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Abstract

Background: Previous research has described distinct subtypes of Alzheimer’s disease (AD) based on the differences in
regional patterns of brain atrophy on MRI. We conducted a data-driven exploration of distinct AD neurodegeneration
subtypes using FDG-PET as a sensitive molecular imaging marker of neurodegenerative processes.

Methods: Hierarchical clustering of voxel-wise FDG-PET data from 177 amyloid-positive patients with AD dementia
enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was used to identify distinct hypometabolic
subtypes of AD, which were then further characterized with respect to clinical and biomarker characteristics. We then
classified FDG-PET scans of 217 amyloid-positive patients with mild cognitive impairment (“prodromal AD”) according
to the identified subtypes and studied their domain-specific cognitive trajectories and progression to dementia over a
follow-up interval of up to 72months.

Results: Three main hypometabolic subtypes were identified: (i) “typical” (48.6%), showing a classic posterior temporo-
parietal hypometabolic pattern; (ii) “limbic-predominant” (44.6%), characterized by old age and a memory-predominant
cognitive profile; and (iii) a relatively rare “cortical-predominant” subtype (6.8%) characterized by younger age and more
severe executive dysfunction. Subtypes classified in the prodromal AD sample demonstrated similar subtype
characteristics as in the AD dementia sample and further showed differential courses of cognitive decline.
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Conclusions: These findings complement recent research efforts on MRI-based identification of distinct AD atrophy
subtypes and may provide a potentially more sensitive molecular imaging tool for early detection and characterization
of AD-related neurodegeneration variants at prodromal disease stages.
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Introduction
Previous research has demonstrated heterogeneity in
Alzheimer’s disease (AD) which is linked to distinct
neuropathological subtypes of AD characterized by
limbic-predominant, hippocampal sparing, or rather bal-
anced (“typical”) spatial distributions of neurofibrillary
tangle pathology [1]. Analysis of ante-mortem structural
MRI data demonstrated that neuropathologically defined
AD subtypes also show characteristic in vivo patterns of
regional brain atrophy [2]. Recent research has used
clustering methods on structural MRI data to identify
similar regional atrophy subtypes in AD in a data-driven
manner [3]. Interestingly, these atrophy subtypes could
already be detected in patients with prodromal AD (i.e.
amyloid-beta [Aβ]-positive patients with mild cognitive
impairment [MCI]), who showed similar biomarker
characteristics as the subtypes identified in patients with
AD dementia and were associated with differential clin-
ical trajectories [4, 5].
In addition to volumetric information from structural

MRI, hypometabolism in FDG-PET is a well-established
imaging marker of neurodegeneration as recognized by
the recently revised research criteria for AD [6]. The use
of FDG-PET in dementia and neurodegenerative cogni-
tive impairment was also recently supported by consen-
sus recommendations from a panel of experts from the
European Association of Nuclear Medicine and the
European Academy of Neurology [7]. FDG-PET may
indicate a decrease in cerebral glucose metabolism that
occurs prior to the macroscopic atrophy detectable with
MRI, rendering the technique potentially more sensitive
to early neurodegenerative processes [8–10]. While
previous hypothesis-driven studies have also reported
differential hypometabolic FDG-PET patterns amongst
AD dementia patients [11–13], to our knowledge, FDG-
PET has not yet been used for identifying neurodegener-
ation subtypes of AD in a data-driven manner. Given
that detection of an “AD-typical” hypometabolism pat-
tern by visual inspection of individual patients’ FDG-
PET scans is commonly used for differential dementia
diagnosis in research and clinical settings [7, 12, 14–16],
a systematic evaluation of whether and how specific AD
neurodegeneration subtypes are reflected in FDG-PET
data can have important diagnostic implications.
In the current study, we investigated hypometabolic

subtypes in patients with AD by applying an established

hierarchical clustering approach to a large dataset of
FDG-PET scans from patients with biomarker-confirmed
AD enrolled in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). The identified subtypes were further
characterized with respect to detailed clinical and bio-
marker profiles and also used for subtype stratification of
an independent ADNI sample of patients with prodromal
AD (Aβ-positive patients with MCI) who were clinically
followed for up to 72months.

Methods
Participants
We included data from 179 cognitively normal (CN)
participants (58 Aβ-positive), 177 Aβ-positive patients
with a clinical diagnosis of AD dementia, and 217 Aβ-
positive patients with MCI (i.e. prodromal AD) from the
ADNI-1, ADNI-GO/2 and ADNI-3 cohorts (adni.loni.
usc.edu). The detailed inclusion criteria for the different
diagnostic categories have been described in detail be-
fore [17] and are available on the ADNI website (http://
adni.loni.usc.edu/methods/documents/). Evidence of Aβ
pathology was based on AV45-PET or, in case this meas-
ure was not available, on CSF Aβ levels (see below for
details). This was only the case for 48 AD dementia pa-
tients (i.e. 12% of the total patient sample). The ADNI is
a longitudinal multicentre study aimed at investigating
whether neuroimaging methods such as MRI and PET,
together with genetic, clinical and neuropsychological
measures, can be used to characterize the progression of
MCI and AD. The ADNI was launched in 2003 as a
public-private partnership, led by principal investigator
Michael W. Weiner, MD.

Neuropsychological test scores
Cognitive performance in the ADNI is assessed using
neuropsychological test batteries covering various cogni-
tive domains. We used previously established composite
cognitive scores for memory (ADNI-MEM), executive
function (ADNI-EF), visuospatial function (ADNI-VS)
and language (ADNI-Lan) [18–20]. Mini-Mental State
Examination (MMSE) scores were used for characteriz-
ing global cognitive impairment. We also calculated the
difference between the ADNI-MEM and the ADNI-EF
composite scores (ADNI-DIFF) to characterize differen-
tial decline in these two domains. Positive values in this
variable thus represent a more pronounced executive

Levin et al. Alzheimer's Research & Therapy           (2021) 13:49 Page 2 of 14

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/methods/documents/


impairment compared to the memory deficit, and vice
versa for negative values.

Longitudinal analysis
We analysed longitudinal changes in cognitive functions of
the prodromal AD subtypes for participants with available
follow-up data (n = 200). We used longitudinal measures of
ADNI-MEM, ADNI-EF, ADNI-VS and ADNI-Lan.
Additionally, longitudinal Clinical Dementia Rating (CDR)
scores were used as a criterion indicating a progression
from prodromal (CDR = 0.5) to clinically manifest AD
dementia (CDR ≥ 1). The mean follow-up period was 44
months (range 12–72months), and 72.5% of participants
had at least 36months of follow-up available.

Biomarkers
Measures of cortex-to-whole cerebellum AV45 standard
uptake value ratios (SUVR) have been calculated by the
ADNI PET core (Jagust Lab, UC Berkeley) and were
downloaded from the ADNI server. We selected Aβ-
positive patients with AD or MCI if their AV45 SUVR
values were greater than or equal to the recommended
threshold of 1.11 [21].
ADNI CSF values in the current study were derived

from electrochemiluminescence immunoassays for Aβ
[1–42], tau phosphorylated at threonine 181 (p-tau) and
total tau (t-tau) on an automated Elecsys cobas e 601 in-
strument.1 We included participants who had CSF Aβ
values lower than the threshold of 880 pg/ml proposed
by Hansson et al. [22].
Selecting patients based on biomarker evidence of

amyloidosis follows the design of previous MRI-based
subtyping studies of differential neurodegeneration
patterns in AD [4, 5]. However, given that the 2018
NIA-AA revised research criteria now reserve the term
“Alzheimer’s disease” for combined evidence of amyloid
and tau positivity [6], we also categorized patients with
regard to the full A/T/(N) classification using CSF p-tau
levels above 19.2 pg/ml for denoting tau biomarker (T)
positivity and CSF t-tau levels above 242 pg/ml for de-
noting neurodegeneration biomarker (N) positivity [23].
Full CSF biomarker data was available for 93% of our
study sample (Supplementary Table 1).
APOE genotype was determined using DNA extracted

from a 3-ml aliquot of EDTA blood samples by Cogenics

[24]. Genotype information was coded in a binary APOE
ε4 variable indicating the presence of at least one APOE
ε4 allele.
Structural MRI images were used to derive hippocam-

pal and cortical volume measures. MRI images in ADNI
are acquired at multiple sites using scanner-specific T1-
weighted sagittal 3D MPRAGE sequences and undergo
standardized image pre-processing steps to improve uni-
formity across the scanners (http://adni.loni.usc.edu/
methods/documents/). We extracted regional grey
matter volumes from these scans using a previously
described automated volumetry approach implemented
in statistical parametric mapping software (SPM8,
Wellcome Trust Center for Neuroimaging) and the
VBM8-toolbox [25, 26]. Briefly, this involves automated
tissue class segmentation and high-dimensional spatial
normalization to an ageing/AD-specific reference template.
Spatially normalized grey matter (GM) maps were visually
inspected for segmentation and normalization accuracy,
and voxel values were modulated for volumetric changes
introduced by the high-dimensional normalization, so that
the total GM volume present before warping was preserved.
Hippocampal (HV) and regional cortical grey matter vol-
umes were extracted from these scans using regions-of-
interest defined in the Harvard-Oxford anatomical atlas
[27]. Individual volumes were divided by the total intracra-
nial volume (TIV), calculated as the sum of total volumes
of all tissue segments. In analogy to previous MRI-based
subtyping studies [2, 28], cortical grey matter volumes were
extracted from selected frontal, temporal and parietal asso-
ciation areas (see Supplementary Table 2), summed into a
measure of bilateral cortical total volume (CTV), and fur-
ther used to calculate the hippocampal to cortical volume
ratio (HV:CTV).
Finally, we included white matter hyperintensity

(WMH) volume as a measure of small vessel vascular
disease burden. These values have been calculated by
the ADNI MRI core and were downloaded from the
ADNI server. In ADNI-1 data, WMH values were ob-
tained via analysis of the proton density (PD) and T1
and T2 MRIs [29]. In ADNI-GO/2, a fluid-attenuated in-
version recovery (FLAIR) MRI sequence was used to cal-
culate WMH volumes [30]. In the present study, we
pooled available WMH measures [4] and controlled stat-
istical analyses of this variable for different segmentation
methods using a dummy-coded confound variable.

FDG-PET data acquisition and preprocessing
FDG-PET data were retrieved in a pre-processed form
from the ADNI server. FDG-PET images were obtained
on multiple scanners with protocols specific to plat-
forms. Dynamic 3D scans of six 5-min frames were
acquired 30–60min after injections of 185MBq of 18F-
FDG. All original ADNI FDG-PET scans underwent

1The Elecsys β-Amyloid [1–42] CSF immunoassay in use is not a com-
mercially available IVD assay. It is an assay that is currently under de-
velopment and for investigational use only. The measuring range of
assay is 200 (lower technical limit)—1700 pg/ml (upper technical limit).
The performance of the assay beyond the upper technical limit has not
been formally established. Therefore, the use of values above the upper
technical limit, which are provided based on an extrapolation of the
calibration curve, is restricted to exploratory research purposes and is
excluded for clinical decision making or for the derivation of medical
decision points.
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standardized image pre-processing steps to improve
uniformity across the scanners. Detailed information on
FDG-PET acquisition and pre-processing is available on
the ADNI website (http://adni.loni.usc.edu/methods/
documents/). For the present study, FDG-PET images
were further spatially normalized to a customized FDG-
PET standard space template and smoothed with a
Gaussian smoothing kernel of 8 mm full-width at half
maximum (FWHM) using SPM8 [31].

Hierarchical clustering
The patients with AD dementia were classified into
hypometabolic subtypes using agglomerative hierarchical
clustering of voxel-wise FDG-PET data with Ward’s
linkage as implemented in the MATLAB software
[32, 33]. Individual FDG-PET profiles were scaled to
their global mean prior to clustering analysis so that
clustering relied on the differences in regional hypometa-
bolic patterns rather than on potential differences in glo-
bal hypometabolism severity across patients [32]. Global
intensity scaling is a commonly used approach in
neuroimaging-based subtyping studies to control cluster-
ing analyses for individual differences in disease severity
(see [3] for a recent review of this literature). Accordingly,
similar global scaling methods were also used in previous
FDG-PET studies that employed hierarchical clustering
approaches for data-driven characterizations of FDG-PET
subtypes in other neurodegenerative dementias [32, 34].
In the clustering procedure, the algorithm progres-

sively combines closest voxel-wise FDG-PET profiles of
the participants into larger clusters, as well as most simi-
lar clusters with each other. The output of the algorithm
is a hierarchical dendrogram in which the level of
branching indicates the degree of dissimilarity between
the clusters. The optimal number of separable clusters
in the data was evaluated using standard performance
measures for clustering solutions including the Davies-
Bouldin criterion [35] and the silhouette criterion [36].
To visualize the patterns of hypometabolism in the

identified subtypes, we conducted voxel-wise two-
sample t tests between FDG-PET images from each of
the subtypes and the CN group, using age, gender and
years of education as covariates. In contrast to the global
signal scaling used in the clustering procedure, images
were scaled to the average signal in a pons reference re-
gion for this analysis as the standard method to assess
hypometabolism in comparison with a healthy control
group [31]. Global signal scaling is typically not recom-
mended in this context, because it accounts for global
disease-related differences in glucose utilization that typ-
ically exist between dementia patients and healthy con-
trols and thus lowers the sensitivity to detect regional
hypometabolism [37, 38]. An explicit grey matter mask
was applied to the images, and obtained t values were

converted into Cohen’s d effect size values. Analogous
voxel-wise analyses were also conducted to directly com-
pare the different subtypes identified in the AD group.

Classification of patients with prodromal AD
We classified FDG-PET scans of patients with pro-
dromal AD according to the identified AD subtypes
using a fully automated classification procedure. For
that, we first screened patients for evidence of regional
hypometabolism by assessing whether at least one of the
48 bilateral cortical areas defined in the Harvard-Oxford
atlas had an FDG-PET signal (scaled to pons) of at least
one standard deviation below the mean of the control
group. Participants with no such regions were classified
into a “no hypometabolism” subtype [12, 14]. The
remaining patients with prodromal AD were classified
into one of the subtypes identified in the AD dementia
group based on the smallest Euclidean distance between
the individual patient’s voxel-wise FDG-PET profile
(scaled to global values) and the mean FDG-PET profile
of each of the AD dementia subtypes [4]. Global scaling
was used for this classification procedure in order to
match the individual FDG patterns of the MCI patients
to the regional patterns defined by the AD subtypes
independent of global hypometabolism severity.
Visualization of the hypometabolism patterns of the
classified subtypes as compared to the CN group
employed identical voxel-wise two-sample t tests of
pons-scaled FDG-PET images as described above.

Statistical analysis
Statistical analyses were conducted using RStudio and R
version 3.5.2 with a statistical significance threshold of
P < 0.05 (two-tailed). Chi-squared tests with post hoc
pairwise proportion tests were used to compare gender
compositions of subtypes and frequencies of the APOE
ε4 genotype. For this and other post hoc tests comparing
the subtypes, we used the false discovery rate (FDR) cor-
rection [39] as implemented in R. Age and years of edu-
cation were compared across subtypes using ANOVA.
Differences in cognitive measures and biomarkers across
the subtypes were tested with ANCOVA using age, gen-
der and education as covariates.
For patients with prodromal AD with available clinical

follow-up data, we also conducted Cox proportional haz-
ards regression analyses for analysing differential risks of
progression to dementia across FDG-PET defined sub-
types. Progression to dementia was operationalized as a
change in CDR score from 0.5 to ≥ 1 [40]. Models in-
cluded age, gender and education as covariates. Partici-
pants were censored if they did not progress to
dementia before the last available follow-up CDR score.
In addition, linear mixed effects regression models

were used to assess the differences in domain-specific
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longitudinal changes in memory, executive function,
visuospatial function or language function [40, 41].
Models included the time of follow-up measured in
months from baseline, a factor variable indicating sub-
type and an interaction term for the time by subtype as
independent variables. The estimates for interactions be-
tween subtype and time indicated whether subtypes had
differential cognitive trajectories over time. Age, gender
and education were included as covariates. Regression
models included random intercepts and random slopes
for participants; t tests used Satterthwaite approxima-
tions for degrees of freedom.

Results
Identification of hypometabolic subtypes in patients with
AD dementia
We used objective criteria for evaluating optimal cluster-
ing solutions to select the level of cutoff for the hierarch-
ical clustering dendrogram supported by the data. The
Davies-Bouldin criterion favoured solutions with three
or five clusters, whereas the silhouette criterion favoured
three clusters (see Supplementary Figure 1). Therefore,
we chose the clustering solution with three clusters (see
results for solutions with higher cluster numbers in the
Supplementary Figure 2). Cluster-1 included 44.6% of
the patients and showed a predominantly limbic

hypometabolic profile with most pronounced hypometa-
bolism in the medial temporal lobe, which extended to
the posterior cingulate cortex, lateral temporo-parietal
areas and also large areas of the ventromedial and lateral
frontal lobe (Fig. 1, henceforth referred to as the “limbic-
predominant” subtype). Cluster-2 included 48.6% of the
patients and corresponded to a more AD-typical pattern
of marked posterior temporo-parietal hypometabolism
with additional, albeit less pronounced, involvement of
the medial temporal lobe (henceforth referred to as the
“typical” subtype). Cluster-3 included 6.8% of the pa-
tients and showed a pattern of temporo-parietal cortical
hypometabolism similar to that of cluster-2, but with
more extensive involvement of the frontal lobe and
largely spared metabolism in the medial temporal lobe
(henceforth referred to as the “cortical-predominant”
subtype). Direct comparisons of regional hypometabo-
lism between subtypes are shown in Supplementary
Figure 3.

Clinical and biological characterization of the
hypometabolic AD dementia subtypes
Demographic, clinical and biomarker characteristics of
the three AD subtypes are listed in Table 1. The “limbic-
predominant” hypometabolic subtype was the oldest
with an average age of 75.4 years and the “cortical-

Fig. 1 Hierarchical clustering dendrogram and hypometabolic FDG-PET patterns of identified AD subtypes. Dendrogram resulting from Ward’s
hierarchical clustering analysis of individual FDG-PET profiles of patients with AD dementia. Brain plots show voxel-wise hypometabolic patterns
of the three identified AD subtypes as revealed by statistical comparison to the healthy control group. FDG-PET scans were scaled to the average
pons signal prior to the group comparisons, and age, gender, and years of education were used as covariates. Statistical parametric maps of the
group differences were converted into Cohen’s d effect size maps to allow for a better comparison of the patterns across the unevenly sized AD
subgroups. Subtype patterns at higher clustering solutions are shown in Supplementary Figure 2
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predominant” subtype the youngest with an average age
of 68.0 years. The “limbic-predominant” subtype
generally showed the least pronounced impairments in
neuropsychological testing and was characterized by a
memory-predominant cognitive profile, whereas in the
“typical” and especially the “cortical-predominant” sub-
type, the impairment in executive functions exceeded
the mnestic deficit. Reflecting the subtype-defining
hypometabolic patterns, hippocampal volume was lowest
in the “limbic-predominant” subtype and highest in the
“cortical-predominant” subtype, whereas cortical vol-
umes showed the opposite behaviour. The resulting HV:
CTV ratio was significantly higher for the “cortical-pre-
dominant” subtype in comparison with the two other
subtypes. The “cortical-predominant” subtype also had a
strikingly lower percentage of APOE ε4 carriers com-
pared to the other two subtypes, although this difference
did not reach statistical significance. No differences were
observed between the subtypes with regard to gender

distribution, years of education, molecular biomarkers of
Aβ and tau pathology burden, or WMH volume
(Table 1).

Stratification of prodromal AD patients by hypometabolic
subtypes
About a quarter (26.3%) of the prodromal AD cohort
did not show any evidence of regional hypometabolism
and was thus classified as “no hypometabolism” subtype.
Amongst the other patients with prodromal AD, 49.8%
were classified into the “limbic-predominant” subtype,
22.6% into the “typical” subtype and only three partici-
pants (1.4%) were classified into the “cortical-predomin-
ant” subtype, which was thus omitted from further
analyses. Hypometabolic patterns of the classified sub-
types in the prodromal AD cohort showed a strong
spatial resemblance with the subtype-defining patterns
in the AD dementia cohort (Fig. 2), thus corroborating
the validity of the automated classification procedure.

Table 1 Demographic, clinical and biomarker characteristics of AD dementia subtypes at baseline

CN group AD group, limbic-
predominant (S1)

AD group,
typical (S2)

AD group, cortical-
predominant (S3)

P value, global
comparison
(S1, S2 and S3)

Pair-wise comparisons

S1 vs S2 S1 vs S3 S2 vs S3

Demographics

n (%) 179 79 (44.6%) 86 (48.6%) 12 (6.8%)

Age, years 73.8 (6.5) 75.4 (6.9) 73.2 (5.7) 68.0 (7.7) 0.007 0.149 0.015 0.088

Sex, female (%) 50% 49% 38% 50% 0.332

Education, years 16.6 (2.5) 15.4 (3.1) 15.5 (2.6) 16.3 (2.6) 0.544

Cognition

MMSE 29.1 (1.2) 23.4 (1.9) 23.2 (2.2) 22.0 (2.2) 0.037 0.798 0.165 0.200

ADNI-MEM 1.04 (0.62) − 0.85 (0.55) − 0.90 (0.49) − 1.31 (0.44) 0.012 1 0.025 0.028

ADNI-EF 0.92 (0.83) − 0.65 (0.86) − 1.11 (0.89) − 1.73 (0.81) < 0.001 0.002 < 0.001 0.043

ADNI-DIFF 0.13 (0.72) − 0.21 (0.69) 0.21 (0.85) 0.41 (0.74) < 0.001 0.004 0.029 0.723

ADNI-VS 0.23 (0.59) − 0.42 (0.8) − 0.67 (1.01) − 1.15 (1.08) 0.085

ADNI-Lan 0.89 (0.71) − 0.63 (0.95) − 0.83 (0.88) − 1.11 (0.78) 0.03 0.406 0.406 0.588

Biomarkers

APOE ε4 (%) 28% 81% 79% 58% 0.222

AV45-PET SUVR 1.11 (0.18) 1.43 (0.14) 1.47 (0.17) 1.4 (0.17) 0.145

CSF Aβ, pg/ml 1392 (663) 598 (163) 585 (225) 629 (169) 0.686

CSF t-tau, pg/ml 236 (92) 374 (143) 374 (154) 402 (124) 0.978

CSF p-tau, pg/ml 22 (9) 38 (16) 37 (16) 39 (14) 0.881

HV 4.97 (0.38) 4.05 (0.51) 4.1 (0.38) 4.46 (0.46) 0.09

CTV 87.39 (6.28) 75.84 (6.95) 73.99 (6.23) 70.04 (5.88) 0.006 0.136 0.026 0.136

HV:CTV ratio 57.11 (5.29) 53.67 (7.57) 55.74 (6.61) 64.29 (10.08) < 0.001 0.136 < 0.001 < 0.001

WMH 6.1 (10.4) 8.0 (10.0) 5.8 (7.9) 8.1 (12.7) 0.262

Values for variables are presented as percentages (for gender and APOE ε4 genotype) or means with standard deviation in parentheses. Missing values are
excluded (for numbers of missing values per subtype see Supplementary Table 8). In case of significant main effects, subtypes were compared with the post hoc
pairwise t tests with FDR correction. Please note that composite cognitive scores have arbitrary units on scales centred on the original test samples used to
develop these scores (including patients and healthy controls) [18–20]
S1 limbic-predominant subtype, S2 typical subtype, S3 cortical-predominant subtype, HV hippocampal grey matter volume scaled to total intracranial volume, CTV
cortical composite grey matter volume scaled to total intracranial volume
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Demographic, clinical and biomarker characteristics of
the subtypes are summarized in Table 2. The “limbic-
predominant” subtype was again characterized by a sig-
nificantly higher age compared to the other subtypes.
The “no hypometabolism” subtype was the youngest and
also had a higher proportion of females. Despite no pair-
wise differences in MMSE scores, the “no hypometabo-
lism” subtype also showed significantly better memory
and executive function performance than the “typical”
and the “limbic-predominant” subtypes. Although we
selected only Aβ-positive patients, the “no hypometabo-
lism” subtype showed a significantly lower Aβ burden on
both PET and CSF measures. Nevertheless, patients in
the “no hypometabolism” subtype showed a comparably
high proportion of concomitant tau biomarker positivity
as the other subtypes in the prodromal AD group (86–
90%; Supplementary Table 1). In accordance with the

FDG-PET characteristics, the “no hypometabolism”
subtype had significantly higher hippocampal and cor-
tical volumes compared to the “limbic-predominant”
and the “typical” subtypes.
Analysis of longitudinal clinical data showed that

the “no hypometabolism” subtype was at the lowest
risk of progression to dementia (vs “limbic-predo-
minant”: HR, 4.82, P < 0.001; vs “typical”: HR, 5.99,
P < 0.001; Fig. 3) and also showed a significantly
slower decline in all four cognitive domains compared
to the “typical” and the “limbic-predominant” sub-
types (Fig. 4, see Supplementary Tables 3 and 4 for
full model stats). Interestingly, the “typical” and “lim-
bic-predominant” subtypes showed a similar decrease
in memory function over time, but the “typical” sub-
type showed a significantly faster decline in executive
function (t = − 2.25, P = 0.026) and a trend towards

Fig. 2 Hypometabolic FDG-PET patterns of subtypes of patients with prodromal AD. Voxel-wise hypometabolic patterns of the four prodromal
AD subtypes as compared to the healthy control group. FDG-PET scans were scaled to the average pons signal prior to analysis, and age, gender,
and years of education were used as covariates. Statistical parametric maps of the group differences were converted into Cohen’s d effect size
maps to allow for a better comparison of the patterns across the unevenly sized subgroups. Please note that the effect size scale differs from the
scale used in Fig. 1 as it has been adapted to optimally display the differential patterns that define the subtypes at the prodromal disease stage.
Supplementary Figure 4 provides an illustration of the hypometabolic patterns in the prodromal group when using the same effect size scale as
in the AD dementia group
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faster decline in visuospatial functions (t = − 1.931,
P = 0.055; see Supplementary Table 5 for full model stats).

Discussion
In the current study, we conducted the first data-driven
characterization of systematic heterogeneity in individual-
level FDG-PET patterns amongst AD dementia patients,
and provide evidence for the existence of three distinct
hypometabolic subtypes of AD. These subtypes include a
“typical” subtype of posterior temporo-parietal hypometa-
bolism, as well as distinct “limbic-predominant” and
“cortical-predominant” subtypes that resemble previously
described MRI-based atrophy subtypes of AD and show
corresponding differences in their clinical profiles. By strati-
fying an independent sample of longitudinally followed pro-
dromal AD patients according to hypometabolic subtype,
we could further demonstrate that these subtypes can be
detected at a prodromal disease stage and are characterized
by differential courses of cognitive decline.

Distinct hypometabolic subtypes amongst patients with
AD dementia
The “typical” subtype included the largest portion of AD
dementia cases and was characterized by a typical pos-
terior temporo-parietal pattern of hypometabolism that
is commonly linked to AD [16, 42]. The “limbic-pre-
dominant” subtype had most pronounced hypometabo-
lism in the hippocampus and related medial temporal
structures which showed similarities to the MRI-defined
medial temporal-dominant atrophy subtypes [4, 33, 43,
44]. Despite these similarities, the “limbic-predominant”
subtype in the current study notably differs from previ-
ously described medial temporal-dominant atrophy sub-
types by showing a more extensive hypometabolic
pattern covering widespread limbic areas beyond the
medial temporal lobe and including the frontal cortex. A
previous study examining FDG-PET patterns in MRI-
defined atrophy subtypes also reported pronounced
frontal hypometabolism in the medial temporal-

Table 2 Demographic, clinical and biomarker characteristics of prodromal AD subtypes at baseline

Prodromal AD
group, no
hypometabolism (S0)

Prodromal AD group,
limbic-predominant (S1)

Prodromal
AD group,
typical (S2)

P value, global
comparison
(S0, S1 and S2)

Pair-wise comparisons

S0 vs S1 S0 vs S2 S1 vs S2

Demographics

n (%) 57 (26.3%) 108 (49.8%) 49 (22.6%)

Age, years 68.4 (6.6) 76.1 (5.7) 71.7 (6.2) < 0.001 < 0.001 0.009 < 0.001

Sex, female (%) 60% 35% 41% 0.01 0.024 0.226 1

Education, years 16.2 (2.8) 15.7 (3.0) 16.4 (2.6) 0.344

Cognition

MMSE 28.2 (1.8) 27.6 (1.8) 27.3 (1.8) 0.053

ADNI-MEM 0.57 (0.63) 0.05 (0.61) − 0.06 (0.65) < 0.001 < 0.001 < 0.001 0.602

ADNI-EF 0.76 (0.91) 0.00 (0.77) 0.15 (1.01) 0.018 < 0.001 0.001 0.542

ADNI-DIFF − 0.19 (0.83) 0.05 (0.78) − 0.21 (0.77) 0.616

ADNI-VS 0.08 (0.65) − 0.06 (0.76) − 0.21 (0.67) 0.135

ADNI-Lan 0.6 (0.7) − 0.05 (0.74) 0.29 (0.79) 0.007 < 0.001 0.062 0.025

Biomarkers

APOE ε4 (%) 68% 62% 77% 0.163

AV45-PET SUVR 1.31 (0.17) 1.39 (0.17) 1.43 (0.15) 0.004 0.015 0.002 0.238

CSF Aβ, pg/ml 921 (437) 736 (237) 672 (214) 0.002 < 0.001 < 0.001 0.417

CSF t-tau, pg/ml 315 (134) 337 (137) 357 (144) 0.123

CSF p-tau, pg/ml 31 (15) 34 (16) 37 (16) 0.096

HV 4.86 (0.45) 4.53 (0.51) 4.57 (0.41) 0.009 < 0.001 0.005 1

CTV 89.87 (5.45) 83.19 (6.48) 82.93 (5.35) < 0.001 < 0.001 < 0.001 1

HV:CTV ratio 54.26 (6.07) 54.57 (6.27) 55.24 (5.56) 0.344

WMH 4.9 (5.0) 11.3 (12.8) 6.8 (6.5) 0.172

Cortical-predominant subtype of prodromal AD group (n = 3) not included. Values for variables are presented as percentages (for gender and APOE ε4 genotype)
or means with standard deviation in parentheses. Missing values are excluded (for numbers of missing values per subtype, see Supplementary Table 8). In case of
significant main effects, subtypes were compared with the post hoc pairwise t tests with FDR correction. Please note that composite cognitive scores have
arbitrary units on scales centred on the original test samples used to develop these scores (including patients and healthy controls) [18–20]
S0 no hypometabolism subtype, S1 limbic-predominant subtype, S2 typical subtype, HV hippocampal grey matter volume scaled to total intracranial volume, CTV
cortical composite grey matter volume scaled to total intracranial volume
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dominant AD atrophy subtype [44]. This could poten-
tially be attributed to differences in the specific patho-
logic substrate of hypometabolism on FDG-PET and
grey matter reductions on MRI as neurodegeneration
markers. Specifically, hypometabolism on FDG-PET has
been reported to be sensitive to neurodegenerative
dysfunction that does not regionally co-localize with
neuronal loss as measured by grey matter atrophy on
MRI, which may reflect early non-macroscopic neuro-
degenerative processes or functional changes caused
by atrophy in remote but functionally interconnected
brain areas [8, 17, 45–47].
Similarly to previous findings on the MRI-defined

medial temporal-predominant atrophy subtype [4, 43],
the “limbic-predominant” hypometabolic subtype in the
current study was associated with older age and could
possibly reflect the effects of comorbid age-related path-
ologies. For example, Zhang et al. [5] considered that the
temporal factor described in their study could be linked
to comorbid TDP-43 pathology. Indeed, the hypometa-
bolic pattern of the “limbic-predominant” subtype iden-
tified in the present study shows a striking resemblance
with a recently described FDG-PET pattern of patho-
logically confirmed patients with AD dementia with co-
morbid TDP-43 pathology and hippocampal sclerosis
(HS) [48] (specifically, Fig. 3, page 1209 in that study).
Corroborating this qualitative visual interpretation, in a
complementary post-hoc analysis, we found that the
“limbic-predominant” subtype had a significantly higher
inferior-to-medial temporal FDG-PET ratio compared to
both the “typical” and “cortical-predominant” subtypes
(Supplementary Table 6). This ratio has been suggested
to reflect the difference between the TDP-43/HS-related

pattern and the AD-typical pattern within a simplified
metric and has been proposed as an imaging biomarker
for comorbid TDP-43/HS in AD [48, 49]. However, it is
important to note that any possible involvement of
comorbid pathologies in the observed hypometabolic
subtypes remains entirely speculative in our in vivo
neuroimaging study, and we did not observe any not-
able differences in the proportion of AD-specific A/T
biomarker profiles in the limbic-predominant subtype
compared to the other subtypes (Supplementary
Table 1). Other studies suggested that the medial-
temporal subtype could be additionally affected by
small vessel disease [4, 50], which would coincide
with the numerically highest WMH volume in the
“limbic-predominant” subtype in our study. However,
this difference did not reach statistical significance in
our analysis. Additional neuropathologic examinations
as well as mechanistic studies are needed to better
understand the exact pathological substrates and
neurobiological mechanisms that drive different neu-
rodegeneration subtypes in AD.
The hypometabolic pattern of the “cortical-predomin-

ant” subtype was similar to that of the “typical” subtype,
but with more extensive involvement of the frontal lobe
and largely normal metabolism in the medial temporal
lobe. This subtype showed particularly pronounced ex-
ecutive function impairment in addition to the memory
deficit. Previously, studies by Collette et al. [11] and
Mosconi et al. [12] have also described marked frontal
hypometabolism in subsets of patients with AD. On the
other side, Ossenkoppele et al. [51] described an aut-
opsy/biomarker-confirmed dysexecutive AD variant,
which shows markedly more pronounced impairment in

Fig. 3 Kaplan-Meier curves of the time to progression to dementia across subtypes in the prodromal AD group. Kaplan-Meier survival curves
indicate proportions of participants within the three prodromal AD subtypes progressing to dementia, operationalized as a change in CDR score
from 0.5 to ≥ 1. Patients who did not progress to dementia within the observation period or did not have follow-up CDR scores were censored
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executive function relative to the memory deficit and is
characterized by early onset of AD and a relatively low
APOE ε4 frequency. Similarly, the “cortical-predomin-
ant” subtype in the current study also showed the youn-
gest age and lowest percentage of APOE ε4 carriers
amongst AD subtypes. However, due to the low number
of patients in this group, current findings on this sub-
type require further corroboration.
In accordance with the subtype-defining hypometa-

bolic patterns, we observed a difference between sub-
types in the HV:CTV ratio. Specifically, it was the
highest for the “cortical-predominant” subtype, inter-
mediate for the “typical” and numerically the lowest for
the “limbic-predominant” subtype. The pattern of differ-
ences in HV:CTV ratio between FDG-PET subtypes in
the current study is comparable to previous findings on
AD subtypes based on neuropathological data or MRI-
based atrophy patterns. The study by Whitwell et al. [2]

examined AD subtypes based on neuropathological
examination of distribution of neurofibrillary tangle
counts. The ratio between hippocampal and cortical vol-
umes measured on ante-mortem MRI allowed for the
best discrimination between these subtypes. In their
study, similarly to our results, the typical subtype
showed a higher HV:CTV ratio than the limbic-
predominant subtype, whereas the hippocampal sparing
subtype had the highest value. Furthermore, in the study
by Risacher et al. [28], three AD subtypes—hippocampal
sparing, limbic predominant and typical AD—were de-
fined based on the HV:CTV ratio. Across these subtypes,
a higher HV:CTV ratio was also quantitatively associated
with a more pronounced dysexecutive profile, similarly
to the differences observed for the ADNI-EF and ADNI-
DIFF variables between the subtypes in the current
study. In a complementary analysis, we could also repro-
duce this association between HV:CTV ratio and

Fig. 4 Longitudinal cognitive trajectories of subtypes of patients with prodromal AD. Predicted values of domain-specific cognitive scores were
obtained from mixed effects regression models which included age, gender, and years of education as covariates, as well as random intercepts
and slopes for participants to account for multiple measurements. a Memory function progression. b Executive function progression.
c Visuospatial function progression. d Language function progression. Ribbons around the regression lines represent 95% confidence intervals for the
fitted values
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cognitive profile on a continuous scale (Supplementary
Table 7). Thus, across patients, the HV:CTV ratio corre-
lated positively with the ADNI-DIFF variable in both the
AD dementia and prodromal AD groups, indicating a
more pronounced executive function over memory def-
icit for higher values of this ratio. Therefore, the HV:
CTV ratio measured in the current subtypes provides a link
between our findings on hypometabolism subtypes and
previously characterized AD subtypes based on neuro-
pathological data or MRI-based atrophy patterns. However,
there were also differences between the observed hypome-
tabolism subtypes and previously reported atrophy patterns
on MRI, such as the aforementioned more extensive
involvement of the temporal and frontal areas in the
“limbic-predominant” hypometabolism subtype, which
might be attributed to the different structural and
functional substrates of the respective imaging methods.

Stratification of prodromal AD patients according to
hypometabolic subtype
Stratification of the prodromal AD cohort according to
hypometabolic subtypes revealed a considerably sized
subgroup of patients with no or only minimal hypometa-
bolism. This “no hypometabolism” subtype also showed
lower levels of Aβ biomarker burden, was less cogni-
tively impaired and had a lower risk of progressing to
dementia compared to the other subtypes. While this
may indicate that this subtype may be enriched for pa-
tients with only incidental amyloidosis, the comparably
high proportion of concomitant tau biomarker positivity
in this group (Supplementary Table 1) would rather
argue against this possibility.
Previous studies using visual classification of

FDG-PET scans had also described subsets of pa-
tients with MCI without evidence of regional hypo-
metabolism [12, 14]. In the study by Cerami et al.
[14], 31% of participants with MCI showed normal
brain metabolism, although the large majority of
these also had a negative amyloid biomarker find-
ing. However, MRI-based subtyping studies have
also consistently identified subsets of patients with
AD dementia with no or only minimal atrophy, and
this subtype was particularly prevalent amongst pa-
tients with prodromal AD [4, 43, 52]. Interestingly, in our
study, we observed a similar “minimal” hypometabolism
subtype in the AD dementia group when using a higher
clustering solution (see Supplementary Figure 2). How-
ever, since we established the best distinguishable AD sub-
types using an objective hierarchical clustering cutoff as
suggested by the Davies-Bouldin and the silhouette cri-
teria, we did not further characterize this “minimal” sub-
type in our study. Nevertheless, our findings underline the
importance of accounting for the considerably sized sub-
group of patients with prodromal AD without evidence of

regional hypometabolism when characterizing heterogen-
eity of hypometabolism patterns in this population.
Only three participants with prodromal AD were clas-

sified into the “cortical-predominant” subtype and could
thus not be further analysed in our study. One potential
explanation for this low prevalence could be that this
hypometabolic subtype is characterized by more pro-
nounced executive function deficits than memory defi-
cits from its prodromal stage on, so that these patients
would be underrepresented in an MCI cohort screened
for memory deficits such as the ADNI cohort.
The “limbic-predominant” and “typical” subtypes clas-

sified in the prodromal AD sample demonstrated similar
subtype characteristics as in the AD dementia sample.
Thus, the “limbic-predominant” subtype also had older
age, numerically higher WMH volume and the most
severe degree of hippocampus atrophy. Hence, current
results confirm previous findings that the heterogeneity
evident in patients with AD dementia can also be
observed at the prodromal stage of the disease [4, 5].
Interestingly, although the “limbic-predominant” and
“typical” subtypes had a comparable risk of progressing
to dementia, the “limbic-predominant” subtype showed
a more memory-selective cognitive decline compared to
the “typical” subtype, paralleling the cross-sectional sub-
type differences in cognitive profiles observed in the AD
dementia cohort. This finding is notable, because these
subsets of patients with prodromal AD did not show sig-
nificant differences in the respective cognitive functions
at baseline. This indicates that subtype classification of
FDG-PET patterns may provide additional information
for predicting future cognitive decline that is not con-
tained in neuropsychological assessments.
Our current findings on subtype-specific trajectories of

cognitive decline are largely consistent with previous
findings on differences in dementia risk and domain-
specific cognitive decline between atrophy subtypes
based on MRI data. For example, the studies by Ten
Kate et al. [4] and Dong et al. [5] both only found a
significantly lower risk for progression to dementia in
the no/minimal atrophy subtype, and while the other
atrophy subtypes showed similar overall risk for progres-
sion to dementia, they differed significantly in the rela-
tive decline in specific cognitive domains.
A previous study by Morbelli et al. [53] used classical

voxel-wise analyses of FDG-PET images in a group of
prodromal AD patients to determine a “prognostic pat-
tern” of regional brain hypometabolism that best corre-
lated with time to conversion to dementia. Interestingly,
this “prognostic pattern” was found to be considerably
different from the AD-typical “diagnostic pattern” of
hypometabolism as determined by contrasting AD
patients with healthy controls. In our current study, we
used a data-driven approach to demonstrate that this
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typical group-averaged “diagnostic pattern” can be
decomposed into different regional subtypes correspond-
ing to distinct subgroups of AD patients. It is likely that
these different FDG-PET subtypes also correspond to
different “prognostic patterns” that best predict time to
dementia conversion in the respective subgroups of pro-
dromal AD patients.

Strengths and limitations
One conceptual strength of the current study is that we
only included patients with biomarker evidence of Aβ
pathology. Moreover, we used the identified hypometa-
bolism subtypes in patients with AD dementia to classify
an independent dataset of Aβ-positive patients with MCI
and assess clinical and biomarker characteristics of these
subtypes at a prodromal disease stage.
As with other unsupervised subtyping studies, a princi-

pal limitation of the current study is that the employed
clustering methodology cannot naturally distinguish be-
tween subtypes and different disease stages. We aimed
to mitigate the effect of differing disease stages by nor-
malizing the individual FDG-PET profiles to their global
signal before clustering, so that the cluster assignations
were primarily driven by relative regional metabolic dif-
ferences instead of global differences accompanying dis-
ease progression. Global signal scaling is a commonly
used method to control neuroimaging clustering ana-
lyses for individual differences in disease severity, and
analogous approaches have been used in previous FDG-
PET subtyping studies in other neurodegenerative
dementias [32, 34], as well as in MRI-based subtyping
studies of neurodegeneration heterogeneity in AD (see,
e.g. [3] for a recent review of this literature). We also
note that the hypometabolic characteristics of the identi-
fied subtypes would not be consistent with the notion of
merely reflecting variability in disease severity. As an ex-
ample, the interpretation that the “limbic-predominant”
subtype would reflect an earlier stage of the “typical”
subtype cannot be easily reconciled with the observation
of more severe medial temporal hypometabolism in the
“limbic-predominant” subtype. A similar argument also
applies to the comparison between the “typical” and
“cortical-predominant” subtypes (also see Supplementary
Figure 3 for a direct voxel-wise comparison of regional
hypometabolic differences between the subtypes).
The contribution of disease stage to observed subtype

phenotypes has been addressed in a recent MRI-based
subtyping study by Young et al. [54], which proposed an
analytical approach combining clustering with event-
based modelling to assess subtypes and their respective
stage progressions at the same time. However, this ap-
proach still relies on extrapolations from cross-sectional
data. Future research on neurodegeneration subtypes in
AD will benefit from longitudinal imaging assessments

allowing to directly characterize disease progression
within subtypes and to determine the possibility of con-
version between them.

Conclusion
In the current study, we used a systematic data-driven
approach for characterizing differential neurodegenera-
tion subtypes in AD as reflected by hypometabolism pat-
terns on FDG-PET. The hypometabolic subtypes were
associated with differential clinical and biomarker pro-
files, as well as with differences in clinical trajectories
over time. These findings complement recent research
efforts on characterizing distinct atrophy subtypes in AD
using structural MRI data. Due to the reportedly higher
sensitivity of FDG-PET for early neurodegenerative
changes, the described hypometabolic subtypes may
provide a sensitive tool for early detection and
characterization of AD-related neurodegeneration vari-
ants at prodromal disease stages, which may have
important implications for improving timely and differ-
entiated prognosis in non-demented individuals with
biomarker evidence of AD.
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