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Abstract: A red edge band is a sensitive spectral band of crops, which helps to improve the accuracy
of crop classification. In view of the characteristics of GF-6 WFV data with multiple red edge
bands, this paper took Hengshui City, Hebei Province, China, as the study area to carry out red
edge feature analysis and crop classification, and analyzed the influence of different red edge
features on crop classification. On the basis of GF-6 WFV red edge band spectral analysis, different
red edge feature extraction and red edge indices feature importance evaluation, 12 classification
schemes were designed based on GF-6 WFV of four bands (only including red, green, blue and
near-infrared bands), stepwise discriminant analysis (SDA) and random forest (RF) method were
used for feature selection and importance evaluation, and RF classification algorithm was used
for crop classification. The results show the following: (1) The red edge 750 band of GF-6 WFV
data contains more information content than the red edge 710 band. Compared with the red edge
750 band, the red edge 710 band is more conducive to improving the separability between different
crops, which can improve the classification accuracy; (2) According to the classification results of
different red edge indices, compared with the SDA method, the RF method is more accurate in the
feature importance evaluation; (3) Red edge spectral features, red edge texture features and red edge
indices can improve the accuracy of crop classification in different degrees, and the red edge features
based on red edge 710 band can improve the accuracy of crop classification more effectively. This
study improves the accuracy of remote sensing classification of crops, and can provide reference for
the application of GF-6 WFV data and its red edge bands in agricultural remote sensing.

Keywords: GF-6 WFV data; red edge features; crop classification; spectral analysis; red edge indices;
feature evaluation

1. Introduction

Crop classification is an important part of agricultural remote sensing monitoring,
as well as the basis and key link of the application of remote sensing technology in the
field of agriculture [1]. Timely and accurate classification of crops by remote sensing can
determine planting area, spatial distribution, landscape pattern and planting structure of
crops accurately, and provide important input parameters for crop yield estimation and
growth monitoring [1–3]. The study on crop classification by remote sensing is of great
significance for guiding agricultural production, formulating agricultural policy, ensuring
food security and realizing sustainable agricultural development [4,5].

With the continuous development of remote sensing science and technology, moderate-
to-high spatial resolution remote sensing data have been widely used in land use and land
cover classification, crop classification, and so on [6–9]. The traditional moderate-to-high
spatial resolution multispectral optical satellite payload is mainly composed of four bands:
blue (450–520 nm), green (520–590 nm), red (630–690 nm) and near-infrared (770–890 nm).
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The limited bands make it difficult to meet the requirements of fine classification of crops
by remote sensing. The red edge band is between the red band and the near-infrared
band, and the band range is roughly 670–780 nm. The red edge is the region where the
spectral reflectance of green vegetation rises rapidly within a certain band range, and
it is the sensitive spectral band of vegetation, which is closely related to the pigment
state and physical and chemical properties of crops and other vegetation [10]. Red edge
information was first used in hyperspectral remote sensing, which is often used in the
inversion of vegetation physiological and biochemical parameters such as chlorophyll
content, leaf area index (LAI), biomass, nitrogen content, crop growth and pest monitoring,
etc. [11–14]. In addition, some studies have shown that the red edge band can enhance the
separability between different ground features, which plays an important role in improving
the accuracy of crop remote sensing classification [15,16].

Based on the recognition of the importance of red edge band, more and more multi-
spectral satellite payloads have improved the application ability of remote sensing satellites
by adding red edge bands, such as RapidEye satellite of Germany, WorldView-2/3 satellite
of the United States, Sentinel-2 satellite of ESA and Gaofen-6 (GF-6) satellite of China. Many
studies have confirmed that the addition of red edge bands can significantly improve the
classification accuracy of crops [17–20]. Meanwhile, the red edge index, red edge texture
and other features based on red edge bands enrich the feature space of crop classification,
which is conducive to better use of different red edge features. For example, Kim et al. [21]
used two seasons’ RapidEye images to classify rice crops in Jeonju, Korea, and applied the
spectral and texture features of broadband red edge in different rice classification, which
confirmed that broadband red edge information has the potential to improve the accuracy
of rice classification. Ustuner et al. [22], based on RapidEye images, discussed the impact
of three different vegetation indices on the classification accuracy of crops in the Aegean
Sea area of Turkey, including normalized vegetation index (NDVI), green normalized
difference vegetation index (GNDVI) and normalized difference edge index (NDRE), and
found that NDRE contributed the most to classification accuracy. Huang et al. [23] adopted
Sentinel-2A data of time series to extract crop classification information, by introducing
parcel elements and improved chlorophyll absorption red edge index (MCARI), combined
with machine learning methods, to explore the impact of different classification feature
combinations on classification accuracy, which showed that the introduction of red edge
spectra and red edge indices could significantly improve the identification ability of crops
in arid areas. Wu et al. [24] selected the multitemporal Sentinel-2A remote sensing data,
calculated the NDVI and red edge normalized vegetation index (RENDVI), designed five
different vegetation indices time series combination feature classification schemes, and
used the random forest algorithm to realize the fine classification of crops. The classifica-
tion results prove that the red edge indices can assist NDVI to improve the classification
accuracy.

At present, machine learning is widely used in the research of crop remote sensing
classification algorithm. There are many kinds of machine learning classification methods,
such as support vector machine (SVM), random forest (RF), decision tree (DT), maximum
likelihood (ML), k-nearest neighbor (k-NN) and artificial neural network (ANN), which
can be applied to the research of land cover and land use classification, crop classification
and other remote sensing applications, among which random forest is one of the most
commonly used machine learning classification methods [25]. Zeraatpasheh et al. [26]
used a variety of linear and nonlinear machine learning algorithms, including Cubist (Cu),
random forest (RF), regression tree (RT) and multiple linear regression (MLR), to conduct a
digital mapping of soil properties in the semi-arid Borujen region of central Iran. Sonobe
et al. [27] compared kernel-based extreme learning machine (KELM), multilayer feedfor-
ward neural network (FNN), random forest (RF) and support vector machine (SVM) using
Sentinel-1A and Sentinel-2A data, and evaluated the sensitivity of the different supervised
learning models in the study area of Hokkaido, Japan. Maponya et al. [28] evaluated the
classification performance of SVM (support vector machine), DT (decision tree), k-NN
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(k-nearest neighbor), RF (random forest) and ML (maximum likelihood) for different time
series Sentinel-2 data in two different sites in the Western Cape, South Africa, and con-
cluded that SVM and RF can obtain better classification accuracy and greater application
potential. In a word, compared with different machine learning classification methods, RF
classification method has the characteristics of less parameter setting, stability, maturity
and high classification accuracy, so it is suitable for the classification and comparative study
of different red edge features in this study.

Although the current research generally confirms the important role of the red edge
band for crop classification, most studies only use different red edge spectra or red edge
indices participating in the classification to test its effect on crop classification, which is
not enough for the analysis and evaluation of different red edge features, especially for
GF-6 WFV, Sentinel-2 and other remote sensing satellites with multiple red edge bands.
To resolve these problems, this study is mainly aimed at: (1) Performing spectral feature
analysis and red edge indices feature importance evaluation of GF-6 WFV data, and
extracting different red edge spectra, red edge textures and red edge indices; (2) Designing
red edge feature classification schemes for crop classification in Hengshui City, analyzing
the impact of different red edge features on crop classification, improving the accuracy
of crop classification and promoting the application of GF-6 WFV data in the field of
agricultural remote sensing.

2. Study Area and Data Sources
2.1. Overview of the Study Area

The study area is Hengshui City, located in the southeast of Hebei Province, China,
with a total area of 8815 km2. Hengshui City belongs to the semi-humid and semi-arid
monsoon climate zone in the warm temperate zone, with four distinct seasons, sufficient
sunshine and annual average precipitation of 500–600 mm. The study area has rich land
resources and diverse soil types, which are suitable for planting and growing a variety
of crops, and the coverage rate of crops is more than 70%. The crop types in Hengshui
City include winter wheat, summer maize, spring maize, cotton, fruit trees, greenhouse
vegetables, etc. The main planting mode is winter wheat–summer maize rotation, two
crops a year, and spring maize, cotton and other crops once a year [29,30]. The Heilonggang
River Basin in Hebei Province, where the study area is located, is a typical groundwater
funnel area in China and one of the pilot areas of the national fallow system. In recent years,
affected by the national fallow policy and the transfer of rural labor, the planting area of
winter wheat with large water consumption has decreased, while the planting proportion
of spring maize has increased year by year [31]. Therefore, the study of crop classification
by remote sensing is helpful to timely and accurately monitor the crop planting structure
in Hengshui City, and is of great significance to implementing the national fallow policy
and promoting the sustainable development of agriculture [32].

2.2. Data Source
2.2.1. Remote Sensing Data

The GF-6 satellite is equipped with a 2 m panchromatic/8 m multi-spectral (PMS)
camera and a 16 m multispectral wide-field-viewing (WFV) camera, which has the char-
acteristics of high resolution and wide coverage, and the width of its wide-field-viewing
camera can reach 800 km [33]. The GF-6 satellite was successfully launched at the Jiuquan
Satellite Launch Center on 2 June 2018. For the first time in China, the wide-field camera
on the GF-6 satellite has added two “red edge” bands that can effectively reflect the specific
spectral characteristics of crops. At the same time, it will operate in a network with the
GF-1 satellite in orbit, which can greatly improve China’s ability to monitor agriculture,
forestry and other resources [34]. The main information parameters of GF-6 WFV data
are shown in Table 1. In this paper, the GF-6 WFV image covering Hengshui City in the
study area was selected on 28 August 2019. At that time, the crops in the study area were
in a period of vigorous growth, which was suitable for remote sensing identification and
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classification research of crops. In order to meet the application requirements of crop
classification by remote sensing, GF-6 WFV data were preprocessed by orthorectification,
atmospheric correction and geometric correction to obtain surface reflectance data.

Table 1. Main information parameters of GF-6 WFV data.

Band
Number Band Name

Central
Wavelength

(nm)

Wavelength
Range
(nm)

Calibration
Coefficient

in 2019

Spatial
Resolution

(m)

B1 Blue (B) 485 450–520 0.0705

16

B2 Green (G) 555 520–590 0.0567
B3 Red (R) 660 630–690 0.0516
B4 Near-infrared (NIR) 830 770–890 0.0322
B5 Red edge 1 (RE1) 710 690–730 0.0532
B6 Red edge 2 (RE2) 750 730–770 0.0453
B7 Purple (P) 425 400–450 0.0786
B8 Yellow (Y) 610 590–630 0.0585

2.2.2. Sample Data

The field sampling of different crops in Hengshui City was conducted in July 2019.
At that time, the winter wheat had been harvested, and the summer maize with winter
wheat and summer maize rotation system had basically sprouted in the stubble farmland,
while the spring maize was in the jointing and heading stage, and the cotton flower was in
the budding stage, which was conducive to the visual judgment of crop types. During the
field survey, the sample points of different crop types in 11 counties and urban areas of
Hengshui City were collected by handheld GPS, and photos were taken. The survey route
covered most of the farmland in Hengshui City and the distribution was relatively uniform.
A total of 614 valid sample plots were obtained in this survey, which were divided into
training samples and validation samples according to the ratio of 1:1 for crop classification
and accuracy evaluation. The geographical location and sample distribution of the study
area are shown in Figure 1, and the number of samples for different classifications is shown
in Table 2.
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Table 2. Number of samples for different classes.

Type
Training Samples Validation Sample Total

Number of
Polygons

Number of
Pixels

Number of
Polygons

Number of
Pixels

Number of
Polygons

Summer maize 92 5855 92 4690 184
Spring maize 50 3434 50 3055 100

Cotton 35 1788 35 1721 70
Minor crops 30 415 30 388 60
Greenhouses 15 396 15 391 30

Orchards 25 871 25 855 50
Woods 20 1234 20 881 40

Cities and towns 24 5164 24 4609 48
Water bodies 16 3143 16 3465 32

3. Methods

The spectral features of remote sensing images and their derived features such as
texture and vegetation index are the main basis of remote sensing image classification. GF-6
WFV data have several new spectral segments, and the feature analysis and optimization
of these spectral segments is an important means of tapping into the potential of data
application and ensuring classification accuracy. In this study, adaptive band selection
(ABS) method and the extension of Jeffries–Matusita distance (JBh) were used to analyze
the spectral features of red edge bands of GF-6 WFV data based on information content and
inter-class separability. Then, different red edge bands were used to construct the corre-
sponding texture features and 10 different red edge index features. Stepwise discriminant
analysis (SDA) and random forest (RF) feature importance evaluation algorithms were
used to optimize the red edge indices. Finally, based on the spectrum, texture and optimal
red edge index features of different red edge bands of GF-6 WFV data, different red edge
feature classification schemes were designed, and the RF algorithm was used to classify
crops according to different schemes. The technical route of the study is shown in Figure 2.

3.1. Spectral Feature Analysis

Since remote sensing classification mainly uses the spectra, texture and vegetation
index features of the image, combined with the red edges and other new bands of GF-6
WFV data, it is very important to analyze the spectral features of GF-6 WFV data. In this
study, the spectral feature analysis of GF-6 WFV data mainly adopts the ABS method based
on information content and JBh distance method based on inter-class separability, so as to
analyze the spectral feature of GF-6 WFV data from the two aspects of information content
and inter-class separability.

3.1.1. ABS Method

ABS is a sort-based band selection method based on the optimum index factor (OIF)
mathematical model, which was proposed by Liu Chunhong et al. [35] on the basis of fully
studying the OIF model. This method can select bands with rich information contents and
little correlation with other bands. The calculation method of ABS method is shown in
Equation (1), which is based on the following principles: (1) the selected band has more
information content; (2) the selected band has less correlation with other bands [36]. The
index obtained by the ABS method fully considers the similarity between the degree of
information enrichment of each image and the adjacent bands. It has the characteristics
of simple algorithm, convenient operation and effectively shortening the running time of
the OIF model. In addition, the ABS method can obtain the evaluation index of a single
band, which is beneficial to the spectral analysis and the study of remote sensing images in
specific bands [37].

Ii =
σi

(ri−1,i + ri,i+1)/2
(1)
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In the above equation, σi is the standard deviation of band I; ri−1,i and ri,i+1 are
the correlation coefficients between the band i and the two bands before and after it; Ii
represents the ABS index—the larger its value, the greater the information content in the
corresponding band.

3.1.2. JBh Distance

The performance of classifier classification largely depends on whether the feature
can accurately describe the nature of the object. Therefore, a separability criterion such
as Jeffries–Matusita (JM) distance is needed to measure the separability between different
types of features. JM distance can better reflect the actual relationship with classification
accuracy [38], but it can only measure the separability between each two classes and has
the drawback that it cannot reflect the separability between multiple categories. Therefore,
the JBh distance was introduced to measure the separability between multiple types of
features [39]. Based on the Bhattacharyya principle, JBh distance gives greater weights to
categories with higher probability of a priori, which is calculated according to the number
of samples between different categories. The calculation method is shown in Equation (2):

JBh =
M

∑
i=1

N

∑
j>i

√
P(wi)× P

(
wj
)
× JM2(i, j) (2)
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In the above equation, N is the number of categories; P(wi) and P(wj) are the a priori
possibilities of Class i and Class j, which are calculated according to the number of samples
(pixels) [40].

3.2. Texture Feature Extraction

Texture feature is the law and feature formed by the repeated appearance of a large
number of small objects in the image. It is a comprehensive reflection of the size, shape,
shadow and color of a large number of individuals, and describes the spatial variation
characteristics of pixel brightness. Gray-level co-occurrence matrix (GLCM) is a widely
used method for extracting texture features. The commonly used statistical measures of
texture features include Mean, Variance, Homogeneity, Contrast, Dissimilarity, Angular
Second Moment (ASM), Entropy and Correlation, a total of 8 categories [41].

In this paper, 8 texture statistical measures with a 3 × 3 pixel-sized window were
extracted from the two red edge bands and near-infrared band of GF-6 WFV data by GLCM
method, respectively. Due to the redundancy between different texture statistical measures,
the study will adopt the principal component analysis (PCA) method [42] to extract the
first principal component (PC1) of the 8 texture statistical measures to represent the texture
features of three different bands, so as to analyze the influence of the texture features of
different red edge bands on crop classification.

3.3. Red Edge Index Analysis

Vegetation index is a linear or non-linear combination of spectral reflectance of remote
sensing image, which can reflect some certain characteristics of vegetation information [43].
The red edge index is also known as the red edge vegetation index, namely, the vegetation
index calculated by the surface reflectance of the red edge band. Since the red edge
band is the sensitive characteristic spectral band of vegetation, the red edge index has an
important influence on the classification of crops and other vegetation [44]. According to
the characteristics of GF-6 WFV data with two red edge bands, this paper refers to relevant
literature to construct 10 kinds of red edge indices for crop classification study [45,46]. The
10 red edge indices based on the GF-6 WFV data are shown in Table 3.

Table 3. Red edge vegetation index based on GF-6 WFV data (10 kinds).

Red Edge Indices Calculation Formula (GF-6 WFV)

Normalized Difference Red Edge (NDRE) [47] (ρRE2 − ρRE1)/(ρRE2+ρRE1)
Normalized Difference Vegetation Index red

edge 1 (NDVIre1) [48] (ρNIR − ρRE1)/(ρNIR+ρRE1)

Normalized Difference Vegetation Index red
edge 2 (NDVIre2) [48] (ρNIR − ρRE2)/(ρNIR+ρRE2)

Chlorophyll Index red edge 1 (CIre1) [49] ρNIR/ρRE1 − 1
Chlorophyll Index red edge 2 (CIre2) [50] ρNIR/ρRE2 − 1

Modified Chlorophyll Absorption Ratio Index
1 (MCARI1) [51] [(ρRE1 − ρR)− 0.2(ρRE1 − ρG)]× (ρRE1/ρR)

Modified Chlorophyll Absorption Ratio Index
2 (MCARI2) [52] [(ρRE2 − ρR)− 0.2(ρRE2 − ρG)]× (ρRE2/ρR)

Transformed Chlorophyll Absorption
Reflectance Index 1 (TCARI1) [52] 3[(ρRE1 − ρR)− 0.2(ρRE1 − ρG)]× (ρRE1/ρR)

Transformed Chlorophyll Absorption
Reflectance Index 2 (TCARI2) [51] 3[(ρRE2 − ρR)− 0.2(ρRE2 − ρG)]× (ρRE2/ρR)

MERIS Terrestrial Chlorophyll Index
(MTCI) [53] (ρRE2 − ρRE1)/(ρRE1 − ρR)

ρ indicates the surface reflectance of a band of GF-6 WFV data. The subscript NIR refers to near-infrared band,
RE1 refers to red edge 710 band, RE2 refers to red edge 750 band, R refers to red band and G refers to green band.

Feature selection and feature importance evaluation are of great significance for
remote sensing image classification, which plays an important role in promoting model
performance and improving classification model and algorithm [54]. Feature selection
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methods are divided into three categories: Filter, Wrapper and Embedded [55]. In this
paper, the filter method of SDA and the embedded method of RF were used to evaluate 10
red edge vegetation indices of GF-6 WFV data [56,57]. In order to provide reference for
the application of different red edge index features in crop classification, the importance of
different red edge index features was analyzed, and the comparison and cross validation
of SDA and RF were carried out.

3.4. Classification Scheme and Accuracy Evaluation

Based on the GF-6 WFV data of only red, green, blue and near-infrared bands, this
paper designed some crop classification schemes by adding the spectra, texture and vege-
tation index features of one or two red edge bands to ensure that the feature dimensions
involved in the classification are effectively consistent, so as to analyze the influence of
the red edge 710, red edge 750 and near-infrared bands of GF-6 WFV data on crop classifi-
cation [26,58]. The classification scheme design was first divided into three groups: A, B
and C, according to the spectra, texture and vegetation index of different red edge bands,
and then was subdivided into 12 specific classification schemes according to different
combinations of red edge bands. The designs of different red edge feature classification
schemes are shown in Table 4.

Table 4. Different red edge feature classification schemes.

Classification Schemes
Classification

Features

Scheme
A-1

Scheme
A-2

Scheme
A-3

Scheme
A-4

Scheme
B-1

Scheme
B-2

Scheme
B-3

Scheme
B-4

Scheme
C-1

Scheme
C-2

Scheme
C-3

Scheme
C-4

Traditional four bands (R,G,B,NIR) X X X X X X X X X X X X
Red edge spectral

features
Red edge 710 X X
Red edge 750 X X

Red edge texture
features

Red edge texture 710 X X
Red edge texture 750 X X
Near-infrared texture X

Red edge index
features

Optimal red edge
index 1 X

Optimal red edge
index 2 X

Optimal red edge
index 3 X

Optimal red edge
index 4 X

According to the texture features of different red edge bands, 8 texture statistical
measures of GLCM were calculated for two red edge bands and a near-infrared band,
respectively, and PCA was performed. The PC1 was extracted to form three texture
features, and then four different texture feature classification schemes of group B were
designed.

Based on two feature evaluation methods, namely SDA and RF, the first 4 red edge
indices with high feature importance for classification were selected from the 10 red
edge indices of GF-6 WFV data. Through different red edge indices participating in
crop classification, the importance of different red edge indices and their impact on crop
classification were analyzed, and the accuracy of different feature evaluation methods was
verified, so as to provide reference for the application of different red edge indices in crop
classification.

According to the abovementioned 12 red edge feature classification schemes, the
RF classification module of EnMAP-Box Toolkit [59] was used to classify the main crop
types in the study area. RF is a supervised classification method composed of multiple
CART decision trees. It uses random resampling technology and node random splitting
technology to construct multiple decision trees, and the final classification result is obtained
through voting. Compared with traditional classification algorithms such as Maximum
Likelihood Classification (MLC) and Support Vector Machine (SVM), the RF algorithm has
a faster training speed and a higher degree of intelligence, is not easy to overfit and has high
classification accuracy, and is widely used in crop classification and area statistics [60,61].

The evaluation of classification accuracy was based on the Confusion Matrix. The
overall accuracy (OA), kappa coefficient, producer accuracy (PA) and user accuracy (UA)
were selected to evaluate the accuracy of different classification schemes [62]. The F1
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accuracy was used to evaluate the identification accuracy of a specific category of crops.
F1 accuracy is the weighted harmonic mean of UA and PA [63], the specific calculation
formula is shown in Equation (3):

F1 = 2 × UA × PA/(UA + PA)× 100% (3)

McNemar’s test was employed in this study to evaluate the statistical significance
of the accuracy of the different classifiers or groups [64]. The test was based on the error
matrix of two classifications and the chi-squared statistic value (χ2) with one degree of
freedom was calculated as follows:

χ2 =
(f12 − f21)

2

f12+f21
(4)

where fij is the number of samples that are correctly classified by classification scheme i
and incorrectly classified by classification scheme j (i = 1, 2; j = 1, 2). The difference between
two classification schemes is statistically significant at the 95% confidence level (p = 0.05)
when the χ2 value is greater than or equal to 3.84 [65,66]. In this study, McNemar’s test was
used to evaluate whether there were significant differences in the classification accuracy
between two classification schemes by RF classifier with different red edge features.

4. Results
4.1. Red Edge Spectral Analysis Results
4.1.1. Spectral Analysis Based on Information Content

According to the characteristics of the ABS method, the GF-6 WFV data were first
reconstructed with the purple band as the first band and the yellow band as the last band,
so as to calculate and sort the ABS index of other bands of GF-6 WFV data. The ABS indices
of GF-6 WFV data except the purple band and yellow band are shown in Table 5.

Table 5. ABS index and ranking of each band of GF-6 WFV data.

Band Name Band Order ABS index Ranking

Purple (P) 1 0 7
Blue (B) 2 383.4 6

Green (G) 3 474.8 5
Red (R) 4 556.3 4

Near-infrared (NIR) 5 2418.7 1
Red edge 710 (RE1) 6 728.3 3
Red edge 750 (RE2) 7 1732.5 2

Yellow (Y) 8 0 7

Combined with the results of the ABS index analysis, it can be concluded that the
near-infrared band (NIR) and the two red edge bands (RE1, RE2) have more information
content than the visible light bands (R, G, B), and the order of information content is as
follows: NIR > RE2 > RE1 > R > G > B. The results show that the near-infrared and red
edge bands of GF-6 WFV data can provide more information, which is beneficial to the
classification of crops and other ground features.

4.1.2. Spectral Analysis Based on Separability Distance

According to the characteristics of GF-6 WFV data with two red edge bands, four
different spectral classification schemes of “four bands”, “four bands + red edge 710”,
“four bands + red edge 750” and “four bands + red edge 710 + red edge 750” were
designed, corresponding to the classification schemes mentioned in Section 3.4, respectively.
Combined with the training samples of different crops, the influence of different red edge
bands on crop separability was analyzed by calculating JBh distance. JBh distance reflects
the separability of crops in different classification schemes, and can be used to analyze the
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separability measure of different red edge bands of GF-6 WFV data to participate in crop
classification. The JBh distance of four different classification schemes is shown in Figure 3.
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The distances of schemes A-1, A-2, A-3 and A-4 were 10.561, 11.583, 11.239 and 11.777,
respectively. The results show that the JBh distance of the two red edge bands (RE1, RE2)
participating in the classification is the largest, the JBh distance of the red edge 710 band
(RE1) is greater than the red edge 750 band (RE2) participating in the classification, and
the JBh distance of bands without red edge participating in the classification is the smallest.
By calculating the JBh distance of different classification schemes, the study confirms that
the addition of red edge band of GF-6 WFV data can improve the separability of different
crop types, and the red edge 710 band is more beneficial to improving the separability
of different crops than the red edge 750 band, which plays an important role in crop
classification.

4.2. Feature Importance Evaluation Results of Red Edge Indices

The SDA method of evaluating the importance of different features is mainly based
on the F value of different features. The larger the F value, the greater the importance of
the corresponding feature, and the smaller the F value, the lower the importance of the
feature [67,68]. In this study, SPSS statistical analysis software [69] was used to realize the
stepwise discriminant analysis and evaluation of different red edge index features. RF
algorithm used random forest classifier model in the scikit-learn machine learning library
of Python language to reflect feature importance by mean decrease Gini (MDG) [70,71].
The feature importance score of different red edge indices based on the two methods of
SDA and RF are shown in Table 6, and the evaluation results of the feature importance of
different red edge indices are shown in Figure 4.

Table 6. Red edge indices importance score based on SDA and RF.

Red Edge Indices F Value (SDA) MDG (RF)

CIre1 237.268 0.111
CIre2 46.414 0.091

MCARI1 64.475 0.090
MCARI2 54.886 0.098

MTCI 227.010 0.137
NDRE 387.008 0.108

NDVIre1 337.605 0.110
NDVIre2 52.812 0.092
TCARI1 115.514 0.104
TCARI2 9.566 0.059
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According to Table 6 and Figure 4, although the importance order of the red edge
indices obtained by the two methods was different, the top four red edge indices in the
order of importance were CIre1, MTCI, NDRE and NDVIre1. Therefore, CIre1, MTCI,
NDRE and NDVIre1 were selected to match the optimal red edge index 1, optimal red
edge index 2, optimal red edge index 3 and optimal red edge index 4 as shown in Table 4,
respectively. Combined with the four red edge indices, different classification schemes
were designed to analyze the impact of different red edge indices on crop classification
based on GF-6 WFV data.

4.3. Classification Results of Red Edge Features

Based on the RF algorithm, the classification and accuracy evaluation of 12 schemes
were carried out. The crop classification results in Hengshui city are shown in Figure 5,
and the OAs and kappa coefficient scores of different schemes are shown in Figure 6. The
classification accuracy of different crops based on the three classification schemes of A,
B and C, corresponding to different red edge spectral features, red edge texture features
and red edge indices are shown in Tables 7–9. McNemar’s test results for analyses 1–23
between the two different classification schemes of red edge features are shown in Table 10.
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Table 7. Classification accuracy statistics of red edge spectral features.

Class
Scheme A-1 Scheme A-2 Scheme A-3 Scheme A-4

PA% UA% F1% PA% UA% F1% PA% UA% F1% PA% UA% F1%

Summer maize 87.31 74.84 80.59 91.15 77.98 84.05 88.61 77.29 82.56 91.22 78.34 84.29
Spring maize 48.35 58.38 52.89 55.61 68.92 61.55 53.39 64.16 58.28 56.20 71.66 62.99

Cotton 84.83 83.33 84.07 87.68 85.21 86.42 87.91 85.05 86.45 91.69 86.99 89.27
Minor crops 30.93 60.30 40.88 29.64 47.92 36.62 29.38 57.29 38.84 27.32 49.53 35.21
Greenhouses 75.70 86.80 80.87 75.70 88.89 81.76 75.45 90.77 82.40 75.96 91.67 83.08

Orchards 47.72 54.91 51.06 61.05 73.31 66.62 57.54 65.51 61.26 61.17 72.14 66.20
Woods 75.60 75.94 75.76 82.41 80.94 81.66 79.80 76.08 77.89 83.20 77.24 80.11

Cities and towns 98.42 74.08 84.53 98.72 75.86 85.79 98.85 74.65 85.06 98.78 79.14 87.88
Water bodies 56.94 97.77 71.96 61.15 98.24 75.37 58.07 97.91 72.90 68.40 97.97 80.56

OA (%) 74.95 78.84 77.15 80.55
Kappa

coefficient 0.6937 0.7414 0.7208 0.7627

Table 8. Classification accuracy statistics of red edge texture features.

Class
Scheme B-1 Scheme B-2 Scheme B-3 Scheme B-4

PA% UA% F1% PA% UA% F1% PA% UA% F1% PA% UA% F1%

Summer maize 90.64 77.87 83.77 88.17 77.17 82.30 90.15 78.57 83.96 88.06 75.15 81.09
Spring maize 53.85 67.01 59.71 55.35 65.42 59.96 56.01 69.05 61.85 47.89 60.06 53.29

Cotton 89.25 85.52 87.34 87.45 86.44 86.94 91.34 86.52 88.86 86.23 83.94 85.07
Minor crops 27.32 50.72 35.51 28.87 51.85 37.09 27.32 53.81 36.24 30.67 57.49 40.00
Greenhouses 75.19 80.33 77.67 77.24 83.66 80.32 78.52 80.79 79.64 72.63 81.61 76.86

Orchards 58.95 64.95 61.80 50.29 59.23 54.39 53.33 62.72 57.65 44.33 53.91 48.65
Woods 82.52 82.33 82.42 78.09 73.66 75.81 81.27 74.12 77.53 74.91 68.75 71.69

Cities and towns 96.92 97.77 97.34 97.94 77.71 86.66 97.03 98.07 97.55 98.24 81.09 88.84
Water bodies 99.83 97.66 98.73 65.11 97.03 77.93 99.83 97.46 98.63 72.38 98.24 83.35

OA (%) 84.71 77.95 84.90 77.56
Kappa coefficient 0.8142 0.731 0.8167 0.7263
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Table 9. Classification accuracy statistics of red edge index features.

Class
Scheme C-1 Scheme C-2 Scheme C-3 Scheme C-4

PA% UA% F1% PA% UA% F1% PA% UA% F1% PA% UA% F1%

Summer maize 90.94 77.64 83.76 91.07 76.95 83.42 89.49 76.73 82.62 90.75 77.64 83.68
Spring maize 55.29 69.39 61.54 52.83 69.27 59.94 53.62 67.60 59.80 55.58 69.19 61.64

Cotton 87.57 86.71 87.14 90.35 84.69 87.43 90.94 88.17 89.53 88.32 87.16 87.74
Minor crops 30.15 49.79 37.56 33.51 48.51 39.64 28.61 46.64 35.46 30.67 51.07 38.32
Greenhouses 75.70 86.55 80.76 74.17 90.06 81.35 78.26 90.00 83.72 73.40 87.50 79.83

Orchards 64.09 74.25 68.79 57.66 73.58 64.65 61.52 67.44 64.34 63.27 73.51 68.01
Woods 83.54 80.00 81.73 84.22 79.96 82.03 79.00 79.82 79.41 83.43 80.24 81.80

Cities and towns 98.68 73.21 84.06 98.31 76.61 86.11 98.74 73.81 84.47 98.76 74.44 84.89
Water bodies 54.86 97.84 70.30 62.97 97.54 76.53 56.25 97.89 71.45 57.89 98.00 72.78

OA (%) 77.82 78.82 77.48 78.35
Kappa coefficient 0.7288 0.7413 0.7248 0.7354

Table 10. Result of the McNemar’s test for different combination schemes of red edge features.

Analysis Scheme 1 Scheme 2 f12 f21 χ2 p

1 A-1 A-2 6 786 768.18 <0.0001%
2 A-1 A-3 8 449 425.56 <0.0001%
3 A-1 A-4 15 1139 1094.78 <0.0001%
4 A-2 A-3 350 11 318.34 <0.0001%
5 A-2 A-4 10 354 325.09 <0.0001%
6 A-3 A-4 12 695 659.81 <0.0001%
7 B-1 B-2 1464 108 1169.68 <0.0001%
8 B-1 B-3 83 121 7.08 0.8%
9 B-1 B-4 1509 75 1583.99 <0.0001%

10 B-2 B-3 49 1143 1302.44 <0.0001%
11 B-2 B-4 352 274 9.72 0.2%
12 B-3 B-4 1542 70 1344.16 <0.0001%
13 C-1 C-2 154 355 79.37 <0.0001%
14 C-1 C-3 188 120 15.01 0.01%
15 C-1 C-4 27 134 71.11 <0.0001%
16 C-2 C-3 373 104 151.70 <0.0001%
17 C-2 C-4 248 154 21.98 0.0003%
18 C-3 C-4 65 240 100.41 <0.0001%
19 A-1 B-3 79 2075 1849.59 <0.0001%
20 A-1 C-2 12 789 753.72 <0.0001%
21 A-4 B-3 228 1100 572.58 <0.0001%
22 A-4 C-2 381 34 293.06 <0.0001%
23 B-3 C-2 1409 190 929.31 <0.0001%

According to the crop classification results shown in Figure 5 (taking scheme B-3
with the highest overall classification accuracy as an example), we can obtain the planting
situation and spatial distribution of different crops in Hengshui City on 28 August 2019.
Among them, summer maize was the most important planting type and distributed in
most areas of Hengshui City. Spring maize was mainly distributed in the north and
northeast of Hengshui City. Planting spring maize can save water resources and labor,
which is in line with the country’s seasonal fallow policy. Cotton was mainly distributed
in the southern part of Hengshui City, which was close to the cotton producing area in
southern Hebei Province and was a traditional cotton planting area. Greenhouse was
mainly concentrated in the east of Raoyang County in Hengshui City. Raoyang County
is known as the hometown of Chinese vegetables and the hometown of Chinese facility
grapes, so the distribution of greenhouses is the most concentrated in Raoyang. Orchards
were mainly concentrated in the north of Shenzhou City in Hengshui City. Shenzhou
City is known as the hometown of Chinese peach and fruit production base in China, so
orchards are most concentrated in Shenzhou City. The minor crops in Hengshui were
mainly peanuts and soybeans, as well as some peppers and potatoes, etc., which were
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distributed evenly and dispersed in the whole area of Hengshui City, without a large range
of centralized planting and distribution.

5. Discussion

The results of red edge spectral analysis show that the two red edge bands and the near-
infrared band of GF-6 WFV data contain more information content, among which, the red
edge 750 band holds more information than the red edge 710 band, and the near-infrared
band contains the most information content. The separability measure analysis of different
samples shows that the red edge 710 band is more beneficial to improving the separability of
different crops than the red edge 750 band, which is helpful for improving the classification
accuracy of crops. The results of spectral analysis based on separability distance are
consistent with the results of different red edge spectra participated in classification, and
have a greater impact on crop classification than band information content.

The feature importance evaluation results of red edge indices show that CIre1, MTCI,
NDRE and NDVIre1 are the top four red edge indices in SDA and RF algorithm. Combined
with the crop classification results of the RF algorithm with four different red edge index
features, the RF feature importance evaluation method is more consistent with the actual
classification results and is more accurate than the SDA method.

The classification results of different red edge spectral features are consistent with
the spectral analysis results based on separability distance, and compared with the A-1
scheme (only including R, G, B, NIR four bands), the addition of different red edge spectral
information can improve the overall classification accuracy. Among them, the red edge
710 band is more beneficial to improving the overall classification accuracy than the red
edge 750 band, while both the red edge 710 band and the red edge 750 band participate in
the overall classification accuracy is the highest. For specific crop types, the red edge 710
band and red edge 750 band can improve the identification accuracy of crops in varying
degrees. Compared with red edge 750 band, red edge 710 band is more beneficial to
the identification of summer maize, spring maize and orchards, while for minor crops
and greenhouse, the red edge 750 band is more effective than red edge 710 band on crop
identification.

The classification results of four different texture features show that the OA and kappa
coefficient of red edge 710 band texture features is better than that of red edge 750 band
texture feature, and the OA and kappa coefficient of two red edge band texture features are
similar to that of only red edge 710 band texture feature, while the classification accuracy of
only near-infrared band texture feature is lower. For specific crop types, the texture features
of red edge 710 band and red edge 750 band can improve the identification accuracy in
varying degrees. Compared with the texture feature of red edge 750 band, the texture
feature of red edge 710 band can improve the identification accuracy of summer maize,
cotton and orchards, while the red edge 750 band texture feature is more effective for the
identification of spring maize, minor crops and greenhouse.

For the classification results of different red edge index features, the order of the effect
of four optimal red edge indices on the overall classification accuracy of crops in the study
area is as follows: MTCI > NDVIre1 > CIre1 > NDRE, but the overall accuracies of the
four different red edge indices have little difference between each other, while the red
edge index based on red edge 710 band is more beneficial to improving the accuracy of
crop classification than the red edge 750 band. For specific crop types, compared with
the other three red edge indices, the CIre1 index is more conducive to the identification
of summer maize and orchards, the MTCI index is more conducive to the identification
of minor crops and woods, the NDRE index is more conducive to the identification of
cotton and greenhouse, while the NDVIre1 index is more conducive to the identification of
spring maize. In addition, the evaluation results of feature importance obtained by the RF
algorithm are more consistent with the actual classification accuracy results, which also
proves that the RF algorithm is better than the SDA method in the two different feature
importance evaluation methods.
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Additionally, this study compared whether there is a significant difference in the
classification accuracy between different red edge feature classification schemes. Through
McNemar’s test, all the different classification schemes listed (Analyses 1–23) in Table 10
have significant differences. Therefore, it can be concluded that the design of different red
edge feature classification schemes is more reasonable, and there is a statistically significant
difference between the classification accuracy at a certain significance level (P), which also
reflects the important role of red edge in crop classification.

Schuster et al. [17] tested the application potential of red edge band of RapidEye image
in improving land use classification, and considered that the addition of red edge channel
can improve the accuracy of land use and land cover classification. Immitzer et al. [19] used
Sentinel-2 data to classify crops and tree species in two different study areas in Central
Europe, analyzed the influence of different bands of Sentinel-2 data on crop classification,
and obtained that red edge bands make a certain contribution to the improvement of
classification accuracy. Kim et al. [21] used RapidEye images to identify and classify
paddy rice and other crops, extracted the red edge spectral features and red edge texture
features of paddy rice, and analyzed the impact of different red edge features on paddy
rice crop classification. Compared with the red edge texture feature, the red edge spectral
feature is more conducive to improving the accuracy of classification. Ustuner et al. [22]
selected RapidEye images to extract three different vegetation indices, namely Normalized
Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index
(GNDVI), and the Normalized Difference Red Edge Index (NDRE), which was used for
crop classification in the Aegean Sea region of Turkey. By comparing the classification
results, it was found that NDRE contributed the most to the classification accuracy, which
confirmed that the red edge index constructed by the red edge band was beneficial to crop
classification. The abovementioned studies have confirmed that the red edge spectra, red
edge textures and red edge indices related to the red edge bands of remote sensing data are
important for the classification of crops and other ground objects, but the abovementioned
results are not sufficient for the analysis and evaluation of different red edge features and
lack of classification and comparative research between different red edge features. The
purpose of this study is to make full use of the characteristics that GF-6 WFV data contain
multiple red edge bands, construct a variety of different red edge spectra, red edge textures
and red edge indices, and design different red edge feature classification schemes, so as to
analyze the influence of different red edge features on crop classification and promote the
application of different red edge features in crop classification.

The classification results of different red edge feature schemes designed in this study
confirm that the spectra, textures and red edge indices of different red edge bands can
improve the classification accuracy of crops to varying degrees, and the red edge texture
feature has the best effect on improving the classification accuracy. At the same time, by
comparing the classification accuracy of each scheme, it can be found that the spectral
features, texture features and red edge indices constructed by the red edge 710 band are
more conducive to improving the classification accuracy of crops than the red edge 750
band, which is of great significance for the application of different red edge band features
in crop classification. In summary, this study shows the important role of the red edge
bands of GF-6 WFV data for crop identification and classification.

6. Conclusions

This study extracted a variety of different red edge spectra, red edge textures and red
edge indices from GF-6 WFV data. By using the ABS and JBh distance method, the spectral
characteristics of the red edge bands were analyzed, and it was found that the two red edge
bands had a large amount of information content and were beneficial to improving the
separability of different crops. Through the two feature evaluation methods of SDA and
RF, this study selected four red edge indices, namely, CIre1, MTCI, NDRE and NDVIre1,
with greater importance. Different red edge spectral features, red edge texture features
and red edge indices can improve the classification accuracy of crops to different degrees,
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and there are significant differences in statistics between the classification accuracy at a
certain significance level by McNemar’s test. The red edge feature extracted from red edge
710 band can improve the classification accuracy of crops more effectively, which is helpful
to the application of red edge feature in crop classification. The red edge features of GF-6
WFV data are fully exploited and analyzed in this study, and the application potential of
different red edge features for improving the accuracy of crop classification is discussed,
which promotes the popularization and application of GF-6 WFV and other satellite data
with red edge bands in the field of agricultural remote sensing monitoring.
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