged almost perpendicular relative to the naphthalene ring system. Furthermore, the two carbonyl groups attached at the 1- and 8-positions of the naphthalene ring are in the *anti* orientation.



#### Figure 2

Two types of  $C-H\cdots\pi$  interactions between the benzene ring of the benzoyl groups and the naphthalene rings, forming a single column structure (see Table 1 for details).

Table 1Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C4/C10/C9 and C5–C10 rings, respectively.

| $D - H \cdots A$            | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------|-------------------------|--------------|---------------------------|
| $C14-H14\cdots Cg1^{i}$     | 0.95 | 2.50                    | 3.4192 (12)  | 163                       |
| $C27 - H27 \cdots Cg2^{ii}$ | 0.95 | 2.51                    | 3.4002 (12)  | 155                       |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ .

The benzene rings of the benzoyl groups make dihedral angles of 75.01 (4) and 75.78 (4)° with the naphthalene core. These dihedral angles are slightly smaller than those between the benzene rings of the phenoxy groups at the 2- and 7-positions and the naphthalene ring [83.17 (5) and 80.84 (5)°]. The molecular structure only slightly deviates from  $C_2$  symmetry and the molecules exhibit axial chirality either with two *S*,*S* or two *R*,*R* stereogenic centers.

### 3. Supramolecular features

In the crystal, *R*,*R* and *S*,*S*-isomers are alternately arranged along the *c* axis, forming a single column with the molecules linked by two types of  $C-H\cdots\pi$  interactions involving the benzene ring of the benzoyl groups and the naphthalene unit (Table 1 and Fig. 2). In addition,  $\pi-\pi$  stacking interactions are formed between molecules in adjacent columns (Fig. 3). These interactions are observed between the benzene rings of the phenoxy groups [*Cg4* is the centroid of the C18–C23 ring and *Cg6* is the centroid of the C31–C36 ring; *Cg4*…*Cg6*(*x* + 1,  $-y + \frac{1}{2}$ ,  $z + \frac{1}{2}$ ) = 3.879 (1) Å] and the benzene rings of the benzoyl groups [*Cg3* is the centroid of the C12–C17 ring; *Cg3*…*Cg3*(-x + 1, -y, -z + 1) = 3.696 (1) Å].

### 4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002) showed 39 structures of



#### Figure 3

 $\pi$ - $\pi$  interactions between the benzene rings of the benzoyl groups (green dashed line) and between the benzene rings of the phenoxy groups (blue dashed lines).

# research communications

Table 2Experimental details.

| Crystal data                                                               |                                |
|----------------------------------------------------------------------------|--------------------------------|
| Chemical formula                                                           | $C_{36}H_{24}O_4$              |
| M <sub>r</sub>                                                             | 520.55                         |
| Crystal system, space group                                                | Monoclinic, $P2_1/c$           |
| Temperature (K)                                                            | 193                            |
| a, b, c (Å)                                                                | 12.7734 (2), 16.4106 (3),      |
|                                                                            | 12.9012 (2)                    |
| $\beta$ (°)                                                                | 95.939 (1)                     |
| $V(Å^3)$                                                                   | 2689.81 (9)                    |
| Z                                                                          | 4                              |
| Radiation type                                                             | Cu Kα                          |
| $\mu \text{ (mm}^{-1})$                                                    | 0.66                           |
| Crystal size (mm)                                                          | $0.50 \times 0.35 \times 0.10$ |
|                                                                            |                                |
| Data collection                                                            |                                |
| Diffractometer                                                             | Rigaku R-AXIS RAPID            |
| Absorption correction                                                      | Numerical (NUMABS; Higashi,    |
|                                                                            | 1999)                          |
| $T_{\min}, T_{\max}$                                                       | 0.732, 0.937                   |
| No. of measured, independent and                                           | 49716, 4924, 4506              |
| observed $[I > 2\sigma(I)]$ reflections                                    |                                |
| R <sub>int</sub>                                                           | 0.041                          |
| $(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$                       | 0.602                          |
|                                                                            |                                |
| Refinement                                                                 |                                |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.034, 0.097, 1.04             |
| No. of reflections                                                         | 4924                           |
| No. of parameters                                                          | 362                            |
| H-atom treatment                                                           | H-atom parameters constrained  |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 0.21, -0.19                    |
|                                                                            |                                |

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2007), SIR2004 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996).

1,8-diaroylnaphthalenes and 1,8-dialkanoylnaphthalenes and 30 structures of 1,8-diaroyl-2,7-dialkoxynaphthalenes and 1,8diaroyl-2,7-diaryloxynaphthalenes. The title compound, (I), is closely related to 1,8-bis(4-fluorobenzoyl)-2,7-diphenoxynaphthalene, (II) (Hijikata et al., 2012), and 1,8-dibenzoyl-2,7dimethoxynaphthalene, (III) (Nakaema et al., 2008). Like in the title compound, in homologue (II), the four benzene rings are non-coplanarly oriented relative to the naphthalene core. The dihedral angles formed by the benzene rings of the benzoyl groups are very similar to the title compound (I)  $[72.07 (4) \text{ and } 73.24 (4)^{\circ}]$ , whereas those of the benzene rings of the phenoxy groups differ and are both smaller than in the title compound [62.49 (5) and 77.96 (5) $^{\circ}$ ]. Homologue (III) is apparently different as the molecule is located on a crystallographic twofold rotation axis passing through the two central C atoms of the naphthalene unit. The dihedral angle between the benzene ring of the benzoyl group and the naphthalene ring system is 80.25 (6)°. In homologues (II) and (III), the molecules are linked by  $(sp^2)C-H\cdots O=C$ hydrogen bonds, forming a column structure  $[H \cdot \cdot \cdot O = 2.40 \text{ Å}]$ for homologue (II) and 2.60 Å for homologue (III)]. In homologue (II),  $C-H \cdots \pi$  interactions between the benzene ring of the benzoyl group and the benzene ring of the phenoxy group (2.80 Å) are observed. In homologue (III),  $\pi$ - $\pi$  interactions between the benzene rings of the benzoyl groups are formed [centroid-centroid and interplanar distances of 3.6383 (10) and 3.294 Å, respectively]. On the other hand, the title structure forms no C-H···O=C interactions shorter than 2.70 Å. In (I), C–H··· $\pi$  and  $\pi$ - $\pi$  stacking interactions evidently predominate.

### 5. Synthesis and crystallization

1,8-Dibenzoyl-2,7-dihydroxynaphthalene (0.2 mmol, 74 mg), benzenboronic acid (0.8 mmol, 97 mg), Cu(OAc)<sub>2</sub> (0.4 mmol, 73 mg), activated 4 Å molecular sieves (0.2 g), pyridine (1.6 mmol, 126 mg) and methylene chloride (0.8 ml) were placed in a 10 ml flask. The reaction mixture was stirred at room temperature for 48 h and then diluted with CHCl<sub>3</sub> (10 ml). The solution was successively washed with saturated aqueous NH<sub>4</sub>Cl, 2*M* aqueous HCl and brine. The organic layers thus obtained were dried over anhydrous MgSO<sub>4</sub>. After removal of solvent under reduced pressure, the crude product was purified by column chromatography (silica gel, hexane– AcOEt, 2:1  $\nu/\nu$ ; isolated yield 68%). The isolated product was crystallized from ethanol to give single crystals.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 6.82 (4H, *d*, *J* = 8.4 Hz), 7.03 (2H, *t*, *J* = 7.2 Hz), 7.08 (2H, *d*, *J* = 9.3 Hz), 7.22 (4H, *t*, *J* = 7.5 Hz), 7.33 (4H, *t*, *J* = 7.8 Hz), 7.46 (2H, *t*, *J* = 6.9 Hz), 7.80 (4H, *d*, *J* = 7.5 Hz), 7.89 (2H, *d*, *J* = 9.0 Hz); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 117.333, 119.169, 123.863, 125.374, 127.984, 128.070, 129.361, 129.714, 131.980, 133.022, 138.501, 153.884, 156.121, 179.239, 196.142; IR (KBr): ν 1655, 1614, 1592, 1504 cm<sup>-1</sup>; HRMS (*m*/*z*): [*M*+H]<sup>+</sup> calculated for  $C_{30}H_{25}O_4$ , 521.1753; found, 521.1768; m.p. 423.6–424.4 K.

### 6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference Fourier map and were subsequently refined as riding on their carriers, with C-H = 0.95 Å (aromatic) and  $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ .

### Acknowledgements

The authors express their gratitude to Mr Rei Sakamoto, Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science Engineering, Tokyo, Japan.

### References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
- Gvishi, R., Reisfeld, R. & Burshtein, Z. (1993). Chem. Phys. Lett. 213, 338–344.

Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.

Hijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3246.

- Jiang, Y. L., Gao, X. N., Zhou, G. N., Patel, A. & Javer, A. (2010). J. Org. Chem. 75, 324–333.
- Jiao, C. J., Huang, K. W., Luo, J., Zhang, K., Chi, C. Y. & Wu, J. S. (2009). Org. Lett. 11, 4508–4511.
- Mei, X. F., Martin, R. M. & Wolf, C. (2006). J. Org. Chem. 71, 2854– 2861.
- Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, 0807.
- Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
- Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.
- Okamoto, A., Yoshiwaka, S., Mohri, S., Hijikata, D. & Yonezawa, N. (2014). *Eur. Chem. Bull.* **3**, 829–834.
- Oneil, M. P., Niemczyk, M. P., Svec, W. A., Gosztola, D., Gaines, G. L. & Wasielewski, M. R. (1992). *Science*, 257, 63–65.

- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Seo, H.-S., Kim, D. K., Oh, J. D., Shin, E. S. & Choi, J. H. (2013). J. Phys. Chem. C, **117**, 4764–4770.
- Shao, P., Jia, N., Zhang, S. & Bai, M. (2014). Chem. Commun. 50, 5648–5651.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shibano, Y., Imahori, H. & Adachi, C. (2009). J. Phys. Chem. C, 113, 15454–15466.
- Shinamura, S., Miyazaki, E. & Takiyama, K. (2010). J. Org. Chem. 75, 1228–1234.
- Wang, B. & Yu, C. (2010). Angew. Chem. Int. Ed. 49, 1485-1488.
- Würthner, F. (2004). Chem. Commun. pp. 1564–1579.

# supporting information

Acta Cryst. (2014). E70, 170-173 [doi:10.1107/S1600536814019758]

# Crystal structure of 1,8-dibenzoyl-2,7-diphenoxynaphthalene

## Satsuki Narushima, Saki Mohri, Noriyuki Yonezawa and Akiko Okamoto

### **Computing details**

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO* (Rigaku, 1998); data reduction: *CrystalStructure* (Rigaku, 2007); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

### 1,8-Dibenzoyl-2,7-diphenoxynaphthalene

### Data collection

| Rigaku R-AXIS RAPID                                 | 49716 measured reflections                                          |
|-----------------------------------------------------|---------------------------------------------------------------------|
| diffractometer                                      | 4924 independent reflections                                        |
| Radiation source: fine-focus sealed tube            | 4506 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                              | $R_{\rm int} = 0.041$                                               |
| Detector resolution: 10.000 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 68.2^{\circ}, \ \theta_{\rm min} = 3.5^{\circ}$ |
| $\omega$ scans                                      | $h = -15 \rightarrow 14$                                            |
| Absorption correction: numerical                    | $k = -19 \rightarrow 19$                                            |
| (NUMABS; Higashi, 1999)                             | $l = -15 \rightarrow 15$                                            |
| $T_{\min} = 0.732, \ T_{\max} = 0.937$              |                                                                     |

### Refinement

Refinement on  $F^2$ SecondLeast-squares matrix: fullmap $R[F^2 > 2\sigma(F^2)] = 0.034$ Hydrog $wR(F^2) = 0.097$ neightS = 1.04H-atom4924 reflectionsw = 1/[a]362 parameterswher0 restraints $(\Delta/\sigma)_{max}$ Primary atom site location: structure-invariant $\Delta\rho_{max} =$ direct methods $\Delta\rho_{min} =$ 

F(000) = 1088  $D_x = 1.285 \text{ Mg m}^{-3}$ Cu K\alpha radiation,  $\lambda = 1.54187 \text{ Å}$ Cell parameters from 26940 reflections  $\theta = 3.4-68.2^{\circ}$   $\mu = 0.66 \text{ mm}^{-1}$  T = 193 KPlatelet, colorless  $0.50 \times 0.35 \times 0.10 \text{ mm}$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0558P)^2 + 0.4291P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.21$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.19$  e Å<sup>-3</sup>

# Extinction correction: *SHELXL97* (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.00272 (19)

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$ 

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|-------------|--------------|-----------------------------|
| 01  | 0.50123 (6)  | 0.17091 (5) | 0.26210 (6)  | 0.0420 (2)                  |
| O2  | 0.68204 (6)  | 0.28487 (5) | 0.43151 (6)  | 0.0423 (2)                  |
| O3  | 0.29940 (6)  | 0.17736 (5) | 0.40091 (6)  | 0.04128 (19)                |
| O4  | 0.13200 (6)  | 0.30376 (5) | 0.23233 (6)  | 0.0453 (2)                  |
| C1  | 0.50205 (8)  | 0.28673 (6) | 0.37033 (7)  | 0.0324 (2)                  |
| C2  | 0.59047 (8)  | 0.32915 (7) | 0.40983 (8)  | 0.0357 (2)                  |
| C3  | 0.59303 (9)  | 0.41494 (7) | 0.41644 (8)  | 0.0410 (3)                  |
| H3  | 0.6547       | 0.4423      | 0.4456       | 0.049*                      |
| C4  | 0.50574 (9)  | 0.45778 (7) | 0.38032 (8)  | 0.0400 (3)                  |
| H4  | 0.5076       | 0.5156      | 0.3823       | 0.048*                      |
| C5  | 0.32265 (9)  | 0.46409 (6) | 0.30298 (8)  | 0.0401 (3)                  |
| Н5  | 0.3258       | 0.5218      | 0.3075       | 0.048*                      |
| C6  | 0.23228 (9)  | 0.42820 (7) | 0.26128 (8)  | 0.0417 (3)                  |
| H6  | 0.1739       | 0.4603      | 0.2341       | 0.050*                      |
| C7  | 0.22675 (8)  | 0.34215 (7) | 0.25911 (8)  | 0.0372 (2)                  |
| C8  | 0.31057 (8)  | 0.29366 (6) | 0.29617 (7)  | 0.0332 (2)                  |
| C9  | 0.40819 (8)  | 0.33102 (6) | 0.33549 (7)  | 0.0329 (2)                  |
| C10 | 0.41238 (8)  | 0.41796 (6) | 0.33991 (7)  | 0.0358 (2)                  |
| C11 | 0.51520 (7)  | 0.19679 (6) | 0.35110 (8)  | 0.0322 (2)                  |
| C12 | 0.54959 (7)  | 0.14356 (6) | 0.44108 (8)  | 0.0317 (2)                  |
| C13 | 0.53226 (8)  | 0.16529 (6) | 0.54194 (8)  | 0.0356 (2)                  |
| H13 | 0.4984       | 0.2154      | 0.5544       | 0.043*                      |
| C14 | 0.56439 (9)  | 0.11396 (7) | 0.62452 (9)  | 0.0426 (3)                  |
| H14 | 0.5524       | 0.1289      | 0.6934       | 0.051*                      |
| C15 | 0.61378 (8)  | 0.04119 (7) | 0.60686 (10) | 0.0455 (3)                  |
| H15 | 0.6352       | 0.0061      | 0.6636       | 0.055*                      |
| C16 | 0.63217 (8)  | 0.01926 (7) | 0.50689 (10) | 0.0450 (3)                  |
| H16 | 0.6671       | -0.0305     | 0.4951       | 0.054*                      |
| C17 | 0.59953 (8)  | 0.06985 (6) | 0.42409 (9)  | 0.0384 (2)                  |
| H17 | 0.6112       | 0.0543      | 0.3553       | 0.046*                      |
| C18 | 0.75171 (8)  | 0.30897 (6) | 0.51655 (9)  | 0.0409 (3)                  |
| C19 | 0.85574 (10) | 0.31908 (8) | 0.50004 (12) | 0.0541 (3)                  |
| H19 | 0.8777       | 0.3125      | 0.4324       | 0.065*                      |

| C20 | 0.92813 (11)  | 0.33918 (9)  | 0.58451 (15)  | 0.0703 (5) |
|-----|---------------|--------------|---------------|------------|
| H20 | 1.0000        | 0.3470       | 0.5743        | 0.084*     |
| C21 | 0.89623 (12)  | 0.34786 (9)  | 0.68263 (14)  | 0.0722 (5) |
| H21 | 0.9460        | 0.3617       | 0.7398        | 0.087*     |
| C22 | 0.79282 (12)  | 0.33645 (8)  | 0.69766 (11)  | 0.0630 (4) |
| H22 | 0.7712        | 0.3418       | 0.7656        | 0.076*     |
| C23 | 0.71910 (10)  | 0.31718 (7)  | 0.61457 (10)  | 0.0485 (3) |
| H23 | 0.6472        | 0.3098       | 0.6251        | 0.058*     |
| C24 | 0.28832 (8)   | 0.20438 (6)  | 0.31252 (8)   | 0.0335 (2) |
| C25 | 0.24927 (8)   | 0.15255 (6)  | 0.22211 (8)   | 0.0336 (2) |
| C26 | 0.26596 (8)   | 0.17354 (7)  | 0.12080 (8)   | 0.0399 (2) |
| H26 | 0.3020        | 0.2225       | 0.1078        | 0.048*     |
| C27 | 0.22996 (9)   | 0.12298 (7)  | 0.03865 (9)   | 0.0467 (3) |
| H27 | 0.2418        | 0.1374       | -0.0305       | 0.056*     |
| C28 | 0.17703 (9)   | 0.05188 (7)  | 0.05675 (10)  | 0.0479 (3) |
| H28 | 0.1523        | 0.0176       | 0.0001        | 0.057*     |
| C29 | 0.15999 (9)   | 0.03062 (7)  | 0.15734 (10)  | 0.0468 (3) |
| H29 | 0.1233        | -0.0182      | 0.1697        | 0.056*     |
| C30 | 0.19624 (8)   | 0.08026 (7)  | 0.23989 (9)   | 0.0394 (2) |
| H30 | 0.1850        | 0.0652       | 0.3090        | 0.047*     |
| C31 | 0.06162 (8)   | 0.33949 (7)  | 0.15531 (9)   | 0.0404 (3) |
| C32 | 0.09041 (10)  | 0.35598 (9)  | 0.05780 (10)  | 0.0531 (3) |
| H32 | 0.1604        | 0.3465       | 0.0419        | 0.064*     |
| C33 | 0.01505 (12)  | 0.38679 (10) | -0.01674 (11) | 0.0679 (4) |
| H33 | 0.0339        | 0.3994       | -0.0842       | 0.082*     |
| C34 | -0.08662 (11) | 0.39936 (10) | 0.00530 (12)  | 0.0675 (4) |
| H34 | -0.1377       | 0.4199       | -0.0469       | 0.081*     |
| C35 | -0.11407 (10) | 0.38220 (9)  | 0.10278 (13)  | 0.0616 (4) |
| H35 | -0.1844       | 0.3908       | 0.1182        | 0.074*     |
| C36 | -0.03952 (9)  | 0.35228 (8)  | 0.17909 (10)  | 0.0486 (3) |
| H36 | -0.0581       | 0.3408       | 0.2470        | 0.058*     |
|     |               |              |               |            |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|------------|------------|------------|-------------|-------------|-------------|
| 01 | 0.0491 (4) | 0.0440 (4) | 0.0323 (4) | 0.0028 (3)  | 0.0023 (3)  | -0.0061 (3) |
| O2 | 0.0355 (4) | 0.0421 (4) | 0.0487 (4) | -0.0006 (3) | 0.0015 (3)  | -0.0073 (3) |
| O3 | 0.0456 (4) | 0.0421 (4) | 0.0358 (4) | -0.0013 (3) | 0.0026 (3)  | 0.0084 (3)  |
| O4 | 0.0368 (4) | 0.0427 (4) | 0.0551 (5) | 0.0022 (3)  | -0.0015 (3) | 0.0100 (4)  |
| C1 | 0.0378 (5) | 0.0323 (5) | 0.0276 (5) | -0.0010 (4) | 0.0056 (4)  | 0.0017 (4)  |
| C2 | 0.0369 (5) | 0.0379 (6) | 0.0324 (5) | -0.0011 (4) | 0.0048 (4)  | -0.0001 (4) |
| C3 | 0.0449 (6) | 0.0389 (6) | 0.0388 (6) | -0.0084 (5) | 0.0028 (5)  | -0.0033 (4) |
| C4 | 0.0546 (7) | 0.0305 (5) | 0.0352 (5) | -0.0033 (5) | 0.0064 (5)  | -0.0014 (4) |
| C5 | 0.0553 (7) | 0.0307 (5) | 0.0350 (5) | 0.0050 (5)  | 0.0069 (5)  | 0.0033 (4)  |
| C6 | 0.0477 (6) | 0.0373 (6) | 0.0395 (6) | 0.0095 (5)  | 0.0019 (5)  | 0.0065 (4)  |
| C7 | 0.0396 (6) | 0.0387 (6) | 0.0334 (5) | 0.0024 (4)  | 0.0039 (4)  | 0.0033 (4)  |
| C8 | 0.0379 (5) | 0.0329 (5) | 0.0291 (5) | 0.0018 (4)  | 0.0048 (4)  | 0.0015 (4)  |
| C9 | 0.0394 (6) | 0.0325 (5) | 0.0273 (5) | 0.0008 (4)  | 0.0056 (4)  | 0.0019 (4)  |
|    |            |            |            |             |             |             |

| C10 | 0.0467 (6) | 0.0328 (5)  | 0.0285 (5)  | 0.0003 (4)  | 0.0066 (4)  | 0.0011 (4)  |
|-----|------------|-------------|-------------|-------------|-------------|-------------|
| C11 | 0.0282 (5) | 0.0361 (5)  | 0.0327 (5)  | -0.0010 (4) | 0.0049 (4)  | -0.0026 (4) |
| C12 | 0.0280 (5) | 0.0307 (5)  | 0.0363 (5)  | -0.0020 (4) | 0.0023 (4)  | -0.0008 (4) |
| C13 | 0.0357 (5) | 0.0350 (5)  | 0.0362 (5)  | -0.0006 (4) | 0.0043 (4)  | -0.0003 (4) |
| C14 | 0.0404 (6) | 0.0497 (7)  | 0.0373 (6)  | -0.0047 (5) | 0.0016 (4)  | 0.0056 (5)  |
| C15 | 0.0339 (5) | 0.0459 (6)  | 0.0545 (7)  | -0.0030 (5) | -0.0060 (5) | 0.0162 (5)  |
| C16 | 0.0323 (5) | 0.0335 (5)  | 0.0681 (8)  | 0.0029 (4)  | 0.0000 (5)  | 0.0040 (5)  |
| C17 | 0.0333 (5) | 0.0350 (5)  | 0.0470 (6)  | 0.0004 (4)  | 0.0043 (4)  | -0.0047 (4) |
| C18 | 0.0352 (5) | 0.0317 (5)  | 0.0541 (7)  | -0.0020 (4) | -0.0038 (5) | -0.0007 (5) |
| C19 | 0.0393 (6) | 0.0459 (7)  | 0.0767 (9)  | -0.0044 (5) | 0.0044 (6)  | 0.0080 (6)  |
| C20 | 0.0355 (7) | 0.0543 (8)  | 0.1166 (14) | -0.0062 (6) | -0.0134 (7) | 0.0059 (8)  |
| C21 | 0.0621 (9) | 0.0542 (8)  | 0.0917 (12) | 0.0063 (7)  | -0.0322 (8) | -0.0148 (8) |
| C22 | 0.0722 (9) | 0.0498 (7)  | 0.0619 (8)  | 0.0152 (7)  | -0.0172 (7) | -0.0131 (6) |
| C23 | 0.0466 (7) | 0.0427 (6)  | 0.0548 (7)  | 0.0038 (5)  | -0.0010 (5) | -0.0077 (5) |
| C24 | 0.0293 (5) | 0.0358 (5)  | 0.0358 (5)  | 0.0022 (4)  | 0.0052 (4)  | 0.0042 (4)  |
| C25 | 0.0292 (5) | 0.0326 (5)  | 0.0390 (5)  | 0.0034 (4)  | 0.0029 (4)  | 0.0020 (4)  |
| C26 | 0.0401 (6) | 0.0396 (6)  | 0.0408 (6)  | -0.0016 (4) | 0.0072 (4)  | 0.0014 (4)  |
| C27 | 0.0496 (6) | 0.0513 (7)  | 0.0396 (6)  | 0.0037 (5)  | 0.0066 (5)  | -0.0045 (5) |
| C28 | 0.0446 (6) | 0.0435 (6)  | 0.0536 (7)  | 0.0041 (5)  | -0.0043 (5) | -0.0107 (5) |
| C29 | 0.0413 (6) | 0.0354 (6)  | 0.0622 (7)  | -0.0021 (5) | -0.0019 (5) | 0.0004 (5)  |
| C30 | 0.0348 (5) | 0.0362 (5)  | 0.0468 (6)  | 0.0018 (4)  | 0.0024 (4)  | 0.0066 (4)  |
| C31 | 0.0362 (6) | 0.0358 (5)  | 0.0479 (6)  | 0.0041 (4)  | -0.0012 (4) | 0.0016 (5)  |
| C32 | 0.0428 (6) | 0.0652 (8)  | 0.0512 (7)  | -0.0024 (6) | 0.0052 (5)  | 0.0040 (6)  |
| C33 | 0.0655 (9) | 0.0857 (11) | 0.0499 (8)  | -0.0132 (8) | -0.0071 (6) | 0.0131 (7)  |
| C34 | 0.0547 (8) | 0.0672 (9)  | 0.0744 (10) | -0.0014 (7) | -0.0229 (7) | 0.0138 (7)  |
| C35 | 0.0385 (6) | 0.0567 (8)  | 0.0881 (10) | 0.0112 (6)  | -0.0015 (6) | -0.0009 (7) |
| C36 | 0.0423 (6) | 0.0471 (7)  | 0.0571 (7)  | 0.0076 (5)  | 0.0079 (5)  | -0.0018 (5) |
|     |            |             |             |             |             |             |

## Geometric parameters (Å, °)

| 01—C11 | 1.2199 (12) | C18—C19 | 1.3774 (17) |
|--------|-------------|---------|-------------|
| O2—C2  | 1.3808 (13) | C18—C23 | 1.3784 (17) |
| O2—C18 | 1.3964 (13) | C19—C20 | 1.394 (2)   |
| O3—C24 | 1.2181 (12) | C19—H19 | 0.9500      |
| O4—C7  | 1.3763 (13) | C20—C21 | 1.377 (2)   |
| O4—C31 | 1.3979 (13) | C20—H20 | 0.9500      |
| C1—C2  | 1.3786 (14) | C21—C22 | 1.368 (2)   |
| C1—C9  | 1.4338 (14) | C21—H21 | 0.9500      |
| C1—C11 | 1.5090 (14) | C22—C23 | 1.3882 (17) |
| C2—C3  | 1.4107 (15) | C22—H22 | 0.9500      |
| C3—C4  | 1.3590 (16) | C23—H23 | 0.9500      |
| С3—Н3  | 0.9500      | C24—C25 | 1.4873 (14) |
| C4—C10 | 1.4115 (15) | C25—C26 | 1.3893 (15) |
| C4—H4  | 0.9500      | C25—C30 | 1.3967 (15) |
| C5—C6  | 1.3566 (16) | C26—C27 | 1.3863 (16) |
| C5—C10 | 1.4145 (15) | C26—H26 | 0.9500      |
| С5—Н5  | 0.9500      | C27—C28 | 1.3805 (17) |
| C6—C7  | 1.4141 (16) | С27—Н27 | 0.9500      |
|        |             |         |             |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С6—Н6     | 0.9500      | C28—C29     | 1.3827 (18) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------|-------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С7—С8     | 1.3791 (14) | C28—H28     | 0.9500      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C8—C9     | 1.4343 (14) | C29—C30     | 1.3821 (16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C8—C24    | 1.5115 (14) | С29—Н29     | 0.9500      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C9—C10    | 1.4286 (15) | С30—Н30     | 0.9500      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C11—C12   | 1.4826 (14) | C31—C32     | 1.3736 (17) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C12—C13   | 1.3889 (14) | C31—C36     | 1.3744 (16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C12—C17   | 1.3952 (14) | C32—C33     | 1.3840 (19) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C13—C14   | 1.3866 (15) | С32—Н32     | 0.9500      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C13—H13   | 0.9500      | C33—C34     | 1.374 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C14—C15   | 1.3803 (17) | С33—Н33     | 0.9500      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C14—H14   | 0.9500      | C34—C35     | 1.369 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C15—C16   | 1.3823 (18) | С34—Н34     | 0.9500      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C15—H15   | 0.9500      | C35—C36     | 1.3868 (18) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C16—C17   | 1.3827 (16) | С35—Н35     | 0.9500      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С16—Н16   | 0.9500      | С36—Н36     | 0.9500      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С17—Н17   | 0.9500      |             |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |             |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2—O2—C18 | 117.89 (8)  | C23—C18—O2  | 121.33 (10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C7—O4—C31 | 118.07 (8)  | C18—C19—C20 | 118.69 (14) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2—C1—C9  | 119.10 (9)  | C18—C19—H19 | 120.7       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2—C1—C11 | 116.98 (9)  | С20—С19—Н19 | 120.7       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C9—C1—C11 | 123.23 (9)  | C21—C20—C19 | 120.52 (14) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1—C2—O2  | 116.98 (9)  | C21—C20—H20 | 119.7       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1—C2—C3  | 122.63 (10) | С19—С20—Н20 | 119.7       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O2—C2—C3  | 119.94 (9)  | C22—C21—C20 | 119.89 (13) |
| C4—C3—H3120.6C20—C21—H21120.1C2—C3—H3120.6C21—C22—C23120.64 (15)C3—C4—C10121.26 (10)C21—C22—H22119.7C3—C4—H4119.4C23—C22—H22119.7C10—C4—H4119.4C18—C23—C22119.05 (13)C6—C5—C10121.86 (10)C18—C23—H23120.5C6—C5—H5119.1C22—C23—H23120.5C10—C5—H5119.1O3—C24—C25121.54 (9)C5—C6—C7118.69 (10)O3—C24—C8118.57 (9)C5—C6—H6120.7C25—C24—C8119.84 (8)C7—C6—H6120.7C26—C25—C24121.63 (9)O4—C7—C8117.00 (9)C30—C25—C24119.07 (9)C8—C7—C6122.27 (10)C27—C26—C25119.99 (10)C7—C8—C9119.43 (9)C27—C26—H26120.0C7—C8—C24122.28 (9)C28—C27—C26120.40 (11)C10—C9—C1117.84 (9)C28—C27—H27119.8C10—C9—C8117.94 (9)C26—C25—C24119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0        | C4—C3—C2  | 118.85 (10) | C22—C21—H21 | 120.1       |
| C2-C3-H3120.6C21-C22-C23120.64 (15)C3-C4-C10121.26 (10)C21-C22-H22119.7C3-C4-H4119.4C23-C22-H22119.7C10-C4-H4119.4C18-C23-C22119.05 (13)C6-C5-C10121.86 (10)C18-C23-H23120.5C6-C5-H5119.1C22-C23-H23120.5C10-C5-H5119.1O3-C24-C25121.54 (9)C5-C6-C7118.69 (10)O3-C24-C8118.57 (9)C5-C6-H6120.7C26-C25-C30119.29 (10)O4-C7-C8117.00 (9)C26-C25-C24121.63 (9)O4-C7-C6120.19 (9)C30-C25-C24119.07 (9)C8-C7-C6122.27 (10)C27-C26-H26120.0C7-C8-C9119.43 (9)C27-C26-H26120.0C7-C8-C24122.28 (9)C28-C27-C26120.40 (11)C10-C9-C1117.84 (9)C28-C27-H27119.8C10-C9-C8117.94 (9)C26-C27-H27119.8C1-C9-C8120.05 (10)C27-C28-C29119.96 (11)C4-C10-C5120.05 (10)C27-C28-H28120.0 | С4—С3—Н3  | 120.6       | C20—C21—H21 | 120.1       |
| C3C4C10121.26 (10)C21C22H22119.7C3C4H4119.4C23C22H22119.05 (13)C10C4H4119.4C18C23C22119.05 (13)C6C5C10121.86 (10)C18C23H23120.5C6C5H5119.1C22C23H23120.5C10C5H5119.1O3C24C25121.54 (9)C5C6C7118.69 (10)O3C24C8118.57 (9)C5C6H6120.7C25C24C8119.84 (8)C7C6H6120.7C26C25C30119.29 (10)O4C7C8117.00 (9)C26C25C24121.63 (9)O4C7C6122.27 (10)C27C26C25119.99 (10)C7C6C6122.27 (10)C27C26C25119.99 (10)C7C8C9119.43 (9)C27C26H26120.0C7C8C24117.21 (9)C25C26H26120.0C9C8C24122.28 (9)C28C27C26120.40 (11)C10C9C8117.94 (9)C26C27H27119.8C10C9C8124.22 (9)C27C28C29119.96 (11)C4C10C5120.05 (10)C27C28C29119.96 (11)                                                       | С2—С3—Н3  | 120.6       | C21—C22—C23 | 120.64 (15) |
| C3-C4-H4119.4C23-C22-H22119.7C10-C4-H4119.4C18-C23-C22119.05 (13)C6-C5-C10121.86 (10)C18-C23-H23120.5C6-C5-H5119.1C22-C23-H23120.5C10-C5-H5119.1O3-C24-C25121.54 (9)C5-C6-C7118.69 (10)O3-C24-C8118.57 (9)C5-C6-H6120.7C25-C24-C8119.29 (10)O4-C7-C8117.00 (9)C26-C25-C24121.63 (9)O4-C7-C6120.19 (9)C30-C25-C24119.07 (9)C8-C7-C6122.27 (10)C27-C26-C25119.99 (10)C7-C8-C9119.43 (9)C27-C26-H26120.0C7-C8-C24122.28 (9)C28-C27-C26120.40 (11)C10-C9-C1117.84 (9)C28-C27-H27119.8C10-C9-C8117.94 (9)C26-C27-H27119.8C1-C9-C8120.05 (10)C27-C28-C29119.96 (11)C4-C10-C5120.05 (10)C27-C28-H28120.0                                                                   | C3—C4—C10 | 121.26 (10) | C21—C22—H22 | 119.7       |
| C10—C4—H4119.4C18—C23—C22119.05 (13)C6—C5—C10121.86 (10)C18—C23—H23120.5C6—C5—H5119.1C22—C23—H23120.5C10—C5—H5119.1O3—C24—C25121.54 (9)C5—C6—C7118.69 (10)O3—C24—C8118.57 (9)C5—C6—H6120.7C25—C24—C8119.29 (10)O4—C7—C8117.00 (9)C26—C25—C24121.63 (9)O4—C7—C6120.19 (9)C30—C25—C24119.07 (9)C8—C7—C6122.27 (10)C27—C26—C25119.99 (10)C7—C8—C24117.21 (9)C25—C26—H26120.0C7—C8—C24122.28 (9)C28—C27—C26120.40 (11)C10—C9—C1117.84 (9)C28—C27—H27119.8C10—C9—C8117.94 (9)C26—C27—H27119.8C1—C9—C8124.22 (9)C27—C28—C29119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0                                                                                                | C3—C4—H4  | 119.4       | C23—C22—H22 | 119.7       |
| C6—C5—C10121.86 (10)C18—C23—H23120.5C6—C5—H5119.1C22—C23—H23120.5C10—C5—H5119.1O3—C24—C25121.54 (9)C5—C6—C7118.69 (10)O3—C24—C8118.57 (9)C5—C6—H6120.7C25—C24—C8119.84 (8)C7—C6—H6120.7C26—C25—C24121.63 (9)O4—C7—C8117.00 (9)C26—C25—C24121.63 (9)O4—C7—C6120.19 (9)C30—C25—C24119.07 (9)C8—C7—C6122.27 (10)C27—C26—C25119.99 (10)C7—C8—C9119.43 (9)C27—C26—H26120.0C9—C8—C24122.28 (9)C28—C27—C26120.40 (11)C10—C9—C1117.84 (9)C28—C27—H27119.8C10—C9—C8117.94 (9)C26—C27—H27119.8C1—C9—C8124.22 (9)C27—C28—C29119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0                                                                                                    | C10—C4—H4 | 119.4       | C18—C23—C22 | 119.05 (13) |
| C6—C5—H5119.1C22—C23—H23120.5C10—C5—H5119.1O3—C24—C25121.54 (9)C5—C6—C7118.69 (10)O3—C24—C8118.57 (9)C5—C6—H6120.7C25—C24—C8119.84 (8)C7—C6—H6120.7C26—C25—C30119.29 (10)O4—C7—C8117.00 (9)C26—C25—C24121.63 (9)O4—C7—C6120.19 (9)C30—C25—C24119.07 (9)C8—C7—C6122.27 (10)C27—C26—C25119.99 (10)C7—C8—C9119.43 (9)C27—C26—H26120.0C9—C8—C24122.28 (9)C28—C27—C26120.40 (11)C10—C9—C1117.84 (9)C28—C27—H27119.8C10—C9—C8117.94 (9)C26—C27—H27119.8C1—C9—C8124.22 (9)C27—C28—C29119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0                                                                                                                                       | C6—C5—C10 | 121.86 (10) | C18—C23—H23 | 120.5       |
| C10—C5—H5119.1O3—C24—C25121.54 (9)C5—C6—C7118.69 (10)O3—C24—C8118.57 (9)C5—C6—H6120.7C25—C24—C8119.84 (8)C7—C6—H6120.7C26—C25—C30119.29 (10)O4—C7—C8117.00 (9)C26—C25—C24121.63 (9)O4—C7—C6120.19 (9)C30—C25—C24119.07 (9)C8—C7—C6122.27 (10)C27—C26—C25119.99 (10)C7—C8—C9119.43 (9)C27—C26—H26120.0C9—C8—C24122.28 (9)C28—C27—C26120.40 (11)C10—C9—C1117.84 (9)C28—C27—H27119.8C10—C9—C8124.22 (9)C27—C28—C29119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0                                                                                                                                                                                                      | С6—С5—Н5  | 119.1       | С22—С23—Н23 | 120.5       |
| C5—C6—C7118.69 (10)O3—C24—C8118.57 (9)C5—C6—H6120.7C25—C24—C8119.84 (8)C7—C6—H6120.7C26—C25—C30119.29 (10)O4—C7—C8117.00 (9)C26—C25—C24121.63 (9)O4—C7—C6120.19 (9)C30—C25—C24119.07 (9)C8—C7—C6122.27 (10)C27—C26—C25119.99 (10)C7—C8—C9119.43 (9)C27—C26—H26120.0C7—C8—C24117.21 (9)C25—C26—H26120.0C9—C8—C24122.28 (9)C28—C27—C26120.40 (11)C10—C9—C1117.84 (9)C26—C27—H27119.8C10—C9—C8117.94 (9)C26—C27—H27119.8C1—C9—C8124.22 (9)C27—C28—C29119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0                                                                                                                                                                   | С10—С5—Н5 | 119.1       | O3—C24—C25  | 121.54 (9)  |
| C5—C6—H6120.7C25—C24—C8119.84 (8)C7—C6—H6120.7C26—C25—C30119.29 (10)O4—C7—C8117.00 (9)C26—C25—C24121.63 (9)O4—C7—C6120.19 (9)C30—C25—C24119.07 (9)C8—C7—C6122.27 (10)C27—C26—C25119.99 (10)C7—C8—C9119.43 (9)C27—C26—H26120.0C7—C8—C24117.21 (9)C25—C26—H26120.0C9—C8—C24122.28 (9)C28—C27—C26120.40 (11)C10—C9—C1117.84 (9)C28—C27—H27119.8C10—C9—C8117.94 (9)C26—C27—H27119.8C1—C9—C8124.22 (9)C27—C28—C29119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0                                                                                                                                                                                                         | C5—C6—C7  | 118.69 (10) | O3—C24—C8   | 118.57 (9)  |
| C7C6H6120.7 $C26C25C30$ 119.29 (10) $O4C7C8$ 117.00 (9) $C26C25C24$ 121.63 (9) $O4C7C6$ 120.19 (9) $C30C25C24$ 119.07 (9) $C8C7C6$ 122.27 (10) $C27C26C25$ 119.99 (10) $C7C8C9$ 119.43 (9) $C27C26H26$ 120.0 $C7C8C24$ 117.21 (9) $C25C26H26$ 120.0 $C9C8C24$ 122.28 (9) $C28C27C26$ 120.40 (11) $C10C9C1$ 117.84 (9) $C28C27H27$ 119.8 $C10C9C8$ 117.94 (9) $C26C27H27$ 119.8 $C1C9C8$ 124.22 (9) $C27C28C29$ 119.96 (11) $C4C10C5$ 120.05 (10) $C27C28H28$ 120.0                                                                                                                                                                                                  | С5—С6—Н6  | 120.7       | C25—C24—C8  | 119.84 (8)  |
| O4-C7-C8 $117.00 (9)$ $C26-C25-C24$ $121.63 (9)$ $O4-C7-C6$ $120.19 (9)$ $C30-C25-C24$ $119.07 (9)$ $C8-C7-C6$ $122.27 (10)$ $C27-C26-C25$ $119.99 (10)$ $C7-C8-C9$ $119.43 (9)$ $C27-C26-H26$ $120.0$ $C7-C8-C24$ $117.21 (9)$ $C25-C26-H26$ $120.0$ $C9-C8-C24$ $122.28 (9)$ $C28-C27-C26$ $120.40 (11)$ $C10-C9-C1$ $117.84 (9)$ $C28-C27-H27$ $119.8$ $C10-C9-C8$ $124.22 (9)$ $C27-C28-C29$ $119.96 (11)$ $C4-C10-C5$ $120.05 (10)$ $C27-C28-H28$ $120.0$                                                                                                                                                                                                      | С7—С6—Н6  | 120.7       | C26—C25—C30 | 119.29 (10) |
| O4-C7-C6 $120.19$ (9) $C30-C25-C24$ $119.07$ (9) $C8-C7-C6$ $122.27$ (10) $C27-C26-C25$ $119.99$ (10) $C7-C8-C9$ $119.43$ (9) $C27-C26-H26$ $120.0$ $C7-C8-C24$ $117.21$ (9) $C25-C26-H26$ $120.0$ $C9-C8-C24$ $122.28$ (9) $C28-C27-C26$ $120.40$ (11) $C10-C9-C1$ $117.84$ (9) $C28-C27-H27$ $119.8$ $C10-C9-C8$ $117.94$ (9) $C26-C27-H27$ $119.8$ $C1-C9-C8$ $124.22$ (9) $C27-C28-C29$ $119.96$ (11) $C4-C10-C5$ $120.05$ (10) $C27-C28-H28$ $120.0$                                                                                                                                                                                                           | O4—C7—C8  | 117.00 (9)  | C26—C25—C24 | 121.63 (9)  |
| C8-C7-C6 $122.27 (10)$ $C27-C26-C25$ $119.99 (10)$ $C7-C8-C9$ $119.43 (9)$ $C27-C26-H26$ $120.0$ $C7-C8-C24$ $117.21 (9)$ $C25-C26-H26$ $120.0$ $C9-C8-C24$ $122.28 (9)$ $C28-C27-C26$ $120.40 (11)$ $C10-C9-C1$ $117.84 (9)$ $C28-C27-H27$ $119.8$ $C10-C9-C8$ $117.94 (9)$ $C26-C27-H27$ $119.8$ $C1-C9-C8$ $124.22 (9)$ $C27-C28-C29$ $119.96 (11)$ $C4-C10-C5$ $120.05 (10)$ $C27-C28-H28$ $120.0$                                                                                                                                                                                                                                                              | O4—C7—C6  | 120.19 (9)  | C30—C25—C24 | 119.07 (9)  |
| C7-C8-C9119.43 (9)C27-C26-H26120.0C7-C8-C24117.21 (9)C25-C26-H26120.0C9-C8-C24122.28 (9)C28-C27-C26120.40 (11)C10-C9-C1117.84 (9)C28-C27-H27119.8C10-C9-C8117.94 (9)C26-C27-H27119.8C1-C9-C8124.22 (9)C27-C28-C29119.96 (11)C4-C10-C5120.05 (10)C27-C28-H28120.0                                                                                                                                                                                                                                                                                                                                                                                                    | C8—C7—C6  | 122.27 (10) | C27—C26—C25 | 119.99 (10) |
| C7-C8-C24       117.21 (9)       C25-C26-H26       120.0         C9-C8-C24       122.28 (9)       C28-C27-C26       120.40 (11)         C10-C9-C1       117.84 (9)       C28-C27-H27       119.8         C10-C9-C8       117.94 (9)       C26-C27-H27       119.8         C1-C9-C8       124.22 (9)       C27-C28-C29       119.96 (11)         C4-C10-C5       120.05 (10)       C27-C28-H28       120.0                                                                                                                                                                                                                                                           | C7—C8—C9  | 119.43 (9)  | C27—C26—H26 | 120.0       |
| C9—C8—C24122.28 (9)C28—C27—C26120.40 (11)C10—C9—C1117.84 (9)C28—C27—H27119.8C10—C9—C8117.94 (9)C26—C27—H27119.8C1—C9—C8124.22 (9)C27—C28—C29119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C7—C8—C24 | 117.21 (9)  | C25—C26—H26 | 120.0       |
| C10-C9-C1117.84 (9)C28-C27-H27119.8C10-C9-C8117.94 (9)C26-C27-H27119.8C1-C9-C8124.22 (9)C27-C28-C29119.96 (11)C4-C10-C5120.05 (10)C27-C28-H28120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C9—C8—C24 | 122.28 (9)  | C28—C27—C26 | 120.40 (11) |
| C10—C9—C8117.94 (9)C26—C27—H27119.8C1—C9—C8124.22 (9)C27—C28—C29119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C10—C9—C1 | 117.84 (9)  | C28—C27—H27 | 119.8       |
| C1—C9—C8124.22 (9)C27—C28—C29119.96 (11)C4—C10—C5120.05 (10)C27—C28—H28120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C10—C9—C8 | 117.94 (9)  | С26—С27—Н27 | 119.8       |
| C4—C10—C5 120.05 (10) C27—C28—H28 120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C1—C9—C8  | 124.22 (9)  | C27—C28—C29 | 119.96 (11) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C4—C10—C5 | 120.05 (10) | C27—C28—H28 | 120.0       |

| C4—C10—C9                  | 120.25 (9)   | C29—C28—H28                         | 120.0                    |
|----------------------------|--------------|-------------------------------------|--------------------------|
| C5-C10-C9                  | 119.70 (10)  | C30—C29—C28                         | 120.12 (11)              |
| 01-C11-C12                 | 122.31 (9)   | C30—C29—H29                         | 119.9                    |
| 01                         | 119.17 (9)   | C28—C29—H29                         | 119.9                    |
| C12-C11-C1                 | 118 47 (8)   | $C_{29} = C_{30} = C_{25}$          | 120 24 (10)              |
| $C_{13}$ $C_{12}$ $C_{17}$ | 119 31 (9)   | C29—C30—H30                         | 119.9                    |
| C13 - C12 - C11            | 121 28 (9)   | $C_{25} = C_{30} = H_{30}$          | 119.9                    |
| C17 - C12 - C11            | 119 41 (9)   | $C_{32} = C_{31} = C_{36}$          | 121 41 (11)              |
| C14-C13-C12                | 120.04(10)   | $C_{32} = C_{31} = C_{4}$           | 121.11(11)<br>121.35(10) |
| C14—C13—H13                | 120.0        | $C_{36} - C_{31} - O_{4}$           | 117.10 (10)              |
| C12—C13—H13                | 120.0        | $C_{31} - C_{32} - C_{33}$          | 118 39 (12)              |
| C15 - C14 - C13            | 120.18 (11)  | $C_{31} = C_{32} = H_{32}$          | 120.8                    |
| C15 - C14 - H14            | 119.9        | $C_{33}$ $C_{32}$ $H_{32}$          | 120.8                    |
| C13 - C14 - H14            | 119.9        | $C_{34}$ $C_{33}$ $C_{32}$          | 121.04 (14)              |
| C14-C15-C16                | 120.26 (10)  | C34—C33—H33                         | 119.5                    |
| C14-C15-H15                | 119.9        | C32—C33—H33                         | 119.5                    |
| C16—C15—H15                | 119.9        | $C_{35} = C_{34} = C_{33}$          | 119.5                    |
| $C_{15}$ $C_{16}$ $C_{17}$ | 119.84 (10)  | $C_{35} = C_{34} = H_{34}$          | 120.1                    |
| C15 - C16 - H16            | 120.1        | C33—C34—H34                         | 120.1                    |
| C17—C16—H16                | 120.1        | $C_{34}$ $C_{35}$ $C_{36}$ $C_{36}$ | 120.16 (13)              |
| $C_{16}$ $C_{17}$ $C_{12}$ | 120.36 (10)  | C34—C35—H35                         | 119.9                    |
| С16—С17—Н17                | 119.8        | С36—С35—Н35                         | 119.9                    |
| С12—С17—Н17                | 119.8        | C31—C36—C35                         | 119.21 (13)              |
| C19—C18—C23                | 121.21 (11)  | С31—С36—Н36                         | 120.4                    |
| C19—C18—O2                 | 117.33 (11)  | С35—С36—Н36                         | 120.4                    |
|                            |              |                                     |                          |
| C9—C1—C2—O2                | -172.98(8)   | C11—C12—C13—C14                     | 179.40 (9)               |
| C11—C1—C2—O2               | -2.16 (13)   | C12—C13—C14—C15                     | 0.07 (16)                |
| C9—C1—C2—C3                | -0.74 (15)   | C13—C14—C15—C16                     | 0.44 (16)                |
| C11—C1—C2—C3               | 170.07 (9)   | C14—C15—C16—C17                     | -0.98 (16)               |
| C18—O2—C2—C1               | -145.91 (9)  | C15—C16—C17—C12                     | 1.01 (16)                |
| C18—O2—C2—C3               | 41.63 (13)   | C13—C12—C17—C16                     | -0.51 (15)               |
| C1—C2—C3—C4                | -1.54 (16)   | C11—C12—C17—C16                     | -179.95 (9)              |
| O2—C2—C3—C4                | 170.48 (9)   | C2—O2—C18—C19                       | -129.66 (11)             |
| C2—C3—C4—C10               | 2.13 (16)    | C2-02-C18-C23                       | 54.45 (14)               |
| C10—C5—C6—C7               | 2.80 (16)    | C23—C18—C19—C20                     | -0.98 (18)               |
| C31—O4—C7—C8               | -151.93 (10) | O2-C18-C19-C20                      | -176.87 (11)             |
| C31—O4—C7—C6               | 36.35 (14)   | C18—C19—C20—C21                     | 0.7 (2)                  |
| C5—C6—C7—O4                | 170.07 (9)   | C19—C20—C21—C22                     | 0.2 (2)                  |
| C5—C6—C7—C8                | -1.19 (16)   | C20—C21—C22—C23                     | -0.8 (2)                 |
| O4—C7—C8—C9                | -173.51 (8)  | C19—C18—C23—C22                     | 0.36 (18)                |
| C6—C7—C8—C9                | -1.98 (15)   | O2—C18—C23—C22                      | 176.10 (11)              |
| O4—C7—C8—C24               | -5.11 (14)   | C21—C22—C23—C18                     | 0.6 (2)                  |
| C6—C7—C8—C24               | 166.42 (10)  | C7—C8—C24—O3                        | -114.72 (11)             |
| C2-C1-C9-C10               | 2.35 (13)    | C9—C8—C24—O3                        | 53.32 (14)               |
| C11—C1—C9—C10              | -167.86 (9)  | C7—C8—C24—C25                       | 62.62 (13)               |
| C2—C1—C9—C8                | -177.90 (9)  | C9—C8—C24—C25                       | -129.33 (10)             |
| C11—C1—C9—C8               | 11.89 (14)   | O3—C24—C25—C26                      | -160.13 (10)             |
|                            |              |                                     |                          |

| C7—C8—C9—C10    | 3.46 (14)    | C8—C24—C25—C26  | 22.61 (14)   |
|-----------------|--------------|-----------------|--------------|
| C24—C8—C9—C10   | -164.32 (9)  | O3—C24—C25—C30  | 18.66 (15)   |
| C7—C8—C9—C1     | -176.29 (9)  | C8—C24—C25—C30  | -158.60 (9)  |
| C24—C8—C9—C1    | 15.92 (14)   | C30—C25—C26—C27 | 0.10 (16)    |
| C3—C4—C10—C5    | 179.91 (10)  | C24—C25—C26—C27 | 178.89 (10)  |
| C3—C4—C10—C9    | -0.47 (15)   | C25—C26—C27—C28 | 0.31 (17)    |
| C6—C5—C10—C4    | 178.39 (10)  | C26—C27—C28—C29 | -0.23 (18)   |
| C6-C5-C10-C9    | -1.23 (15)   | C27—C28—C29—C30 | -0.26 (17)   |
| C1-C9-C10-C4    | -1.79 (14)   | C28—C29—C30—C25 | 0.68 (17)    |
| C8—C9—C10—C4    | 178.44 (9)   | C26—C25—C30—C29 | -0.59 (15)   |
| C1—C9—C10—C5    | 177.84 (8)   | C24—C25—C30—C29 | -179.41 (9)  |
| C8—C9—C10—C5    | -1.94 (14)   | C7—O4—C31—C32   | 56.41 (15)   |
| C2-C1-C11-O1    | -115.66 (11) | C7—O4—C31—C36   | -127.86 (11) |
| C9-C1-C11-O1    | 54.74 (13)   | C36—C31—C32—C33 | 0.6 (2)      |
| C2-C1-C11-C12   | 61.54 (12)   | O4—C31—C32—C33  | 176.12 (12)  |
| C9—C1—C11—C12   | -128.06 (10) | C31—C32—C33—C34 | -1.1 (2)     |
| O1—C11—C12—C13  | -158.43 (10) | C32—C33—C34—C35 | 0.8 (2)      |
| C1—C11—C12—C13  | 24.46 (14)   | C33—C34—C35—C36 | 0.1 (2)      |
| O1—C11—C12—C17  | 21.00 (14)   | C32—C31—C36—C35 | 0.24 (19)    |
| C1-C11-C12-C17  | -156.11 (9)  | O4—C31—C36—C35  | -175.48 (11) |
| C17—C12—C13—C14 | -0.03 (15)   | C34—C35—C36—C31 | -0.6 (2)     |
|                 |              |                 |              |

## Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4/C10/C9 and C5–C10 rings, respectively.

| D—H···A                               | D—H  | H···A | D····A      | D—H··· $A$ |
|---------------------------------------|------|-------|-------------|------------|
| C14—H14··· <i>Cg</i> 1 <sup>i</sup>   | 0.95 | 2.50  | 3.4192 (12) | 163        |
| C27—H27···· <i>Cg</i> 2 <sup>ii</sup> | 0.95 | 2.51  | 3.4002 (12) | 155        |

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x, -y+1/2, z-1/2.