
EN
G

IN
EE

RI
N

G

Continuous learning of emergent behavior
in robotic matter
Giorgio Oliveria, Lucas C. van Laakea, Cesare Carissimoa, Clara Miettea, and Johannes T. B. Overveldea,1

aDesigner Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands

Edited by Chiara Daraio, California Institute of Technology, Pasadena, CA, and accepted by Editorial Board Member John A. Rogers March 5, 2021 (received
for review August 11, 2020)

One of the main challenges in robotics is the development
of systems that can adapt to their environment and achieve
autonomous behavior. Current approaches typically aim to
achieve this by increasing the complexity of the centralized con-
troller by, e.g., direct modeling of their behavior, or implementing
machine learning. In contrast, we simplify the controller using
a decentralized and modular approach, with the aim of finding
specific requirements needed for a robust and scalable learning
strategy in robots. To achieve this, we conducted experiments
and simulations on a specific robotic platform assembled from
identical autonomous units that continuously sense their envi-
ronment and react to it. By letting each unit adapt its behavior
independently using a basic Monte Carlo scheme, the assem-
bled system is able to learn and maintain optimal behavior in
a dynamic environment as long as its memory is representative
of the current environment, even when incurring damage. We
show that the physical connection between the units is enough to
achieve learning, and no additional communication or centralized
information is required. As a result, such a distributed learning
approach can be easily scaled to larger assemblies, blurring the
boundaries between materials and robots, paving the way for
a new class of modular “robotic matter” that can autonomously
learn to thrive in dynamic or unfamiliar situations, for example,
encountered by soft robots or self-assembled (micro)robots in
various environments spanning from the medical realm to space
explorations.
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Traditional robots typically exhibit well-defined motions and
are often controlled by a centralized controller that uses sen-

sor data to provide feedback to its actuators (1, 2). While these
systems are capable of operating in well-known and controlled
environments, adapting their behavior to various unforeseen
circumstances remains one of the main challenges in robotics
(3). Toward this goal, reinforced learning strategies can be
used to deal with more complex tasks that cannot directly be
programmed in the behavior of the robot. By sensing their
environment, robots can build models of themselves (4) or opti-
mize human-made models with machine learning strategies to
improve their behavior (1, 2, 4–8). Apart from a clear divi-
sion between training and task execution, these systems rely
on a centralized architecture that—with an increasing number
of active components—demands advanced models and higher
computational power.

A recent key idea to simplify the computational task, while
allowing for adaptability to the environment, is to make soft
robots. These are robots fabricated with materials with stiffness
resembling human tissue (3, 9–12), that exhibit so-called embod-
ied intelligence (13–15) and adjust their shape when subjected to
forces resulting from interactions with their environment. While
this physical adaptability enhances the robustness of the robot’s
behavior, allowing it to, e.g., operate in more complex environ-
ments, it is not guaranteed that they operate optimally, or even
operate at all. For example, a soft robot that is able to walk

on various surfaces still requires a different actuation sequence
to crawl through a narrow opening (16). At the moment, and
because of the unpredictable nature of the robot’s behavior
in varying environments, this sequence is externally (and man-
ually) adjusted. A natural question to ask is if such higher
levels of decision-making and learning can also be embodied
in robots, similar to, e.g., the decentralized neural networks of
squids (17, 18).

In fact, decentralized approaches are already applied in swarm
robotics, where an increasing number of active components can
cooperatively achieve complex behavior when sensing or com-
munication capabilities are incorporated into the individual units
(19–22). In such a robotic system, behavior emerges from local
interactions, rather than being centrally controlled. Inspired by
social animals such as ants, bees, or birds, researchers have
been able to achieve emerging properties out of simple unit-
to-unit interactions, such as adaptation to mechanical stimuli
(23), self-assembly (22, 24), construction (25), and locomotion
(20, 26). Interestingly, such behavior does not have to be pro-
grammed and could also be learned using the same decentralized
architecture (27, 28).

In this work, we develop and perform experiments on modu-
lar robots that are connected to form a single body, in order to
explore similar decentralized strategies. Using this platform, our
aim is to simplify the learning strategy, while focusing on the fun-
damental challenge to ensure robust and optimal behavior under
varying external conditions and damage. We do so by having each
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element continuously learn and adapt to changing circumstances.
To that end, we develop a fully decentralized and universal
reinforced learning strategy that can be easily implemented, is
scalable, and allows the robotic system to autonomously achieve
and maintain specific emergent behavior.

Individual Unit Behavior
Such an approach holds potential for a wide variety of robotic
systems, and we illustrate this here with a robot made of sev-
eral identical units connected by soft actuators that periodically
extend and contract along one direction. Each robotic unit oper-
ates independently and consists of a microcontroller, optical
motion sensor, pump, pneumatic actuator, and battery (Fig. 1A
and SI Appendix). The actuator is activated by cyclically turning
the pump on and off at a ratio of α= ton/tcycle = 0.4 with a total
cycle duration of tcycle = 2 s . By continuously venting the air in
the actuator through a needle, the actuator extends and contracts
(Fig. 1A). Note that the units are not capable of locomotion by
themselves and require being physically attached to other units
to move, which we refer to as the emergent behavior that our
assembled robot exhibits.

Importantly, each unit aims to move as quickly as possible
in the same predefined direction. To achieve this, it can adapt
its behavior by varying the phase of actuation φi tcycle. As a first
trial for a potential learning algorithm that is capable of learn-
ing emergent behavior, we implement a Monte Carlo scheme
(29) in each unit. At the beginning of every learning step, the
unit perturbs its phase according to φ′i =φi + ε∆s , in which
ε is a random number drawn from a uniform distribution on
the interval [−1, 1] and ∆s = 0.1 is the step size indicating the
maximum change in phase allowed per learning step. Then,
after performing nact = 2 cycles the unit determines its aver-
age velocity U ′i via the motion sensor and compares it with the
velocity Ui stored in memory. The unit will update the phases
and velocities in its memory with probability e(U ′

i −Ui )/T , in
which T is a “temperature” that can be used to tune the accep-
tance probability when U ′i −Ui < 0. We refer to this algorithm
as the “Thermal algorithm” (see pseudocode in SI Appendix,
Fig. S1).

Results of Two Units
In order to test if the system can optimize its movement in a
predefined direction, we first focus on the most basic assem-
bly of two active units (Fig. 1B). Note that we also need one
dummy unit without an actuator at the end of the assembly
to make sure all of the other actuators are connected on both
sides. We place the units on a circular track and initialize the
active units with a random actuation phase φi (Fig. 1C) and
let the system run for nlearn = 100 learning iterations. At the
beginning of each learning step the units update their phases
independently, without exchanging any information. The push-
ing and pulling forces applied by the pneumatic actuators are the
only interactions between the units (Movie S1). The results in
Fig. 1 D and E show that the assembled robot learns to move
forward and reaches its fastest speed after just 80 s (i.e., 20
learning iterations). This grants each unit a forward motion of
≈ 4.5 mm/cycle (see SI Appendix for specifics on the velocity
calculation).

For the remaining 320 s the units try to continuously increase
their speed, resulting in random perturbations around the opti-
mal behavior. We then repeat this learning experiment 56 times
with the same settings, but with different random initial phases.
We additionally model the robot behavior with a simple mass-
spring system that includes static friction (SI Appendix) and
perform 112 learning experiments. The distribution of the aver-
age robot velocities Ū =

∑
i Ui during learning is shown in Fig.

1F. We find that, while the average speed after learning is
distributed around Ū ≈ 4.5 mm/cycle for both simulations and
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Fig. 1. Robotic unit design and initial learning experiments for an assem-
bled robot consisting of two active units. (A) Design of a single robotic unit
in its relaxed and extended state. (B) Robot assembled from two active units
and one dummy unit. (C) Each active unit can vary its phase φitcycle, which
affects the actuation timing as shown by the cyclic pressure in the soft actua-
tors. (D and E) Evolution of phases φi and measured velocity Ui in the active
units as a function of time for a single learning experiment. (F) Distribu-
tion of average robot velocity Ū as a function of the learning step for 112
learning simulations and 56 learning experiments. (G) Simulated and exper-
imental velocity as function of phase difference ∆φ=φ2−φ1, exemplified
by three experiments (H).

experiments, in the latter case we also find an additional opti-
mum for Ū ≈ 1 mm/cycle. The distribution stabilizes at these two
values after ≈ 20 learning steps.

To determine the underlying cause for this bimodal veloc-
ity profile shown in experiments we map the behavior that this
assembled robot can exhibit. Although each unit updates its
phase individually, the overall motion of the assembled robot
depends only on the phase difference ∆φ=φ2 −φ1 between the
two units. Fig. 1G shows a scan of the potential velocities Ū
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the robot can exhibit, obtained in experiments by setting φ1 = 0
and varying φ2 between 0 and 1. From these results we find that
the optimal speed is achieved at a phase difference of ∆φ≈ 0.4,
at which the robot reaches a velocity of ≈ 4.5 mm/cycle. At
the optimal behavior, the system seems to undergo peristaltic
behavior, where the phase difference is approximately equal to
the actuation period ∆φ≈α (SI Appendix, Fig. S2). The same
phase difference of ∆φ≈ 0.4 is observed in our first learning
experiment (Fig. 1D). Similarly, for ∆φ= 0.6 the robot moves
in the opposite direction with a reversed actuation pattern with
a velocity of ≈−3 mm/cycle, while at ∆φ≈ 0.9 we find a local
maximum in experiments with lower speed of ≈ 1 mm/cycle.
These three cases are demonstrated in Fig. 1H, where we show
both the starting and the end position after 60 s. It is impor-
tant to note that while we expected symmetric behavior between
forward and backward motion, as also demonstrated by the mass-
spring model (Fig. 1G), in experiments we observe asymmetric
motion. We believe that this asymmetry arises from a reduction
of the friction due to the vibration of the pumps, which only
occurs in the active units. The placement of the dummy unit
therefore influences the behavior the robot can achieve. Also
note that when applying the learning strategy in the simulations
(Fig. 1 F and G) we find that the system only stabilizes around
the maximum at ∆φ≈ 0.4, since no significant local optima are
observed.

Results of Three Units
While the results for a robot assembled from two active units
seem promising, the system’s average score function Ū is rela-
tively simple (Fig. 1G). Therefore, we next increase the complex-
ity by performing experiments on a robot assembled from three
active units and one dummy unit (Movie S1). In Fig. 2A we show
the distribution of the average velocities Ū during learning, of
112 simulations and 56 experiments. We observe both in exper-
iments and simulations an initial improvement of Ū during the
first few ≈ 50 learning iterations, similar to the assembled robot
containing two active units. Interestingly, while the simulations
stabilize at a Ū with a mean positive value and an acceptance
rate of ≈ 0.25 (Fig. 2B), for experiments we observe a decrease
of the mean Ū after ≈ 200 learning steps. This is accompanied by
a decrease in the average acceptance rate of new phases, which
approaches zero soon after the learning starts.

To understand the qualitative difference between simulations
and experiments, and specifically the decrease in Ū in exper-
iments, we measure Ū for all potential phase combinations
in both simulations (Fig. 2C) and experiments (Fig. 2D). As
expected, the results show a diverse range of possibilities, with
multiple maxima. While our relatively simple model seems to
capture the behavior of the assembled robot, there are two main
differences in experiments. First, in experiments we observe
significant noise, which could, e.g., be the result of how the
measurements are taken (SI Appendix). Second, in experiments
the performance of the robot seems to depend on where it is
located on the circular track, which could be a result of varia-
tions in track width and the resulting friction (SI Appendix and
SI Appendix, Fig. S3). This is supported when considering the
standard deviation of the observed Ū measured over 20 exper-
iments, which exhibits nonnegligible variations (Fig. 2E and SI
Appendix, Fig. S4A). For example, when running an experiment
with φ2 −φ1 = 0.4 and φ3 −φ1 = 0.2 (bottom circle in Fig. 2 D
and E), we find that for some parts of the track this assem-
bled robot is capable of achieving Ū ≈ 2 mm/cycle, while the
robot comes to a complete stop when reaching different parts
of the track (Fig. 2F and Movie S2). In contrast, other regions
in the phase space appear to be robust against track variations;
see, e.g., the phase combination φ2 −φ1 ≈ 0.4 and φ3 −φ1 ≈ 0.8
(top circle in Fig. 2 D and E), for which the robot displacement
Ū ≈ 4.5 mm/cycle is at a maximum (Fig. 2F and Movie S2).
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Fig. 2. Adaptability to variations in the environment of an assembled robot
consisting of three active units. (A and B) Distribution of average velocities
Ū and average acceptance rate p̄ for the Thermal algorithm, as a function of
the learning step, for 112 simulations and 56 experiments. (C and D) Aver-
age velocity Ū obtained in simulations and experiments as a function of all
of the possible combinations of phases φ3−φ1 and φ2−φ1 (with φ1 = 0).
(E) Standard deviation of the average velocity Ū observed over 20 experi-
mental runs. (F) Two different experiments with fixed phases, to highlight
the effect of the track on the robot’s behavior. (G and H) Distribution of
average velocities Ū and average acceptance rate p̄ for the Flaky algorithm
as a function of the learning step, for 112 simulations and 56 experiments.

A More Robust Learning Strategy
To understand the effect that noise and changes in environment
can have on our proposed decentralized learning algorithm and
the reason that the algorithm stops accepting new phases, we
need to consider how the memory is updated. At the moment,
each unit only updates its Ui that is stored in memory when
achieving a higher U ′i , with the exception of a probability to
accept lower U ′i depending on the specified temperature T . If
in the previous step the noise caused an overestimation of the
Ui that was stored in memory, the probability to accept realis-
tic U ′i becomes smaller. Similarly, if changes in the environment
cause a decrease in U ′i , it will become less likely that the value
of Ui that is stored in memory is updated. This will influence the
overall acceptance probability (Fig. 2B) and reduce the ability to
adapt to variations and noise as also demonstrated by including
noise in the simulations (SI Appendix, Fig. S5 A and B).

Therefore, while the Thermal algorithm performs well in a
noiseless and static environment, in order to improve the adapt-
ability of our system in real dynamic experimental conditions
we need to change how memory is stored in each active unit.
So far, we stored the last accepted phase φi and corresponding
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displacement Ui in memory. Instead, we propose an improved
algorithm in which we update the memory according to the newly
obtained velocity U ′i , while still only updating the phase to φ′i
in case of acceptance. We refer to the this new strategy as the
“Flaky algorithm” (see pseudocode in SI Appendix, Fig. S1). As
such, with this new formulation each unit is constantly aware of
the landscape and does not rely on past information that may not
be reliable anymore (Movie S1).

To determine the performance of this updated algorithm, we
repeated the learning study and gathered data from 112 simula-
tions and 56 experiments. The results in Fig. 2G show that with
the Flaky algorithm the active units are now capable of adapt-
ing to variations in their environment, achieving velocities of
Ū ≈ 4 mm/cycle. Interestingly, the units now accept ≈ 60% of all
new candidates, independent of the learning step (Fig. 2H). As a
result, the robot is able to adapt its behavior to noise and varia-
tions in the environment, which significantly improves its overall
robustness. The difference in adaptivity between the Thermal
and Flaky algorithms can also be illustrated by simulations in
which we implement a sudden reduction in friction during learn-
ing (SI Appendix, Fig. S6). Moreover, simulations indicate that
the acceptance rate of the Flaky algorithm is not affected by the
noise level, in contrast to the Thermal algorithm (SI Appendix,
Fig. S5C).

While the Flaky algorithm seems more suitable for dynamic
environments than the Thermal algorithm, we can still observe
certain conditions for which the Flaky algorithm is starting to
have problems. For example, when increasing the friction in this
system as shown in SI Appendix, Fig. S3 E and F we observe
potential behavior that changes more abruptly with a change
in actuation phase. As such, the derivative of the score with
respect to the phases is close to zero everywhere, except for a
few boundaries between domains. In this case the memory in the
Flaky algorithm can be reset almost instantaneously, after which
it will accept any other phase combination. As such, the Flaky
algorithm requires some notion of smoothness, with variations
occurring over domains that are larger than the step size.

Adaptivity to Damage
With the adoption of the Flaky algorithm, we next explore if and
how the assembled robot adapts to suddenly applied damage. In
order to show this, we consider a learning experiment with three
active units and one dummy unit, in which we intentionally dam-
age the robot after ≈ 300 learning steps by removing the venting
needle in the second unit (Fig. 3 A and B and Movie S3). This
dramatically alters the possible behaviors the robot can exhibit,
as indicated by the contour plots of the score before and after
damage (Fig. 3 C and D and SI Appendix, Fig. S4). Once dam-
aged, the robot must find a new locomotion pattern. It should
be noted that although the second actuator cannot inflate after
damage we still observe the presence of a global optimum at
φ2 −φ1 ≈φ3 −φ1, for which unit two and three are actuating
simultaneously. While one would expect no influence of the dam-
aged unit’s phase on the overall score (SI Appendix, Fig. S7),
we find that by turning the pump on and off unit two seems to
control its friction properties and as a result still plays a role in
the optimal behavior. Importantly, when directly comparing the
experiment and simulation results of the Thermal and the Flaky
algorithms as shown in Movie S3, Fig. 3 E and F, and SI Appendix,
Fig. S7, we find that the Thermal algorithm is not able to adapt
to the damage and gets stuck at a certain phase, while the Flaky
algorithm is able to overcome damage by completely adapting its
behavior.

Scalability of the Learning Behavior
Finally, to verify if our learning strategy is scalable and can be
applied to assembled robots consisting of more than three active

A

E

C

F

D

BUndamaged Damaged

Thermal Algorithm

Flaky Algorithm

Fig. 3. Adaptability of the assembled robot to damage using the Thermal
and Flaky algorithms. (A and B) An assembled robot consisting of three
active units is damaged by removing one of the needles. (C and D) Aver-
age velocity Ū obtained in experiments for an intact and damaged robot,
as a function of the possible range of combinations of phases φ3−φ1 and
φ2−φ1 (with φ1 = 0). The white and black dots represent the tried phases in
two learning experiments in which the robot is damaged after 300 learning
steps, using the (E) Thermal and (F) Flaky algorithms, respectively.

units, we performed 112 simulations and 56 experiments on a
robot consisting of seven active units and one dummy unit (Fig.
4A and Movie S4). In Fig. 4B we show the distribution of average
velocity Ū as a function of the learning step. While the average
displacement Ū ≈ 2.5 mm/cycle is lower than before, the initial
learning occurs within a comparable number of learning steps.
Note that during learning the assembled robot occasionally does
reach higher speeds up to Ū ≈ 4 mm/cycle, however it is not able
to maintain these speeds, likely due to the random guesses made
by each unit during normal operation. To better understand how
the system’s behavior is affected by its size, we performed 112
simulations for sizes up to 20 active units. To determine the
equilibrium velocity Ūeq as shown in Fig. 4C, we fitted an expo-
nential function to the average learning behavior (SI Appendix,
Fig. S8A). We find that the equilibrium velocity decreases for
larger number of units but appears to asymptotically reach a
value close to Ū ≈ 1.7 mm/cycle.

Here, it should be noted that scalability could refer to two
things, which are the behavior that the robotic platform can
exhibit and the ability to learn “good” behavior. In the results
shown in Fig. 4C we are investigating both factors for scalability
simultaneously. One could argue that the velocity at the typical
optimal peristaltic behavior that our system is aiming to achieve
should not depend on the number of units, such that the system
is apparently not able to find the optimal behavior for larger sys-
tem size. This might be explained by the fact that our learning
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Fig. 4. Scalability of the learning behavior for an assembled robot ranging from 2 to 20 active units. (A) Initial and final position after 300 learning
steps (1,200 s) of an assembled robot consisting of seven active units. (B) Distribution of average velocities Ū as a function of the learning step, for
112 simulations and 56 experiments. (C) Relation between the number of active units and the equilibrium velocity Ūeq, obtained using simulations, for
∆s = 0.1 and ∆s = 0.1/4. (D) Average number of learning steps, and standard deviation, needed to reach equilibrium (i.e., 0.8 Ūeq) as a function of the
number of active units. Here we only consider the simulation which reach the 0.8 Ūeq threshold within the assigned number of learning steps. While
for ∆s = 0.1 all of the simulations reach the threshold, for ∆s = 0.1/4 we find that a percentage of simulations do not reach 0.8 Ūeq (SI Appendix,
Fig. S8B).

algorithm is exploring the behavior in a probabilistic way, such
that equilibrium relates to some extent to the standard devia-
tion of the system’s potential behavior (SI Appendix, Fig. S9).
However, further studies should be performed to support this
statement.

Interestingly, we do find that an increase in the number of units
does not affect the rate of learning, as indicated by Fig. 4D, and
that on average the units only need 35 learning steps to reach
speeds within 80% of the equilibrium velocity Ūeq. Furthermore,
we can increase the equilibrium velocity Ūeq at the cost of learn-
ing rate by decreasing the steps size used to update the phases
(Fig. 4 C and D), which underpins the assumption that better
behavior is attainable but depends on the stochastic nature of
the algorithm.

Conclusion
In this work, we implemented a basic decentralized reinforced
learning algorithm in a modular robot to improve and adapt
its emergent global behavior. We demonstrated that such a
decentralized learning approach is an effective way to adapt the
robot’s behavior to a changing environment or damage. One
of the most important findings of this work is the requirement
on how previous scores (measured by the sensors) should be
stored in each unit, where we find that the memory should
be representative of the current environment in order for the
algorithm to be adaptive. We implemented this in the Flaky
algorithm by always keeping the last measured displacement, in
contrast to the more classic Thermal algorithm that keeps the last
accepted displacement, and therefore can only overcome sud-
den changes in conditions according to a specific temperature
parameter.

Interestingly, our proposed system was able to learn peri-
staltic locomotion gaits (20, 30, 31) without any prior knowl-
edge, making this decentralized learning strategy suitable for
the exploration of environments whose governing physical condi-
tions are unknown. Given that each unit in the robot is identical,
no electrical connections are needed, and there is no central-
ized controller; the robot can be reconfigured into any shape

and maintain its capability to learn, for example after shuffling
the units (Movie S5). As a result, each module represents a
unit cell capable of learning, such that the learning capability
becomes essentially a material property, e.g., when cutting the
robot in two, both parts would maintain the ability to learn.
We therefore refer to this kind of system as “robotic matter”
(32–34).

Although we performed one-dimensional experiments to sim-
plify the potential behaviors, the robot does not need to be
confined to a track (Movie S5). Importantly, we believe that
our approach is applicable to a large range of robotic systems
with different architectures, actuators, and sensors, including
(soft) robots with many degrees of freedom that are assem-
bled in two-dimensional patterns (20), or that fully deform in
three dimensions (16). Furthermore, the simplicity of our learn-
ing strategy and the fact that it can be coded using only a
few lines makes it suitable for (microsized) robots that have
limited computational power and dedicated electronic circuits
(35–37) and could potentially even be realized through other
means than an electronic circuit such as microfluidics (9, 38),
and even material behavior (39). The simplicity and robust-
ness of our proposed robotic matter is an important step
toward robotic systems that can autonomously learn to thrive
in a broad range of applications at different length scales,
spanning from in vivo healthcare to disaster relief and space
exploration.

Materials and Methods
Details on the materials and methods are provided in SI Appendix.

Data Availability. The experimental and numerical data that support the
findings of this study and all computer algorithms necessary to run the
models have been deposited at Figshare (10.6084/m9.figshare.13626110).
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