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Abstract

Protein folding dynamics is often described as diffusion on a free energy surface considered as a function of one or few
reaction coordinates. However, a growing number of experiments and models show that, when projected onto a reaction
coordinate, protein dynamics is sub-diffusive. This raises the question as to whether the conventionally used diffusive
description of the dynamics is adequate. Here, we numerically construct the optimum reaction coordinate for a long
equilibrium folding trajectory of a Go model of a l-repressor protein. The trajectory projected onto this coordinate exhibits
diffusive dynamics, while the dynamics of the same trajectory projected onto a sub-optimal reaction coordinate is sub-
diffusive. We show that the higher the (cut-based) free energy profile for the putative reaction coordinate, the more
diffusive the dynamics become when projected on this coordinate. The results suggest that whether the projected
dynamics is diffusive or sub-diffusive depends on the chosen reaction coordinate. Protein folding can be described as
diffusion on the free energy surface as function of the optimum reaction coordinate. And conversely, the conventional
reaction coordinates, even though they might be based on physical intuition, are often sub-optimal and, hence, show sub-
diffusive dynamics.
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Introduction

A free energy surface (FES) projected onto one or a small

number of coordinates is often used to describe the equilibrium

and kinetic properties of complex systems with a very large

number (100 to 1,000 or more) of degrees of freedom. Studies of

protein folding are an important case where this type of projected

surface has been introduced and coordinates such as the number

of native contacts and radius of gyration have been used [1–3].

Protein folding then is described as diffusion on the projected free

energy surface. Diffusive dynamics is characterized by means

square displacement linearly growing with time, SDx2(t)T~2Dt,

where D is the diffusion coefficient. For a single reaction

coordinate diffusive dynamics is completely specified by the free

energy profile (FEP), i.e. the free energy as a function of the

coordinate and coordinate-dependent diffusion coefficient, which

conveniently can be computed from conventional and cut based

free energy profiles [4]. Construction of a ‘‘good’’ reaction

coordinate (i.e. the one that preserves systems dynamics) is

challenging. In many cases, the standard progress variables (e.g.

number of native contacts, radius of gyration, root mean square

distance from the native structure) are not good reaction

coordinates, because they do not preserve the barriers on the

FES and thus may mask the inherent complexity of the latter [5].

A number of methods to construct good reaction coordinates have

been suggested [4,6–9].

Employing the Mori-Zwanzig formalism [10,11] one can derive

generalized Langevin equations, which describe system dynamics

projected on the reaction coordinates. The generalized Langevin

equation contains a memory kernel, which leads to non-

Markovian dynamics and subdiffusion. Subdiffusion is character-

ized by the mean square displacement growing slower than that

for diffusion, SDx2(t)T*t2a with exponent 2av1. To completely

specify dynamics in this case one has to compute the memory

kernel, which is not trivial, since it requires the solution of a

multidimensional partial differential equation [12]. Long-term

memory in correlation functions and anomalous diffusion in

proteins was observed experimentally and theoretically [13–23].

This raises the question whether the folding dynamics of proteins

can be described as simple diffusion on the projected free energy

surface, as is often done, or if one has to use more sophisticated

descriptions, e.g. generalized Langevin equations [24,25], frac-

tional Fokker-Plank equations [26] or multiscale state space

networks [19]. Here we show that if the reaction coordinate is

properly optimized, then the dynamics projected onto this

coordinate is diffusive, while the same dynamics projected onto

a sub-optimal coordinate is sub-diffusive.

Results/Discussion

The equilibrium folding dynamics of the Ca Go model [27] of

the N-terminal domain of phage l-repressor protein is analyzed

[28]. Structure-based Go models containing attractive native

interactions and repulsive nonnative interactions correspond to

perfectly funneled energy landscapes with energetic frustration

completely absent [3,29]. A trajectory of 4|106 frames (saved

with Dt = 7.5 ps) was obtained by simulating with Langevin

molecular dynamics at T = 323 K and contains about 100 folding-

unfolding events. The saving interval of 7.5 ps is used below as the

unit of time. Note that the timescales in the simulation do not

correspond directly to the timescales of the folding dynamics of the

real protein because the coarse-grained model of the protein
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without explicit representation of the solvent is employed. Relation

between the folding timescales of coarse-grained models of

proteins and that of real proteins is discussed in [30]. The protein

has complex FES with five basins: denatured, native, native
0
,

intermediate and intermediate
0

and two symmetrical folding

pathways [28].

Optimum one-dimensional reaction coordinates are constructed

by numerically optimizing the mean first passage time to the native

basin for a sufficiently broadly chosen functional form of a reaction

coordinate (see Methods). Two different functional forms of

reaction coordinates are considered. For each coordinate we show

the cut based free energy profile (FEP) FC together with the

exponent a(x); the latter is used to distinguish between diffusive

and sub-diffusive dynamics (see Methods). The coordinate

dependent exponent a(x) describes how the mean absolute

displacement grows with time, vDDx(t)Dw*ta and can be

determined from the distance between FC(x) computed at two

different sampling intervals Dt (see Methods); the smaller is the

distance, the higher is the exponent a(x). a(x) is equal to 1/2 for

diffusive and is less than 1/2 for sub-diffusive dynamics. Each

coordinate is transformed to the natural coordinate (see Methods),

so that the diffusion coefficient is constant and is equal to one and

diffusive dynamics is completely specified by the FEP FC(x).

The first coordinate (X1) generalizes the number of native

contacts coordinate NNC as: X1~
P

ivj aijH(Dij{rij), where aij

is either 1 or 21, rij is the distance between atoms i and j and Dij is

the distance threshold, when contact between the atoms is

considered to be formed; H is the Heaviside step function, whose

value is zero for a negative argument and one for a positive

argument. Figure 1a shows FC(x) and a(x) for the (sub-optimal)

reaction coordinate, just initialized to the NNC, i.e.,

X1~
P

ij[nc H(D{rij) with sum over pairs of atoms (ij) in the

set of native contacts. The value of D~12 gives the highest barrier

for the transition state for the simple variants of NNC, where the

distance threshold is the same for all the native contacts. The

relatively large value (inter-atom distances between Ca atoms in

the native contacts are within 4 to 12 Å) may be explained by the

fact that the optimal reaction coordinate should better distinguish

between the denatured and native basins (rather than indicate a

formed native contact), which happens around the transition state

and sufficiently far from the native structure. On the FEP one can

notice three basins: denatured 0vxv17, native xw29; the third

basin 17vxv29 consists of a number of overlapping free energy

basins. The exponent a&0:25 shows that the dynamics is sub-

diffusive. To confirm this Figure 2 shows the mean square

displacement (MSD) as a function of time (SDx2(Dt)T) averaged

over pieces of the trajectory that start from the transition state (TS)

(x&17). The MSD grows approximately as *t0:5 (the mean

absolute displacement as vDDx(t)Dw*t0:25), indicating sub-

diffusive dynamics. The number of folding events computed with

Kramer’s equation (Eq. 4) is 1200, i.e. an order of magnitude more

than the actual number of 100 events. It means that the reaction

coordinate is ‘‘bad’’ and the computed folding free energy barrier

is lower than the correct one. Limited structural information can

be exploited by making the distance threshold proportional to the

native distance Dij~mr0
ij for each native contact (ij), so that

X1~
P

ij[nc H(mr0
ij{rij). However, it does not improve the

reaction coordinate since the highest barrier for the transition

state, obtained at m~1:6 (see Figure S1 in Text S1), is similar to

that obtained with the constant threshold (Figure 1a).

Figure 1b shows FC(x) and a(x) for the optimized reaction

coordinate X1~
P

ivj aijH(Dij{rij). The FEP is more informa-

Figure 1. Optimization of X1 reaction coordinate. FC (solid line)
and a(x) (dashed line) for X1 as a reaction coordinate; (a) X1 initialized
to NNC, (b) optimized X1 . Reaction coordinates are transformed to the
natural reaction coordinate.
doi:10.1371/journal.pcbi.1000921.g001

Author Summary

To understand dynamics of complex systems with many
degrees of freedom, one often projects it onto one or
several collective variables. Protein folding, the complex,
concerted motion of a protein chain towards a unique
three-dimensional structure, is one example of where such
reduction of complexity is useful. It is usually assumed that
the projected dynamics is diffusive. However, many
experiments and simulations have shown that the
projected dynamics is sub-diffusive, i.e., the mean square
displacement grows slower than linear with time. It means
that the dynamics has a memory; that the free energy
surface together with diffusion coefficient do not properly
define the dynamics; and that such projections cannot be
used to accurately describe dynamics. Here, we show that
if one carefully constructs the reaction coordinate by
optimizing (maximizing) its free energy profile, one can
use a simple (memory-less) diffusive description. Loosely
speaking, when the complex dynamics is projected onto a
simple coordinate, all the complexity of the original
dynamics goes into the memory of the projected
dynamics. If the dynamics is projected onto the (complex)
optimum reaction coordinate, all the complexity of the
original dynamics is in the reaction coordinate, and the
projected dynamics is simple.
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tive now: one can distinguish the three basins, that were

overlapping on Figure 1a. The free energy of the transition state

(x&33) of the optimized reaction coordinate is higher than that for

the sub-optimal one (Figure 1a). The relative position of the

transition state for the optimum coordinate is shifted to the left

compared to the NNC coordinate which may give a misleading

impression that the transition states occupy different regions of the

configuration space. The optimum and NNC reaction coordinates

have different coordinate dependent diffusion coefficients. When

the coordinates are transformed to the natural coordinate with

diffusion coefficient equal to unity the same regions of the

configuration space may occupy different positions. Figure 3 shows

FEPs along the ZA reaction coordinate, which is invariant to

coordinate transformation, and can be used to compare different

coordinates. ZA(x)~
Ð x

0
ZH (x)dx=

Ð?
0

ZH (x)dx measures the

relative partition function of the coordinate segment between 0

and x. The transition states on Figure 1 correspond to those on

Figure 3, since the cut free energy profiles are invariant under

coordinate transformation [4]. The transition states on Figure 3

are located at the same position, i.e., they occupy the same region

of the configuration space. FC for the optimum coordinates are

uniformly higher than that for the corresponding sub-optimum

ones. ZA coordinate, however, is of limited use to correctly

represent the dynamics since the diffusion coefficient is not

constant, which leads to such artifacts as sharply peaked transition

states.

The scaling exponent a for the optimized reaction coordinate

(Figure 1b) is no longer a constant. It is a bit higher than 0.5 at the

TS region (x&33) and a bit lower than 0.5 in the denatured state

and at the second barrier (x&57), indicating diffusive dynamics.

After the TS a(x) is around 0.25 indicating sub-diffusive dynamics.

Values of a higher than 0.5 (superdiffsion) are an artifact due to

over-fitting of the trajectory by the reaction coordinate. The

estimated number of folding events for the optimized reaction

coordinate is 168, which is quite close to the actual number.

Figure 2 shows MSD for the pieces of the trajectory starting from

the TS (x&33). The MSD grows linearly with time, confirming

diffusive dynamics. The reaction coordinate can be optimized in

another region, e.g. by maximizing the mfpt to go from the TS

(x&33) to the native structure (x&60). In that case dynamics in

the region around the second barrier (x&57) becomes diffusive,

while that at the TS is back to sub-diffusive. Optimization of the

reaction coordinate inside the native basin has increased the

exponent a(x) in the basin from 0 to 0.3, indicating that the

dynamics in the basin is still sub-diffusive. This can be due to a

relatively large value of the sampling interval (Dt) of 7.5 ps, at

which MSD between two subsequent snapshots is close to an

equilibrium value inside the native basin. Moreover, sub-diffusive

dynamics inside the basins have relatively small influence on

folding dynamics, which is determined mainly by diffusive

dynamics at the transitions state regions. The Text S1 shows an

all-atom structure based model of the lambda repressor protein

where the optimum reaction coordinate is constructed so that the

dynamics is diffusive for the whole coordinate, not just around the

transition state.

The second coordinate is a linear combination of all interatom

distances X2~
P

ivj aijrij , where rij is the distance between atoms

i and j. It was initialized to be the distance between atoms C13 and

C46 (Figure 4a). The end to end distance (the distance between C1

and C80 atoms), often employed in single molecule experiments,

does not separate the denatured and native basins; the free energy

profile along the distance is barrier-less. Figures 4 and 2 show

FC(x), a(x) and MSD for X2 and lead to the similar conclusions.

For the sub-optimal X2 dynamics is sub-diffusive at the TS

(x&21), with the exponent a(x) steeply decreasing to zero just

after the TS. The exponent a(x)~0 means that the MSD has

reached the equilibrium value (at this time scale and in this region

of the reaction coordinate). The estimated number of folding

events is about 8700. The optimized reaction coordinate (panel b)

has a higher folding barrier and shows that the dynamics is

diffusive at the TS (x&40) and estimates the number of folding

events as 154.

Figure 5 shows FC(x) for different values of the sampling

interval Dt~1,2,4,:::,1024 for the optimal and sub-optimal

coordinates X1. The constant distance between the profiles at

fixed x and different (small) Dt means that a is independent of Dt

and that SDDx(Dt)DT*Dta (see also Figure 6).

The partition function of the cut based free energy profiles

ZC(x) (FC(x)~{kT ln ZC(x)) at point x is defined as the

number of transitions through the point [4] (see Methods). For the

sufficiently large sampling intervals Dtwtb, when the system

Figure 2. MSD for pieces of the trajectory starting from the
corresponding transition states. Pluses are for unoptimized X1 ,
squares are for optimized X1 , triangles are for unoptimized X2 , circles
are for optimized X2 . The solid line shows diffusive (Dx2*t) and the
dashed line sub-diffusive (Dx2*t0:5) MSD to guide the eye.
doi:10.1371/journal.pcbi.1000921.g002

Figure 3. The reaction coordinates comparison. Black and red
lines show the free energy profiles along the X1 and X2 coordinates,
respectively. Solid and dashed lines show optimized and non-optimized
coordinates, respectively.
doi:10.1371/journal.pcbi.1000921.g003
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‘‘flies’’ ballistically over the TS barrier, i.e. no recrossing events are

detected, the ZC at the TS is equal to the total number of folding

events (100 here). This value denoted as Zb
C (Fb

C ) is, evidently, the

same for the optimal and sub-optimal coordinates. The optimum

reaction coordinate has higher FC(Dt~1) at the TS compared to

the sub-optimal coordinate. Hence, a (at the TS) estimated as (see

Methods)

a~1z
FC(Dt~1){Fb

C

kT ln tb
ð1Þ

is higher for the optimum reaction coordinate than it is for the sub-

optimal one. In other words, an inadequacy of a sub-optimal

reaction coordinate (low FC ) which leads to faster kinetics is

corrected by making the dynamics sub-diffusive (slower).

We assume here that a is roughly a constant for the sampling

intervals between Dt~1 and Dt~tb (i.e., Dx*Dta), which is

validated by Figure 5. However the assumption evidently breaks

down for the very small time scales, when the system follows

Newtons equations of motion with Dx*vDt meaning a~1. Thus,

the sampling interval Dt should be chosen sufficiently large so that

the dynamics is in the (sub)diffusive regime.

Figure 4. Optimization of X2 reaction coordinate. FC (solid line)
and a(x) (dashed line) for X2 as a reaction coordinate; (a) X2 initialized
to rC13 C46

, (b) optimized X2. Reaction coordinates are transformed to
the natural reaction coordinate.
doi:10.1371/journal.pcbi.1000921.g004

Figure 5. FC computed at different sampling intervals for X1 as
a reaction coordinate. The sampling intervals are Dt~1,2,4:::,1024;
(a) the NNC reaction coordinate, (b) the optimum reaction coordinate.
Higher free energy barrier for the optimum reaction coordinate implies
lesser space between the profiles and larger a compared to the NNC.
doi:10.1371/journal.pcbi.1000921.g005

Figure 6. Scaling of FC at the transition state with the sampling
interval. The sampling intervals are Dt~20,:::,216. FC of the TS are
shown by symbols; notation as in Figure 2. The solid line shows the
diffusive slope (0:5 ln Dt) and the dashed line shows the sub-diffusive
slope (0:25 ln Dt) to guide the eye.
doi:10.1371/journal.pcbi.1000921.g006
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Figure 6 shows FC computed at the TS as a function of Dt for

different reaction coordinates. Initially, FC curves have a constant

slope, which is close to diffusive for the optimized reaction

coordinates and to sub-diffusive for the sub-optimal reaction

coordinates. The slope changes when FC approaches the limiting

value of Fb
C . The latter is not strictly constant, though its

dependence on Dt is rather weak. As Dt increases further

(Dtw10000, the mean life time in the basins), the probability of

the system to visit another basin undetected (between successive

sampling events) increases as well and ZC (the number of detected

transitions) decreases. FC for different reaction coordinates fall on

the same curve at sufficiently large Dt, i.e. Fb
C(Dt) are the same

when local differences between the coordinates become negligible.

However, Figure 6 shows that the ballistic time (tb) for different

reaction coordinates is slightly different, while in deriving Eq. 1 it

was assumed to be constant. To take this into account we proceed

as follows. The curve FC(Dt) (Figure 6) is approximated by two

straight lines as ZC(Dt)*Dta{1 for ZC less than the limiting value

of Zb
C (Dtvtb) and constant ZC(Dt)~Zb

C (Dtwtb), where tb is the

time when dynamics becomes ballistic. Define Dx(Dt)~Dxta, and

ZC(Dt)~ZCta{1; where Dx and ZC denote, respectively,

Dx(Dt~1) and ZC(Dt~1). The diffusion coefficient is set to

unity by transforming the reaction coordinate to the natural

coordinate, which means that Dx~2=
ffiffiffi
p
p

. The time tb can be

estimated as time when mean absolute displacement is about the

barrier width (w), i.e. 2=
ffiffiffi
p
p

(tb)a~w. At this time

ZC(Dtb)~(tb)a{1ZC~Zb
C . Eliminating tb from the two equa-

tions, one finds

a~
ln(w

ffiffiffi
p
p

=2)

ln(w
ffiffiffi
p
p

=2)zln Zb
C{ln ZC

: ð2Þ

Taking w~13 and Zb
C~100, one obtains a equal to 0.32, 0.39

and 0.49 for FC=kT equal to 29.72, 28.34 and 27.13,

respectively, in reasonable agreement with Figure 6. The ballistic

times are 1924, 487 and 144, respectively. From Eq. 2 it follows

that the higher is the free energy barrier the higher is the exponent

a and the closer is the dynamics to the diffusive one.

The two optimized reaction coordinates, while having very

different functional forms, show very similar behavior (at the TS

regions), e.g. the width and the height of the TS barrier is the same

(x&33 on Figure 1b and x&40 Figure 4b), the MSDs are

identical (Figure 2) as well as FC(Dt) dependencies (Figure 6). This,

likely, indicates that the two coordinates have converged to and

closely approximate the true reaction coordinate (at the TS

region). The residual difference between the estimated and the

actual numbers of folding events which is due to limited statistics

and insufficient flexibility of the chosen functional forms, is

relatively small so it does not affect the results. The fact that the

diffusive character of dynamics is determined by the height of free

energy barrier FC , rather than the chosen functional form of the

coordinate indicates the robustness of the approach. It also means

that the method of constructing the optimum reaction coordinate

by optimizing its FEP (FC ) [4,6] has an advantage over the other

approaches [7–9], in that it guarantees that the optimum reaction

coordinate has dynamics closest to diffusive. Distribution of folding

times is single exponential and identical for all four coordinates

because folding events can be detected with high likelihood by any

sufficiently good order parameter.

The analysis suggests that the higher is the free energy profile

the closer is dynamics to diffusive. Evidently, the most optimal

reaction coordinate is the one which has its free energy highest for

every value of reaction coordinate. Consider invariant parametri-

zation of reaction coordinate, namely the partition function of the

configuration space from the initial value to the position x

ZA(x)~
Ð x

A
ZH (x)dx. The optimum reaction coordinate is the one

that attains max FC(ZA) or min ZC(ZA) for any ZA, assuming

that ZC for different values of ZA can be varied independently.

This defines the optimum reaction coordinate introduced in [4],

which has the largest mean first passage time. Conversely, diffusive

dynamics on the constructed reaction coordinate can serve as an

indication of optimality of the reaction coordinate.

To illustrate that the results presented are robust with respect to

particular choice of the protein or the interaction potential, a

protein with different secondary structure content (b-sheet) and an

all-atom structure based model of the lambda repressor protein are

analyzed in Text S1. The analysis confirms that the dynamics is

sub-diffusive when projected onto a sub-optimum reaction

coordinate and diffusive, when projected onto the optimum

reaction coordinate.

Low free energy barrier per se does not mean that the dynamics is

sub-diffusive, for example, a freely diffusing particle has flat free

energy profile. Dynamics should be sub-diffusive, when the reaction

coordinate is sub-optimal, i.e., the free energy barrier along the

coordinate is much lower than the correct one. The latter is defined

either as the highest barrier attained by the optimum reaction

coordinates, or as a solution of the multidimensional minimum cut

problem (min ZC ), which locates the transition state [4].

The analysis above just considers the dynamics around the

transition state, i.e., at the top of the free energy barrier. The

conclusion that the higher the free energy profile the closer the

dynamics to diffusive is likely to be valid in general, e.g., for the

barrier-less folding proteins. The quantitative analysis exploits the

fact that at the very large sampling intervals, when the system flies

ballistically over the barrier, the two free energy profiles for optimal

and sub-optimal reaction coordinates are very similar, because the

two coordinates distinguish equally well between the basins. It can

be extended to the following general qualitative argument. The two

sufficiently good reaction coordinates likely differ significantly only

at relatively small spatial scales with the large scale description of the

dynamics being very similar. As the sampling interval Dt increases,

the characteristic change of the reaction coordinates during the

sampling interval (Dx(Dt)) increases as well. When (Dx(Dt)) is

comparable to the large scale, so that the relative difference between

the coordinate is negligible, the description of the dynamics by the

two coordinates is similar and results in similar free energy profiles.

Since the distance between the higher profile and the joint profile at

large sampling intervals is smaller than that for the lower profile, the

dynamics in former case is closer to diffusive compare to the later. It

is assumed that Dx(Dt)*Dta is valid for the whole range of Dt from

the small sampling intervals, when the dynamics start to manifests

itself as (sub)diffusive to the large sampling intervals, where the

profiles for the different reaction coordinates become very similar.

This equation connects the dynamics and the free energy profiles at

these different time scales.

The model of the protein employed in the analysis is relatively

simple, thus allows for extensive simulation with large number of

folding-unfolding events. More realistic simulation of protein

folding would include explicit representation of solvent configu-

ration degrees of freedom. The dynamics projected on the

optimum reaction coordinate constructed by considering only

protein degrees of freedom might be sub-diffusive because

neglected solvent degrees of freedom could be important.

The analysis suggests that without specifying the reaction

coordinate, the question why the dynamics is sub-diffusive is rather

ill-posed. It is more appropriate to ask: is it possible, for a given

Is Protein Folding Sub-Diffusive?
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trajectory, to construct the optimum reaction coordinate, so that

the projected dynamics is diffusive?

In conclusion, we have shown that dynamics projected onto a

reaction coordinate can be diffusive or sub-diffusive depending on

the coordinate employed for the projection. If one has a flexibility

in choosing the reaction coordinate, e.g. when describing protein

folding, dynamics can be made diffusive (or close to it) by

optimizing the reaction coordinate (making FC higher). When the

coordinate describing the process is specified and can not be

varied, for example, the donor-acceptor distance in the single

molecule FRET or ET experiments [24,31] or the mean square

displacement in the neutron scattering experiments [13], the

dynamics is likely to be sub-diffusive [13,14,31]. However, this

does not necessarily mean that the dynamics per se is sub-diffusive.

A properly chosen reaction coordinate (too complex to realize in

experiment) may show that dynamics of transition between free

energy basins is diffusive. A relatively small deficiency of the

putative reaction coordinate (difference in 1 kT in free energy (FC )

of the folding barrier) is sufficient to make the dynamics sub-

diffusive. Hence, one should model protein dynamics as diffusion

on a putative reaction coordinate [32,33] with care, because, it is

very likely that the coordinate is sub-optimal, unless it has been

specifically constructed (optimized) [5,28].

Methods

Free energy profiles
The conventional way to construct the FEP, given the

projection of a trajectory onto a reaction coordinate (the time-

series of the value of the reaction coordinate) x(t), is to compute

a histogram and estimate the partition function (probability

density) as ZH (x)~Nx=DX , where Nx is the number of time-

series points in bin x and DX is the size of the bin. The free

energy can then be found as FH (x)=kT~{ln(ZH (x)). The

partition function of the cut based free energy profile [4] at

point x is defined as the number of transitions through that

point, i.e. ZC(x)~1=2
P

t Hf(x(t){x)(x{x(tzDt)g, where Dt
is the sampling interval and Hfxg is the Heaviside step function;

FC(x)=kT~{ln(ZC(x)). Assuming that the FH (x) is approxi-

mately constant on the distance of the mean absolute displacement

SDDx(Dt)DT, one can derive the following expression

ZC(x)~SDDx(Dt)DTZH (x)=2, ð3Þ

where SDDx(Dt)DT~SDx(tzDt){x(t)DT is the mean absolute

displacement during sampling interval; for diffusive dynamics it

gives ZC(x)~ZH (x)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D(x)Dt=p

p
.

A reaction coordinate (x) with a variable diffusion coefficient

can be transformed to coordinate (y), called the natural coordinate

[4], so that the diffusion coefficient is constant and equal to unity,

by numerically integrating dy~p{1=2ZH (x)dx=ZC(x); i.e. that

ZC(y)~p{1=2ZH (y).

Other approaches have been suggested to characterize diffusive

dynamics by computing the free energy profile together with the

coordinate dependent diffusion coefficient [32,34,35]. It is not clear,

however, if they can be used to characterize the sub-diffusive regime.

Reaction coordinate optimization
It is reasonable to assume that any ‘‘bad’’ choice of reaction

coordinate, when different parts of the configuration space

overlaps at projection onto this coordinate, will result in faster

kinetics, i.e. in a smaller mean first passage time (mfpt). Clearly,

the longest mfpt is obtained on the original FES or from a

projection where no such overlapping occurs. Hence, we define

the optimum reaction coordinate as the one that has the longest

mfpt, which can be computed by Kramer’s equation [4]

StA BT~

ðB

A

dx
ebF (x)

D(x)

ðx

{?
dye{bF (y)

~
Dt

p

ðB

A

dx
ZH (x)

Z2
C(x)

ðx

{?
dyZH (y):

ð4Þ

The optimum reaction coordinates are constructed by numeri-

cally optimizing the mfpt functional for a sufficiently broadly chosen

functional form of reaction coordinate. Starting with the initial set of

parameters, which are sufficient to distinguish between the two free

energy basins, the coordinate is iteratively improved by changing

parameters and accepting the change if mfpt is increased. For the

first reaction coordinate X1~
P

ivj aijH(Dij{rij) we pick a random

pair of atoms ij, scan the whole parameter space for the pair

(aij~+1 and Dij~0,0:5,1:0,:::,30) and select the one that gives the

highest mfpt. For the second reaction coordinate X2~
P

ivj aijrij

we pick a random pair ij, scan the whole parameter space for the

pair (aij~+0:01(1zj=2)1:5i for i~1,2,:::,20 and j is a random

number uniformly distributed between 0 and 1) and select the one

that gives the highest mfpt. For the given values of parameters the

mfpt is computed by first computing ZH and ZC and then

numerically integrating Eq. 4. Alternatively one may minimize the

number of transitions, the quantity related to mfpt as

NA B~ZA=StA BT~
Ð TS

{? ZH (y)dy=StABT, where ZA is the parti-

tion function of basin A and x~TS is the position of the transition

state between basins A and B.

Subdiffusion
For subdiffusion, the mean absolute displacement no longer

scales as Dt1=2, but rather as SDDx(Dt)DT*Dta. The exponent a
(possibly coordinate dependent), can be determined by comparing

ZC(x) at two different sampling intervals (see Eq. 3). For a

trajectory with fixed length and varying sampling interval Dt
(when ZH*Dt{1) it is equal to

a(x)~1z
ln ZC(x, Dt1){ln ZC(x, Dt2)

lnDt1{lnDt2
: ð5Þ

Since FC is invariant with respect to nonlinear coordinate

transformation, the scaling exponent a computed by Eq. 5 is also

invariant, while a computed from SDDx(Dt)DT or SDx2(Dt)T are

not invariant and are computed here after the coordinate has been

transformed to the natural reaction coordinate.

Supporting Information

Text S1 Supporting information for ‘‘Is Protein Folding Sub-

Diffusive?’’.

Found at: doi:10.1371/journal.pcbi.1000921.s001 (0.08 MB PDF)
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