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Abstract

Purpose: Prospective detection of patients with advanced rectal cancer (LARC) who have a higher
probability of responding to preoperative chemoradiotherapy (CRT) may provide individualized
therapy. Lipidomics is an emerging science dedicated to the characterization of lipid fingerprint
involved in different pato-physiological conditions. The purpose of this study is to highlight a
typical lipid signature able to predict the tumor response to CRT.
Experimental Design: A prospective global analysis of lipids in 54 sera from 18 LARC patients
treated with preoperative CRT was performed. Samples were collected at 3 time points: before
(T0), at 14th day and at 28th day of CRT. An open LC-MS/MS analysis was performed to
characterize lipid expression at T0. Differential lipids were validated by an independent approach
and studied during treatment.
Results: From 65 differential lipids highlighted between responder (RP) vs not responder (NRP)
patients, five lipids were validated to predict response at T0: SM(d18:2/18:1), LysoPC (16:0/0:0),
LysoPC (15:1(9z)/0:0), Lyso PE (22:5/0:0) and m/zZ 842.90 corresponding to a PC containing 2
fatty acids of 40 carbons totally. The levels of these lipids were lower in NRP before treatment. The
ROC curve obtained by combining these five lipid signals showed an AUC of 0.95, evidence of
good sensitivity and specificity in discriminating groups.
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Conclusion: Our results are in agreement with previous evidences about the role of lipids in
determining the tumor response to therapy and suggest that the study of serum lipid could represent
a useful tool in prediction of CRT response and in personalizing treatment.
ª 2017 the Authors. Published by Elsevier Inc. on behalf of the American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Colorectal cancer (CRC) is the third most
frequently occurring cancer globally.1 Preoperative
fluoropyrimidine-based chemoradiation therapy (CRT) or
short-course radiation therapy followed by total meso-
rectal excision are the standard treatments for CRC.2-4 In
the effort to personalize treatments, there is increasing
interest in predicting which patients will respond to
neoadjuvant CRT,5 especially via investigating easily
accessible biological fluids,6 and in improving response
rate and survival outcomes. Several biomarkers have
been investigated for their ability to predict outcome in
locally advanced rectal cancer (LARC) treated with CRT,
but few works have investigated lipids.7-9 Bioactive lipids
are fundamental mediators of a number of biological
processes,10-12 and the implication of lipids in cancer
growth and diffusion have already been demonstrated.13

In this work, we aimed to study serum polar lipids in a
prospective cohort of LARC patients before CRT (t0
group), including patients naïve to chemotherapy and
Figure 1 Partial least squares discriminant analysis score plots ba
full diamonds) and not responders (NRPs; represented as open di
squares discriminant analysis score plots for the analyzed lipids, i
phosphatidylethanolamine class (B), phosphatidylglycerol class (C), a
radiation therapy. Samples were also collected during
CRT (t14 and t28 days), in the effort to correlate the
global lipid signature to response to treatment.

Methods

See Appendix E1, available as supplementary material
online only at www.practicalradon.org.

Results

Lipidomics biomarker discovery

The serum from 18 patients with LARC (7 women, 11
men)d8 of whom were classified as responders (RPs)
and 10 as not responders (NRPs) according to Mandard’s
tumor regression gradingdtreated with preoperative CRT
was analyzed by liquid chromatography electrospray
ionization tandem mass spectometry. Data were converted
into a matrix containing m/z signals coupled with
sed on the lipidomics data. Responders (RPs) (represented as
amonds) before treatment (t0). The panels show partial least
n particular the phosphatidylcholine/sphingomyelin class (A),
nd phosphatidylserine class (D).
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Figure 2 Heat map showing the relative intensity of the 65 differential serum lipids (listed on the right) of each sample (listed at the
bottom) before treatment (t0). Samples are divided in 2 groups: RP and NRP. Lipid levels are indicated by a color code: high (red) and
low (green). See Fig 1 for abbreviations.
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retention time as variables and the patient codes as ob-
servations. This dataset was reduced by considering only
variables present in at least 50% of patients. Figure 1
shows the lipid classes (including lyso forms) screened.
The studied lipids were sphingomyelins (SMs) and
phosphatidylcholines (PCs; Fig 1A), phosphatidyletha-
nolamine (Fig 1B), phosphatidylglycerols (Fig 1C), and
phosphatidylserines (Fig 1D). Each lipid class screened
was reported. In Fig 1A, the score plot of phosphatidyl-
choline/SM phospholipids is shown, whereas Fig 1B
shows the score plot of the phosphatidylethanolamine
class; Fig 1C shows the phosphatidylglycerol lipids; and
the phosphatidylserine class is reported in Fig1D. The
resulting PLS-DA models are reported as score scatter
plots in Fig 1, showing clear separation between RP and
NRP before treatment. The lipids identified as variable
important for the projection (VIP >1) were confirmed
through a univariate test. At t0, 65 lipids were identified
as significant, with the criteria of VIP >1.5 and P < .05 in
the univariate test, depicted in Fig 2 as a heat map. The



Table 1 Significant lipids obtained from statistical analysis (VIP >1.5; P < .05) in RPs and NRPs at the t0 time point

RT_m/z VIP NRPs RPs t test
valueMean SD Mean SD

PCs/SMs 14.79_727.86 1.86 18.03 6.28 23.84 3.91 0.037
16.14_495.7 2.59 9.88 1.53 13.49 2.42 0.001
15.72_480.42 2.27 1.46 0.62 2.24 0.39 0.008
13.44_787.52 2.13 333.95 56.02 183.28 155.44 0.011
13.51_798.84 1.96 2.21 4.71 8.47 6.02 0.025
13.86_842.90 1.71 0.08 0.25 1.88 1.26 0.0001
12.57_830.92 1.70 0.22 0.48 1.01 0.93 0.034
12.58_806.35 1.87 0.25 0.43 1.53 1.78 0.042
12.51_812.58 2.21 0.02 0.07 0.29 0.26 0.008
14.75_757.37 1.83 1.72 2.14 0.00 0.00 0.038
14.91_782.88 1.93 0.11 0.36 1.53 1.78 0.025
14.04_715.12 1.89 0.04 0.14 0.40 0.50 0.047

PEs 9.53_812.96 1.92 22.90 15.93 41.24 20.47 0.048
10.80_478.63 1.78 4.40 8.72 15.31 7.55 0.013
9.83_723.00 1.78 3.15 6.77 12.80 9.44 0.023
11.08_528.61 2.08 1.49 4.71 20.81 25.01 0.028
11.54_750.09 2.46 0.63 2.01 7.78 7.04 0.007
9.67_796.81 2.23 0.93 2.96 17.07 19.23 0.018
9.23_502.71 2.39 7.47 7.17 0.00 0.00 0.010
11.18_532.48 2.05 7.55 9.03 0.00 0.00 0.032
12.35_454.71 1.96 0.73 2.31 6.06 7.27 0.043
9.43_764.26 2.15 6.60 7.41 0.00 0.00 0.024
8.01_555.83 1.92 3.24 4.22 0.00 0.00 0.046
10.10_731.77 2.21 0.00 0.00 7.10 8.62 0.018
7.60_792.30 1.91 3.81 4.98 0.00 0.00 0.047
11.27_939.11 2.16 0.00 0.00 3.70 4.67 0.023
12.36_808.91 1.98 0.00 0.00 3.24 4.61 0.039

PGs 2.55_337.05 2.11 7.66 10.13 34.40 31.77 0.023
6.22_543.15 2.07 1.60 5.07 15.31 16.87 0.026
5.77_763.48 1.86 2.73 8.65 22.98 28.48 0.048
3.16_311.30 2.01 1.15 3.66 9.54 10.76 0.034
12.14_912.39 2.14 9.69 10.56 0.00 0.00 0.020
2.79_367.71 2.04 9.12 10.56 0.00 0.00 0.027
5.83_719.64 2.54 0.00 0.00 13.05 12.30 0.004
3.34_877.71 1.92 1.93 6.11 14.62 16.73 0.040
5.96_913.52 2.33 0.00 0.00 9.74 10.60 0.010
2.73_627.94 1.70 7.51 9.94 0.00 0.00 0.050
2.25_798.51 2.02 0.00 0.00 20.04 28.36 0.039
2.71_501.43 2.34 0.00 0.00 8.52 9.19 0.009
7.16_807.46 2.32 0.00 0.00 6.22 6.78 0.010

PSs 13.60_782.52 2.35 48.23 37.83 104.02 52.04 0.018
15.05_741.50 2.44 11.11 9.65 24.79 11.20 0.013
12.92_879.50 2.45 3.65 7.03 18.01 14.25 0.013
12.84_815.03 2.49 2.95 5.18 18.46 16.20 0.011
13.26_822.49 2.43 4.19 7.38 20.42 16.66 0.014
17.99_600.69 2.13 2.40 3.97 10.04 9.65 0.036
10.48_840.46 2.08 7.75 9.91 0.00 0.00 0.043
13.03_844.46 2.78 12.36 10.11 0.00 0.00 0.003
13.45_786.54 2.50 11.73 10.59 0.71 2.03 0.011
18.56_601.86 2.11 4.04 4.40 0.39 1.12 0.038
13.09_874.69 2.04 7.73 8.80 0.76 2.16 0.045
14.40_838.03 2.04 10.66 13.79 0.00 0.00 0.045
12.85_841.74 2.12 0.81 2.56 8.56 10.51 0.038
17.02_688.96 2.23 0.56 1.79 7.07 8.23 0.026
14.85_596.55 2.26 0.55 1.74 9.20 10.95 0.025
13.81_716.64 2.22 0.78 2.46 6.97 7.66 0.028
16.79_744.77 2.01 2.48 3.29 0.00 0.00 0.050

(continued on next page)
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Table 1 (continued )

RT_m/z VIP NRPs RPs t test
valueMean SD Mean SD

13.76_748.40 2.47 0.00 0.00 5.36 5.99 0.012
10.50_467.35 2.23 0.00 0.00 4.43 5.76 0.026
14.58_798.73 2.29 0.00 0.00 3.66 4.59 0.022
18.36_614.29 2.08 2.34 3.07 0.00 0.00 0.048
18.81_810.59 2.03 2.71 3.58 0.00 0.00 0.049
14.83_443.05 2.45 0.00 0.00 2.89 3.28 0.013
19.61_732.99 2.43 0.00 0.00 3.20 3.68 0.014
12.03_992.42 2.03 2.41 3.17 0.00 0.00 0.048

Bold type indicates confirmed biomarkers. Lipids are reported as a combination of RT_m/z.
NRP, not responder; PC, phosphatidylcholine; RP, responder; RT_m/z, retention time and mass/charge; SM, sphingomyelin; SD, standard deviation;
PE, phatidylethanolamine; PG, phosphatidylglycerol; PS, phosphatidylserine; VIP, variable important for the projection.

Figure 3 Histograms reporting the relative abundance of potential biomarkers in RPs and NRPs during chemoradiation therapy
(CRT). Relative abundances of phosphatidylcholine (PC; 40:2), lysophosphatidylcholine (LPC;16:0/0:0), LPC (15:1 (9Z)/0:0),
sphingomyelin (SM; d18:2/18:1), and lysophosphatidylethanolamine (LPE;22:5/0:0) are shown, respectively, before treatment (t0),
during CRT (t14), and at the last therapy day (t28). See Fig 1 for abbreviations.
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Figure 4 Predictive power of 5 validated lipids at the t0 time
point. (A) Receiver operating characteristic curve generated
combining the 5 validated lipids; (B) predicted class probabili-
ties (RP or NRP) of each sample across the 100 cross-validations
and the related confusion matrix generated. See Fig 1 for
abbreviations.
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heat map provides an overview of the different lipid
signals (reported as a combination of the retention time
and mass/charge [m/z]) and their relative intensity, in
terms of overexpression (in red) or underexpression (in
green), in RP versus NRP sera. These results help high-
light the differential lipid patterns between RP and NRP
sera and are summarized in Table 1.
Biomarker confirmation

To further validate the reliability of the highlighted
biomarkers, an independent validation analysis was
performed through targeted liquid chromatograph
tandem mass spectometry. Results confirmed the
lower levels in NRP of 5 differentially expressed lipids
(P < .05) that were identified as follows: SM (d18:2/
18:1) at m/z Z 727.86; lysophosphatidylcholine
(LPC;16:0/0:0) at m/z Z 496.22; LPC (15:1(9z)/0:0) at
m/z Z 480.42; lysophosphatidylethanolamine (LPE;22:5/
0:0) at m/z Z 528.6; and PC (40:2) at m/z Z 842.90.
These 5 lipids were regarded as the more reliable pre-
dictive biomarkers and quantified at 14 and 28 days to
evaluate their prognostic value. As shown in Fig 3, PC
(40:2), the 2 LPCs, and SM confirmed their lower levels
in NRP with respect to RP during the entire therapy
(P < .05). Conversely, the levels of LPE varied during
CRT. No significant difference between males and females
was found in the highlighted biomarkers (data not shown).

Predictive power of lipid biomarkers

Figure 4A shows the receiver operating characteristic
curve generated combining the 5 validated lipids. The
area under the curve is 0.95, showing good sensitivity and
specificity in discriminating between RP and NRP. The
100 cross-validations performed show the predicted class
probabilities of each sample, as reported in Fig 4B, un-
derlying the good predictivity of the proposed model
(P Z .03) in suggesting patients who may better respond
to therapy.

Discussion

Predictive response biomarkers to neoadjuvant CRT in
LARC could personalize treatment strategy to improve
response rate and survival outcomes. In this study, we focus
on serum lipids to define a discriminatory profile able to
predict CRT response in LARC. Despite the small sample
size analyzed, our results indicate 5 lipids that drive the
separation of RP and NRP. We found that LPE (22:5/0:0),
SM (d18:2/18:1), LPC (16:0/0:0), LPC (15:1(9z)/0:0), and
PC (40:2) are significantly lower in NRP at t0, whereas the
LPE level significantly increases in NRP during CRT. The
involvement of these lipids in radioresistance may be
supported by the known correlation between human
phosphatidylethanolamine-binding protein 4 (hPEBP4)
and inhibition of apoptosis.14-16 Qiu et al have already
demonstrated that hPEBP4 is a predictive marker of radi-
oresistance in rectal cancer by activating Akt in a reactive
oxygen speciesedependent manner.17,18

PC (40:2) is lower in NRP compared with RP before and
during treatment, probably resulting from dysregulation of
choline metabolism, a known metabolic hallmark associated
with oncogenesis and cancer progression.19 Moreover, we
highlighted low levels of LPCs in NRP, which is consistent
with several studies that correlate higher blood LPC levels
with reduced risk of cancer,18 thus suggesting that LPCsmay
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represent a useful circulating biomarker for early detection of
CRC.20 The low levels of SM in NRPmay be due to the high
activity of SM, resulting in high levels of ceramide. Even if
ceramide is involved in cell-cycle arrest, apoptosis, and
senescence in CRC cells,21,22 its degradation product,
sphingosine1P, induces cell proliferation and angiogenesis
and triggers cell motility.23 Bearing inmind the limitations of
this pilot study, these results provide novel insights regarding
lipid metabolism in the modulation of CRT response in
LARC patients. If confirmed in a more extensive clinical
cohort, these biomarkers could represent a useful tool for
predicting outcome as part of efforts to personalize therapy.

Supplementary data

Supplementary material for this article (http://dx.doi.
org/10.1016/j.adro.2016.12.005) can be found at www.
practicalradonc.org.
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