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Abstract

Olfactory deficits are present in numerous neurodegenerative disorders and are accompanied by 

pathology in related brain regions. In several of these disorders, olfactory disturbances appear 

early and are considered as prodromal symptoms of the disease. In addition, pathological protein 

aggregates affect olfactory regions prior to other regions, suggesting that the olfactory system 

might be particularly vulnerable to neurodegenerative diseases. Exposed to the external 

environment, the olfactory epithelium and olfactory bulb allow pathogen and toxin penetration into 

the brain, a process that has been proposed to play a role in neurodegenerative diseases. 

Determining whether the olfactory bulb could be a starting point of pathology and of pathology 

spread is crucial to understanding how neurodegenerative diseases evolve. We argue that 

pathological changes following environmental insults contribute to the initiation of protein 

aggregation in the olfactory bulb, which then triggers the spread of the pathology within the brain 

by a templating mechanism in a prion-like manner.

We review the evidence for the early involvement of olfactory structures in neurodegenerative 

diseases and the relationship between neuropathology and olfactory function. We discuss the 

vulnerability and putative underlying mechanisms by which pathology could be initiated in the 

olfactory bulb, from the entry of pathogens (promoted by increased permeability of the olfactory 

epithelium with aging or inflammation) to the sensitivity of the olfactory system to oxidative stress 

and inflammation. Finally, we review changes in protein expression and neural excitability 

triggered by pathogenic proteins that can promote pathogenesis in the olfactory bulb and beyond.
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1. Introduction

Identifying the mechanisms whereby neurodegenerative disorders progress throughout the 

brain is of critical importance both for the development of early diagnostic methods and for 

impeding disease progression. The occurrence of olfactory perceptual deficits in 

neurological disorders has been characterized for decades, and it is clear that in many of 

these disorders, olfactory deficits appear early, sometimes preceding the classical cognitive 

and motor symptoms (Alves, 2014; Barresi et al., 2012; Doty, 2012a, 2012b; Hüttenbrink et 

al., 2013). In some cases, olfactory dysfunction is unique during disease onset while other 

sensory systems are spared (e.g., Gilbert and Murphy, 2004; Meissner, 2012), suggesting 

that the olfactory system might, to some extent, be particularly vulnerable to some 

neurological disorders. Little is known about why these disorders affect the olfactory system 

early. It is also unclear which of all of the pathogens in each of these disorders are 

responsible for the olfactory impairments. Lastly, the mechanisms by which disease-

associated pathogens exert their influences upon olfactory neurons are unknown.

We and others have predicted that the olfactory bulb (OB)—the first stage of olfactory 

system processing and in close contact with the external world—serves as an entry point for 

pathogens or an access point for environmental insults, which can trigger pathological 

changes that then can spread throughout the brain via olfactory pathways (Dando et al., 

2014; Doty, 2008; Hobson, 2012). Since these neurodegenerative disorders involve 

proteinaceous pathogens, this prediction is in accord with the prion hypothesis, which states 

that by spreading in the brain and acting as templates for endogenous proteins to form 

pathological aggregates, misfolded proteins resistant to degradation are responsible for 

disease (Aguzzi et al., 2008; Griffith, 1967; Pattison and Jones, 1967; Prusiner, 1982). 

Indeed, OB pathology is prevalent in the early stages of some neurological disorders (e.g., 

(Braak et al., 2006; Braak and Braak, 1991; Tabaton et al., 2004; Zanusso et al., 2003). We 

need to determine whether or not the OB is starting point for pathology and whether aberrant 

molecular changes there are capable of triggering the spread of protein aggregates 

throughout the brain. Such knowledge will be crucial for resolving the fundamental biology 

of neurological diseases.

In this review, we summarize what we know of the relationships between olfactory system 

function and neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease 

(AD), Huntington’s disease (HD), frontotemporal dementia (FTD), amyotrophic lateral 

sclerosis (ALS), Creutzfeldt-Jakob disease (CJD), and others. We also review evidence for 

the roles of specific pathogenic features in these relationships. We discuss possible ways that 

olfactory pathology might be triggered in the olfactory bulb and spread throughout the brain. 

Finally, we synthesize concepts to support the theory that the OB is a starting point for 

prion-like pathogenic spread throughout the brain.

2. Olfactory dysfunction is common in many neurodegenerative diseases

Olfaction is an overarching term which implies several distinct abilities, i.e. odor detection, 

odor discrimination, odor memory, and odor identification (with or without a language 
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component). Olfactory dysfunction develops with normal aging (Boyce, 2006; Landis et al., 

2004; Rouby et al., 2011), and 6–16% of presumed healthy elderly are affected (Rouby et 

al., 2011). In neurodegenerative diseases, the percentage of people exhibiting olfactory 

deficits frequently exceeds 90%, depending on the disease (Godoy et al., 2015; Hawkes, 

2003; Kim, 2014). The difficulty in interpreting data on olfactory dysfunction in healthy 

aging is that elderly people who are assumed to be healthy but have olfactory deficits could 

be in the early stage of an undiagnosed neurodegenerative disease. Tests of olfactory 

function have been included as part of the battery of diagnostic tools for PD and AD (Doty, 

2012a; Miller and O’Callaghan, 2015; Yoon et al., 2015). In the following sections, we 

describe olfactory dysfunction in neurodegenerative diseases, with a focus on PD and AD 

and brief descriptions of other important neurodegenerative conditions in which olfactory 

deficits are prevalent.

2.1. Parkinson’s disease and other related synucleinopathies

While olfactory dysfunction has been well studied in PD, data from other synucleinopathies 

are limited. Here we cull the most important observations in PD and review literature on 

other synucleinopathies.

2.1.1. Parkinson’s disease—Olfactory deficits in PD, first identified by Ansari and 

Johnson (1975), are considered as one of the earliest neurological signs of PD, preceding the 

appearance of the classical motor deficits by at least 4 years (Alves, 2014; Attems et al., 

2014; Doty, 2012a, 2012b; Doty et al., 1992b; Haehner et al., 2007; Herting et al., 2008; 

Ponsen et al., 2004; Ross et al., 2006, 2008). Only rarely are PD patients normosmic (Rossi 

et al., 2016). Olfactory dysfunction is present both in familial and sporadic PD (Doty, 2012a) 

and occurs in more than 90% of cases (Doty, 2012a; Doty et al., 1988; Hawkes et al., 

1997b). These observations are consistent despite the use of different olfactory tests across 

more than 100 studies published since 1980 (Doty, 2012b). These tests mainly probed 

olfactory discrimination and odor identification (Doty et al., 1996, 1984a, 1984b), but odor 

detection and odor memory were also assessed. Olfaction was proposed as a diagnostic 

criterion for prodromal PD by the International Parkinson and Movement Disorder Society 

(MDS) (Postuma et al., 2015).

Anosmia (total loss of the sense of smell) occurs only in a small minority of PD patients, 

while hyposmia (reduced sense of smell) is more common (Doty et al., 1988). PD patients 

also have deficits in odor detection, discrimination, and identification (Doty, 2012a; Doty et 

al., 1988, 2014; Hudry et al., 2003; Kranick and Duda, 2008; Zucco et al., 2001), as well as 

in odor hedonicity (perception of pleasantness) (Hudry et al., 2003; Mrochen et al., 2016). 

Mild deficits in odor recognition have been described in PD, but it is unclear if they instead 

were really due to defective detection (Boesveldt et al., 2009). Odor identification deficits 

affect 82–90% of PD patients (Cavaco et al., 2015). These deficits are summarized in Table 

1.

The origin of olfactory loss in PD remains poorly understood, but it is believed to relate both 

to low- and high-order olfactory impairments. About 80% of PD patients have abnormal 

olfactory evoked responses (Barz et al., 1997; Hawkes, 2003; Hawkes et al., 1997a). Indeed, 
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even detection threshold, which largely requires a lower level of perceptual processing, is 

impaired in PD. This is supported by observations that increased sniffing volume improves 

olfactory scores in PD (Sobel et al., 2001). Further, odor identification, which is considered 

by some dependent on central processing, is severely affected in PD (Hedner et al., 2010; 

Larsson et al., 2004; Rahayel et al., 2012).

Protein inclusions, inflammation in olfactory regions, and alterations in neurotransmitter 

systems probably play important roles in PD-related olfactory dysfunction. The great 

number of Lewy bodies (LBs) and Lewy neurites (LNs) in olfactory structures (described 

further below) could be partly responsible for the alteration of olfactory processing. People 

without PD who exhibit LBs in the entorhinal cortex and substantia nigra show olfactory 

identification deficits prior to death (Wilson et al., 2011). This supports the idea that LBs 

outside motor brain regions negatively affect central olfactory processing. However, there is 

evidence that LBs are found in the olfactory bulb and olfactory tract of virtually all PD 

subjects (Beach et al., 2009b). The effects of peripheral olfactory pathology (e.g., in the 

olfactory epithelium, OE) on olfactory loss have not yet been defined (Wilson et al., 2011). 

In addition, tau pathology observed in the anterior olfactory nucleus (AON) of PD patients 

could also contribute to olfactory deficits (Doty, 2012a; Tsuboi et al., 2003). Olfaction is 

also mildly impaired In incidental Lewy body disease (iLBD; deceased individuals who have 

LBs in the brain but had no PD symptoms), which is thought to represent prodromal PD or a 

forerunner of other synucleinopathies (Adler et al., 2010; Driver-Dunckley et al., 2014; Ross 

et al., 2006).

Numerous studies have investigated whether olfactory loss could be a biomarker for motor 

dysfunction or cognitive impairments. The earliest cross-sectional studies suggested that 

olfactory dysfunction in PD is stable over time (Doty et al., 1988; Quinn et al., 1987); thus, 

it does not clearly correlate with severity of the motor dysfunction or disease stage. It is also 

not influenced by standard anti-parkinsonian treatments (Doty et al., 1992b), although a 

recent study suggested that the monoamine oxidase B inhibitor rasagiline might improve 

odor discrimination in early stage PD (Haehner et al., 2015). Recent investigations suggest a 

slight worsening of olfactory function over time (Berendse et al., 2011; Tissingh et al., 

2001), and marked changes in olfactory threshold and odor discrimination alterations 

correlate with more rapid disease progression (Ansari and Johnson, 1975; Cavaco et al., 

2015; Hawkes, 2003; Tissingh et al., 2001). Other studies have suggested that poor olfactory 

scores in PD correlate with dementia scores (Alves, 2014; Baba et al., 2012; Damholdt et al., 

2011; Lee et al., 2014; Ross et al., 2008). In one study, only PD patients with severe 

hyposmia and mild cognitive impairments developed severe dementia after 3 years, 

suggesting that severe hyposmia is associated with increased dementia risk (Alves, 2014; 

Baba et al., 2012). A recent study demonstrated that in a large cohort of newly diagnosed 

people with PD, aside from high age, hyposmia and sleep disorder were the two strongest 

predictors, of a range of measures, that cognitive decline would develop two years later 

(Schrag et al., 2016). A different longitudinal study described unpredictable variations in 

olfactory function, possibly coupled to fluctuations in dopaminergic activity in the OB 

(Herting et al., 2008). Progressive degeneration of the cholinergic, noradrenergic, and 

serotoninergic neuromodulatory systems innervating olfactory structures has been suggested 

to correlate with olfactory loss in PD (for review, (Doty, 2012a)).
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Olfactory dysfunction has not been studied extensively in familial PD, and there appears to 

be great heterogeneity depending on the mutation (Doty, 2012a). Two patients of eight 

carrying the A53T mutation of the α-synuclein (α-syn) gene (G209 on exon 4) exhibited 

anosmia (Bostantjopoulou et al., 2001), while no signs of olfactory deficits were detected in 

carriers of the α-syn E46K mutation (Krüger et al., 1998; Tijero et al., 2010). Several reports 

suggest that cases of autosomal recessive PD due to parkin mutations are normosmic 

(Alcalay et al., 2011; Khan et al., 2004; Malek et al., 2016). By contrast, patients with pink1 
mutations have changes in odor identification, detection, and discrimination (Ferraris et al., 

2009). Patients with the most common monogenetic form of PD, i.e., those with mutations 

of the LRRK2 gene (Doty, 2012a; Ferreira et al., 2007; Kertelge et al., 2010; Saunders-

Pullman et al., 2011; Silveira-Moriyama et al., 2010b; Valldeoriola et al., 2011) have 

olfactory deficits similar to or more severe than idiopathic cases (Saunders-Pullman et al., 

2011; Silveira-Moriyama et al., 2010b). Two of three studies describe altered olfaction in 

LRRK2 mutation carriers prior to signs of PD (Johansen et al., 2014; Kertelge et al., 2010; 

Saunders-Pullman et al., 2011). Finally, individuals with heterozygous GBA mutations 

(Doty, 2012b; Goker-Alpan et al., 2008; Saunders-Pullman et al., 2010), who have a six-fold 

greater risk of PD (Setó-Salvia et al., 2011), exhibit impaired olfaction after the appearance 

of motor deficits. In one case with a GBA mutation, it was reported that loss of olfaction 

occurred 30 years before the onset of PD motor symptoms (Saunders-Pullman et al., 2010). 

It is notable that olfactory dysfunction is not highly common in some atypical Parkinsonian 

disorders (Hawkes, 2006; Johansen et al., 2014; Malek et al., 2016).

2.1.2. Dementia with Lewy bodies—In dementia with Lewy bodies (DLB), where 

dementia is the presenting symptom and motor deficits typically appear within a year (Yoon 

et al., 2015), severe olfactory deficits are seen, akin to PD (Gilbert et al., 2004; Liberini et 

al., 2000; McShane et al., 2001; Olichney, 2005; Wilson et al., 2011) DLB patients exhibit 

higher prevalence of and more severe olfactory deficits than Alzheimer’s disease (AD) 

patients (described in a later section) (Chiba et al., 2012; Olichney, 2005; Sato et al., 2011; 

Westervelt et al., 2003; Williams et al., 2009). Therefore, in individuals presenting with 

minimal cognitive impairment, more severe olfactory deficits are predictive of conversion to 

DLB versus to AD (Yoon et al., 2015). The olfactory deficits are often apparent in early 

DLB, and might also be considered part of the emerging concept of prodromal DLB 

(McKeith et al., 2016).

2.2. Alzheimer’s disease

Typically, AD is (though not invariably (Westervelt et al., 2007)) characterized by a 

progressive worsening of olfactory function. Plentiful reports describe the types of olfactory 

impairments and how they correspond to AD stages. Here we summarize a selection of those 

reports to highlight the basic aspects of olfactory dysfunction in AD and their possible 

origins.

Deficits in odor detection, recognition, discrimination, and long-term odor recognition 

memory have been reported (e.g., (Doty, 1991; Morgan et al., 1995; Murphy et al., 1999; 

Serby et al., 1991)) with a prevalence of 90–100% (Attems et al., 2014; Duff et al., 2002), 

and they appear before cognitive impairment (Devanand et al., 2008). A meta-analysis of 

Rey et al. Page 5

Neurobiol Dis. Author manuscript; available in PMC 2018 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies on olfactory function in AD reported that, in comparison to age-matched controls, 

AD patients displayed greater deficits in odor detection thresholds, identification ability, and 

recognition (Mesholam et al., 1998). Olfactory dysfunction appears in early stages of AD (as 

in PD) and precedes the clinical manifestations of minimal cognitive impairment and AD (R. 

S. Wilson et al., 2009). Impairments of odor discrimination and identification are more 

severe than those of odor detection (Fusetti et al., 2010). The overall severity of olfactory 

deficits in AD is equivalent to those in PD, but PD patients exhibit more severe impairment 

of detection threshold. This suggests that AD patients are more affected in higher-order 

olfactory tasks (Rahayel et al., 2012).

Some genetic factors possibly contributing to the olfactory deficits have begun to emerge, 

one being the presence of one or two copies of the e4 allele of apolipoprotein E, an 

established risk factor for spontaneous AD (Gilbert and Murphy, 2004). Other factors, found 

in preclinical mouse models, are the presence of mutations in the amyloid precursor protein 

(APP) gene (N. Cheng et al., 2011; Guérin et al., 2009; Wesson et al., 2010) or the 

overexpression of the human tau protein (Macknin et al., 2004).

Most evidence to date suggests that olfactory abnormalities in AD are due to central 

sensorineural dysfunction more than to the inability of odor information to enter the brain 

(“conductive” dysfunction). First, as detailed below, central olfactory structures can be 

greatly burdened with AD pathology during later disease stages (e.g., (Braak and Braak, 

1991)). Lower odor identification test scores are associated with higher levels of AD 

pathology in central olfactory structures (R. S. Wilson et al., 2009), although AD pathology 

is also observed in the OE (Arnold et al., 1998). These data suggest that the neuroanatomical 

underpinnings of olfactory impairments in AD versus PD are to some extent different. 

Second, the hallmark perceptual deficits of reduced discrimination and recognition of odors 

implies that odor information at least enters the brain in AD. Third, measures of central 

olfactory physiology, including event-related olfactory potentials measured by scalp EEG 

(Gilbert and Murphy, 2004; Morgan and Murphy, 2012), functional MRI (Li et al., 2010), 

and local field potentials (Wesson et al., 2011), reveal a variety of central processing deficits 

in both humans and mice, some of which can be attributed to genetic variations associated 

with AD risk (Gilbert and Murphy, 2004; Morgan and Murphy, 2012; Wesson et al., 2011) 

Finally, the early loss of noradrenergic neurons in the locus coeruleus and cholinergic 

neurons in the nucleus basalis of Meynert in AD (Marien et al., 2004), which modulate 

olfactory activity (D’Souza and Vijayaraghavan, 2014; Doucette et al., 2007; Guérin et al., 

2008; Mandairon et al., 2008; Veyrac et al., 2007; Wilson et al., 2004), could also severely 

impact olfaction (Daulatzai, 2015; Rey et al., 2012).

In light of the progressive worsening of olfactory dysfunction in AD, numerous studies have 

proposed olfactory dysfunction as a predictive biomarker for the disease. In one study, 

combining olfactory function scores with other biomarkers for AD (e.g., entorhinal cortex 

volume, amyloid-beta cerebral spinal fluid levels, verbal memory) enhanced the diagnostic 

accuracy for predicting persons who would progress from mild cognitive impairment (MCI) 

to AD (Devanand et al., 2008) Further, in aged individuals without MCI or AD, evidence 

suggests that olfactory dysfunction is related to the level of AD pathology and the risk for 

developing further prodromal AD symptoms (Wilson et al., 2009). Finally, event-related 
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olfactory potentials measured by EEG are aberrant in non-demented individuals who are 

positive for the apolipoprotein E E4 allele (Morgan and Murphy, 2012). Thus, olfactory 

dysfunction might serve as an early biomarker of AD even prior to detectable dementia or 

MCI.

Interestingly, similar impairments in odor detection thresholds, identification, and 

recognition were found between the AD and PD groups in meta-analysis (Mesholam et al., 

1998). While this presents clear difficulty in differentiating between these disorders based 

upon olfaction alone, these commonalities may illuminate core principles of dysfunction in 

the two disorders.

2.3. Examples of other neurodegenerative diseases with olfactory deficits

Several diseases with parkinsonian syndrome that can be mistaken for PD have either no or 

slight olfactory deficits (Doty, 2012b). This is the case for essential tremor (Applegate and 

Louis, 2005; Busenbark et al., 1992; Hawkes et al., 2003; Louis et al., 2008; Quagliato et al., 

2009; Štenc Bradvica et al., 2015) and for the early stages of the X-linked recessive 

dystonia-parkinsonism (Evidente et al., 2004). Only mild deficits in odor identification are 

described in corticobasal degeneration (CBD) (Luzzi et al., 2007; Wenning et al., 1995b) 

and multiple system atrophy (MSA; for both the subtypes MSA-P and MSA-C) (Abele et 

al., 2003; Garland et al., 2011; Goldstein et al., 2008; Kikuchi et al., 2011; Müller et al., 

2002; Nee et al., 1993; Suzuki et al., 2011; Wenning et al., 1995a). Consequently, olfactory 

testing is helpful for differential diagnosis between PD and other diseases with Parkinsonism 

(Busenbark et al., 1992; Doty et al., 1993, 1992a, 1995; Wenning et al., 1995b).

Numerous non-parkinsonian neurodegenerative diseases exhibit mild to severe olfactory 

dysfunction. Odor identification is impaired in the frontal variant of FTD (prevalence 96%) 

(Heyanka et al., 2014; Luzzi et al., 2007; McLaughlin and Westervelt, 2008; Pardini et al., 

2009), in ALS (prevalence 75%) (Ahlskog et al., 1998; Elian, 1991; Hawkes et al., 1998; 

Takeda et al., 2015), in some patients with multiple sclerosis (Lucassen et al., 2016), and in 

Huntington’s disease (Bylsma et al., 1997; Hamilton et al., 1999; Lazic et al., 2007). Other 

olfactory abilities have not been systematically assessed, but deficits in odor recognition and 

memory odor detection are described in HD (Barrios et al., 2007; Hamilton et al., 1999; 

Nordin et al., 1995; Pirogovsky et al., 2007), in a new variant of CJD (Reuber et al., 2001), 

and in multiple sclerosis (depending on the location of the demyelinating lesions) (Bartosik-

Psujek et al., 2004; Constantinescu et al., 1994; Doty et al., 1998; L.-M. Li et al., 2016; 

Lucassen et al., 2016; Lutterotti et al., 2011). Further, in HD, altered perception of odor 

hedonicity (Mitchell et al., 2005) and other olfactory deficits precede cognitive deficits and 

involuntary movements (Larsson et al., 2006; Moberg et al., 1987). It is interesting that all 

non-parkinsonian diseases are associated with olfactory deficits, while only PD and DLB of 

the parkinsonian diseases have such deficits (a non-exhaustive summary is presented in 

Table 1).

3. The olfactory system

In this section, we briefly describe the anatomy and physiology of the olfactory rostral 

structures, the olfactory mucosa and the OB. Given the extensive anatomical literature 
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arising from rodent-based investigations, most of the descriptions herein are from rat and 

mouse studies.

3.1. Neuronal organization of the olfactory mucosa and olfactory bulb

The OB is a six-layer structure in which the sequential stages of odor information processing 

take place. In all terrestrial vertebrates, nasal airflow (e.g., sniffing) carries odorants into 

contact with olfactory receptors (ORs) located on the cilia of olfactory receptor neurons 

(ORNs) in the nasal olfactory mucosa (Fig. 1). Odorant binding with an OR triggers a G-

coupled protein–mediated intracellular signaling cascade, ultimately producing an action 

potential (Yoshikawa and Touhara, 2015). The ORs possess unique tuning profiles (Araneda 

et al., 2000; Bhandawat et al., 2005) that provide a first step at which the olfactory system 

can sort the essentially limitless number of odorants it may encounter.

The soma of ORNs is located in the OE, and their axons fasciculate and pass through the 

cribriform plate (Fig. 1), where they then form the olfactory nerve layer of the OB. In 

mammals, ORNs express only one OR type (Chess et al., 1994), and ORNs expressing the 

same OR innervate two glomeruli per OB (Mombaerts et al., 1996). Thus, in this 

arrangement, action potentials in the ORNs relay odorant information into discrete zones in 

the OB whose activation is dictated by nasal airflow (Buonviso et al., 2006; Mozell, 1964; 

Verhagen et al., 2007). The spatio-temporal zones formed across the OB can be plotted to 

form a “spatial map” of odorant information (Johnson et al., 2004; Sharp et al., 1975; Spors 

et al., 2006; Uchida et al., 2000) and are modulated by local glomerular layer neurons 

(including periglomerular, short axon, and external tufted cells) a process thought important 

for the most basic aspects of olfactory perception, including odor recognition and 

discrimination (Aungst et al., 2003; Hayar et al., 2004; Wachowiak and Shipley, 2006).

Secondary olfactory neurons, called mitral cells (MCs) and tufted cells (TCs), innervate 

glomeruli, where they receive postsynaptic glutamatergic input from ORNs. The cell body of 

MCs are located in the mitral cell layer of the OB, whereas the cell body of TCs reside in the 

external plexiform layer. While both cell types are similar in their reception of monosynaptic 

odor information from ORNs and their lateral dendrite arbors, they have different 

physiological responses to odors, including odor intensity coding (Nagayama et al., 2004; 

Schneider and Scott, 1983). The MCs and TCs provide bisynaptic information into 

downstream secondary olfactory (cortical) structures, as described below.

An additional major cell type in the OB is the granule cell. Granule cells are found in the 

most central OB cell layer and can be identified as small axon-less cells organized in patchy 

aggregated rows. The apical dendrites of granule cells synapse upon, and are synapsed upon 

by, MTs and TCs. Granule cells also receive centrifugal input from some secondary 

olfactory structures. Granule cells display broader odor-tuning characteristics than the 

upstream MCs and TCs (Tan et al., 2010).

Granule cells (GABAergic and glutamatergic) are constantly renewed by neurogenesis 

during adulthood in many mammalian species, and they derive from neuroblasts originating 

from the subventricular zone of the anterior forebrain that migrate to the OB. There they 

differentiate and integrate into the granular and glomerular layers of the OB (Alvarez-Buylla 
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et al., 2008; Brill et al., 2009; Imayoshi et al., 2008; Lledo et al., 2006; Lois and Alvarez-

Buylla, 1994). The magnitude and importance of olfactory neurogenesis in human remain 

debated (Bergmann et al., 2015; Curtis et al., 2007; Johansson et al., 1999; Lötsch et al., 

2013; Macklis, 2012; Sanai et al., 2004) and could be limited (Bergmann et al., 2012; Huart 

et al., 2013).

The activity of MCs, TCs, and interneurons in the OB is subject to neuromodulation (for a 

review, see (Linster and Fontanini, 2014)). The OB receives dense noradrenergic projections 

from the locus coeruleus, cholinergic input from the horizontal limb of diagonal band of 

Broca, and serotoninergic afferents from the medial and dorsal raphe nuclei. Of particular 

interest to PD, dopamine is synthesized locally in the OB by dopaminergic interneurons of 

the periglomerular layer (Baker et al., 1983). Interestingly, these interneurons are reported to 

be greater in number in PD patients compared to age-matched controls (Huisman et al., 

2004). In addition, a minor input to the OB from dopa-minergic neurons in the substantia 

nigra was recently described in rats (Höglinger et al., 2015). Additional details on the 

function of OB circuits can be found elsewhere (Mori et al., 2006; Shepherd et al., 2004; 

Wilson and Mainen, 2006).

3.2. Neuronal connections within the olfactory system and with the rest of the brain

Axons from MC and TC fasciculate to form the lateral olfactory tract, from which their 

distal projections branch and innervate a variety of secondary olfactory structures. Indeed, 

unlike other sensory networks, the olfactory system bypasses the thalamus for cortical 

integration of olfactory information; instead, MCs and TCs directly innervate these 

secondary olfactory structures. Secondary olfactory structures include the anterior olfactory 

nucleus (AON), piriform cortex, olfactory tubercle, the lateral entorhinal cortex, and others, 

which receive monosynaptic input from MCs or TCs. While it is thought these structures, 

unlike the OB, contribute to more perceptually or behaviorally relevant aspects of olfaction, 

the unique contributions of these secondary structures to olfaction are mostly undefined 

(Brunjes et al., 2005; Gottfried, 2010; Wesson and Wilson, 2011; Wilson and Sullivan, 

2011). Here we summarize the known aspects of some of these structures.

Located in the basal forebrain, the AON is a layered structure composed of several 

subdivisions which receive dense MC and TC innervation (Meyer et al., 2006) and whose 

cells display odor responsivity (Kay et al., 2011). A distinct feature of the AON is its 

contralateral projection system wherein principal neurons of the AON span the midline of 

the brain and innervate the contralateral AON (Illig and Eudy, 2009). This contralateral 

projection system is thought to aid in intra-nostril odor localization (Kikuta et al., 2010). The 

AON also provides centrifugal modulation of sensory processing in the OB and itself is 

subject to neuromodulation (Oettl et al., 2016; Rothermel, 2014).

The piriform cortex is well established for its roles in modifying the processing of odors 

based upon experience and learning (Barkai and Saar, 2001; Gottfried, 2010; Schoenbaum 

and Eichenbaum, 1995; Wilson and Sullivan, 2011). Pyramidal cells in the piriform cortex 

receive odor input via MCs and TCs, and pyramidal cell association fibers modulate odor 

representations both among the piriform cortex neural ensembles and in connected structures 

(Carriero et al., 2009; Cauthron and Stripling, 2014; Haberly and Price, 1978a; Linster et al., 
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2009). In rats, piriform cortex neurons display profound adaptation to prolonged or repeated 

odor exposure (Wilson, 1998). Further, the piriform cortex possesses anatomically defined 

zones which differentially represent odor components versus synthetic odor images such as 

those which evolve after learning or those perceived when smelling complex odorant 

mixtures (Kadohisa and Wilson, 2006).

While the olfactory tubercle receives dense TC input from the OB, making it a secondary 

olfactory structure, the olfactory tubercle is unique among olfactory structures in that it is a 

component of the ventral striatum (de Olmos and Heimer, 1999; Wesson and Wilson, 2011). 

This provides the olfactory tubercle with privileged connection with basal ganglia. Also 

unlike other secondary olfactory structures, the olfactory tubercle does not possess an 

association-fiber system (Haberly and Price, 1978b). Similar to neurons in the AON and 

piriform cortex, olfactory tubercle neurons represent odor information (Carlson et al., 2014; 

Payton et al., 2012; Wesson et al., 2010; Xia et al., 2015) and can do so in manners 

dependent upon the behavioral state of animals. Thus, olfactory tubercle neurons robustly 

reflect odor valence, the occurrence of motivated behaviors, and even the acquisition of 

rewards, suggesting important roles for the olfactory tubercle in guiding hedonic and 

valence-dependent responses to odors (Gadziola et al., 2015; Gadziola and Wesson, 2016).

Neurons within secondary olfactory structures project into tertiary olfactory structures, 

including the orbitofrontal cortex, the insular cortex, and the dorsal hippocampus (Doty, 

2003). Of particular relevance to AD, the entorhinal cortex innervates the hippocampus via 

the perforant pathway (Gomez-Isla et al., 1996). Additionally, thalamic regions receive 

olfactory information from several of the secondary olfactory structures, including the AON, 

piriform cortex, and olfactory tubercle. Olfactory information is also transmitted to the 

hypothalamus via the amygdaloid complex (Doty, 2003).

Neural activity in secondary olfactory structures is subject to neuromodulation, like such 

activity in the OB (for review see (Linster and Fontanini, 2014)). For instance, AON activity 

in mice is modulated by oxytocin (Oettl et al., 2016). The activity of the piriform cortex is 

shaped by cholinergic input from the horizontal diagonal band (Linster et al., 1999). In rats, 

the activity of the olfactory tubercle is further shaped by the activation of neurons in the 

ventral tegmentum (Mooney et al., 1987), which release dopamine among other 

neurotransmitters.

In summary, the olfactory system exhibits a highly complex network of reciprocal, 

centripetal, centrifugal, and associative connections, and it bridges numerous brain regions 

involved in many neurodegenerative diseases. Since all of the secondary olfactory structures 

are densely interconnected with not only each other but also other non-olfactory brain 

regions, they may provide a conduit for pathogens from the OB into more central brain 

structures needed for cognition, movement, and other crucial functions.

3.3. Glial and support cells organization in the olfactory mucosa and bulb

Glial and support cells of the olfactory mucosa and OB play an essential role in protecting 

brain structures against external insults and in sustaining neurons for proper transduction of 

odorant stimuli into olfactory input.
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The olfactory mucosa (OE and lamina propria) includes supporting cells and horizontal and 

globose basal cells, which are located within the OE in a columnar organization. The 

supporting or sustentacular cells display fine cellular extensions that are in contact with 

ORNs. The apex of such cells extends dense, long microvilli into the nasal lumen, where 

they are in direct contact with mucus and can interact with the cilia of ORNs (Doty, 2003) 

(Fig. 1). These sustentacular supporting cells have multiple roles: they maintain water and 

salt balance in the mucus and provide electrical insulation to ORNs. Additionally, the 

supporting cells are able to metabolize (detoxify) inhaled toxicants and may be involved in 

removing debris of dying cells, acting as phagocytes (Doty, 2003). With age and with 

intranasal viral infections, the number of ORNs, cilia, and supporting cell microvilli 

decreases dramatically. Similar structural alterations of the OE have been observed in AD 

and PD (Brouillard et al., 1994).

The horizontal basal cells in the OE sit on the lamina propria and slowly divide into globose 

cells, which are located above them, and give rise to new ORNs. Microvillous cells are 

present in low numbers and their function is still unclear (therefore not shown in Fig. 1), but 

they can modulate the activity of ORNs and of supporting cells (Ogura et al., 2011; Rowley 

et al., 1989). The lamina propria of the olfactory mucosa includes Bowman’s glands, 

composed of serous and stem cells that produce the mucus in which the olfactory cilia of the 

ORNs are immersed (Doty, 2003). This mucus contains odorant-binding proteins that aid in 

odorant absorption (Pelosi, 1994). It also contains immune factors (IgA, M, G), lysozymes, 

enzymes, and antioxidants, and it might contain xenobiotic-metabolizing enzymes that play 

an important role in viral inactivation, detoxification, bacterial degradation, and destruction 

of pro-inflammatory proteins (Ding and Dahl, 2003). Thus, the mucus might protect the OE 

from external insults.

Finally, the axon bundles from the ORNs that traverse the cribriform plate are surrounded by 

ensheathing cells that have properties similar to those of Schwann cells and that are 

enveloped by fibroblasts. In the olfactory nerve fascicles, a specific population of microglia 

and macrophages halts the passage of viruses and xenobiotics to the brain (Smithson and 

Kawaja, 2010). A dense population of glial cells, including a unique and abundant 

microglial population, is also present in the OB (Lawson et al., 1990). Some have concluded 

that the microglia in the OB are in a constant “alert” state. They can sense an inflammatory 

response due to an injury taking place far from the OB and become activated as a 

consequence (Lalancette-Hebert et al., 2008).

4. Neuropathology of the olfactory system in neurodegenerative diseases

The presence of protein inclusions in olfactory structures likely contributes significantly to 

the development of olfactory deficits in both normal aging and in age-related neurological 

conditions. Here, we review the neuropathological lesions in the olfactory system in the 

various neurodegenerative diseases which have been studied to date.

Considering the recent idea that misfolded proteins associated with neurodegenerative 

diseases can exhibit prion-like properties and propagate protein aggregation between brain 

regions from one neuron to another, it is crucial to understand where pathological protein 
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inclusions appear first and which neural pathways they preferentially spread along. We 

review here the main neurodegenerative diseases that 1) involve α-syn, tau, Aβ, TDP-43, 

and prion inclusions and 2) where pathology and neurodegeneration are present in the 

olfactory system.

4.1. Lewy body diseases

Lewy body disease progression is classified based on the localization of α-syn inclusions in 

the postmortem brain. A unified staging system proposes that the OB is the starting point of 

pathology in DLB, PD, and iLBD (Beach et al., 2009a). From the OB, the pathology then 

progresses either to the brainstem or the limbic system at stage 2, to then converge to 

concomitant pathology in brainstem and limbic system at stage 3, and evolve finally to a 

neocortical stage (Beach et al., 2009a). It is unclear whether or how the OE is involved in 

this timeline. The OE could be involved prior to the OB in PD, but it could also develop 

inclusions after the OB, which then would suggest retrograde propagation of the pathology 

from the OB to the OE.

4.1.1. Parkinson’s disease—Braak and colleagues defined six neuropathological stages 

for PD, based on α-syn inclusion (both LBs and LNs) localization. According to them, PD 

pathology progresses via neural connections from the OB to connected structures via the 

olfactory system, and from the dorsal motor nucleus of the vagal nerve (DMX) via the 

brainstem to cortical areas (Braak et al., 2006, 2002, 2003a, 2004, 2003b; Del Tredici and H. 

Braak, 2014). LBs and Lewy neurites (LNs) composed mainly of misfolded α-syn, are 

detected first (Braak stage 1) in the OB, the AON (Braak et al., 2003b, 2003a; Daniel and 

Hawkes, 1992; Del Tredici et al., 2002; Hubbard et al., 2007; Sengoku et al., 2008; Ubeda-

Bañon et al., 2010) and the vagal and glossopharyngeal nerves and nuclei (Braak et al., 

2006; Del Tredici et al., 2002). During stage 1, the inclusions are first found within non-

AON areas of the human OB. They then appear in the AON and are present in the OB of 

patients displaying no α-syn inclusions in the DMX and any other brain region, indicating 

an earlier involvement of the OB than the DMX or AON (Braak and del Tredici, 2016; Del 

Tredici and Braak, 2016; Sengoku et al., 2008). In the OB, α-syn inclusions are found in 

interneurons, in the internal plexiform layer (Doty, 2012a), and less frequently in MCs and 

TCs, which raises the possibility that these relay neurons might be more resistant to 

developing α-syn aggregates than other neurons. A role of MCs and TCs in the propagation 

of pathology is, however, not excluded. MCs and TCs might better resist the development 

large α-syn aggregates (recognized in the microscope as Lewy pathology), but might allow 

more transfer of small seeds to connected regions.

In their original publications, Hawkes et al. (2007, 2009a) suggested that the agent causing 

Lewy pathology might be a neurotropic virus and that the OE was involved even earlier than 

the OB. At least four studies to date have investigated the presence of LBs and LNs in the 

olfactory mucosa (Duda et al., 1999; Funabe et al., 2012; Saito et al., 2016; Witt et al., 

2009). In one study, asymptomatic LBD patients who had Lewy pathology in the OB rarely 

displayed inclusions in the olfactory mucosa. Symptomatic patients presented LBs in their 

olfactory mucosa, but not in their OE (Funabe et al., 2012), suggesting that the olfactory 

mucosa would be involved later than the OB. A more recent study from the same group, 
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using a different dissection method that damages the OE less, describes Lewy pathology in 

ORNs of the OE and in the lamina propria of patients with PD, but it is unclear at which 

disease stage this occurs (Saito et al., 2016). Importantly, ORNs are renewed and have a high 

turnover (their median survival is 1–2 months); therefore, they might not have time to 

develop LBs and LNs, but they might still act as conduits for small aggregation-prone 

species of α-syn.

During stage 2, α-syn inclusions reach the locus coeruleus. In PD at Braak stages 3 and 

later, α-synuclein aggregates in the OB and AON become denser. At these stages, inclusions 

are also found in other secondary olfactory brain regions, principally the piriform cortex and 

cortical amygdala (Braak et al., 2004, 2003a, 2002, 1994; Harding et al., 2002; Silveira-

Moriyama et al., 2009a), and to a lesser extent in the olfactory tubercle and entorhinal cortex 

(Del Tredici and Braak, 2014; Hubbard et al., 2007; Ubeda-Bañon et al., 2010). While the 

pathology is progressing to piriform, periamygdaloid, and entorhinal cortices, non-olfactory 

cortical regions remain intact (Braak et al., 2003a; Del Tredici and Braak, 2012; Hawkes et 

al., 2009a). The olfactory tubercle and the nucleus of the lateral olfactory tract seem to 

develop α-syn aggregates later than other olfactory structures nearby (Del Tredici and 

Braak, 2014). This might be interpreted as those structures being more resistant to aggregate 

pathology; an alternative interpretation is that the absence of projections from these 

structures to the OB reduces the risk of aggregate propagation, if retrograde axonal transport 

is crucial.

Regrettably, possible cell loss in the piriform cortex and in the OB (MCs and TCs) has never 

been investigated in PD brains. Severe cell loss occurs in the AON and correlates with 

severity of olfactory deficits (Pearce et al., 1995). Significant neuronal loss also occurs in 

regions connected to the olfactory structures, namely, in the locus coeruleus (70%) (Bertrand 

et al., 1997; German et al., 1992) and to a lesser extent (30% loss) in the amygdala (Harding 

et al., 2002). As a result, the volume of the amygdala is reduced by 20% (Harding et al., 

2002). The loss of volume in the amygdala and the piriform cortex inversely correlates with 

olfactory deficits (Wattendorf et al., 2009), suggesting that cell loss in these regions could 

contribute to the functional deficits. The volume of the OB, the orbitofrontal cortex, and the 

piriform cortex is also decreased (Lee et al., 2014; J. Li et al., 2016; Pearce et al., 1995; 

Tanik et al., 2016; Wattendorf et al., 2009), suggesting possible cell loss in these brain 

regions as well. In addition, olfactory nerves in the olfactory tract undergo atrophy and lose 

their cellular architecture (Pearce et al., 1995). Volumetric measurement of olfactory tracts 

can discriminate PD patients from controls (Rolheiser et al., 2011; Scherfler et al., 2006).

Our recent work in mice using microinjections of preformed α-syn fibrils into the OB 

demonstrate that the olfactory route can be a vector of pathology spreading into the 

substantia nigra and other regions involved in later stages of PD (Rey et al., 2016b), and this 

was confirmed by a second study (Mason et al., 2016). Specifically, we found that α-syn 

aggregates progressively spread from the OB to a total of over 40 different brain sub-regions 

bilaterally over the course of 12 months, and that the progressive development of 

synucleinopathy was coupled to the emergence of specific olfactory deficits (Rey et al., 

2016b). At the one year time point, there was evidence of very occasional α-syn aggregates 

in the substantia nigra in a few animals, inconsistent with a level believed necessary for 
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nigral neurodegeneration to occur. Taken together, this mouse model is therefore considered 

to represent prodromal PD. Understanding that the pathology in the olfactory system 

precedes that in the substantia nigra opens new and important therapeutic avenues. 

Essentially, it should be possible to initiate future disease-modifying treatments in PD before 

the first motor symptoms occur. The time course of α-syn pathology propagation was 

protracted in the mice, and in view of the short normal lifespan of mice it can be viewed 

analogous to that suggested to occur in humans. In our study mice were injected at 3 months 

of age which is considered equivalent to around 20 years in humans, and at the final time 

point they were 15 months old, which is viewed to represent 50 years of age in humans 

(slightly younger than the median age of onset of PD). That said, we do not actually know 

how long it takes for α-syn aggregates to spread after they first develop in the OB in 

humans, as has been postulated to occur in PD. It is possible that the dynamics of α-syn 

aggregates spread observed in the mice is not dissimilar to humans, but that the size of the 

human brain (greater distances between nuclei and larger structures) require longer lag 

periods before significant levels of pathology are detected in downstream structures.

The notion that the propagation of α-syn pathology involves prion-like mechanisms has 

gained increased acceptance in recent years, and because it has been reviewed extensively in 

other articles we will not present all the details here (see e.g. (Dehay and Fernagut, 2016; 

George et al., 2013; Goedert et al., 2016; Kaufman and Diamond, 2013; Luk and Lee, 2013; 

Rey et al., 2016a)). Briefly, this hypothesis posits that once α-syn aggregates have formed in 

a cell, some of them are excreted to the extracellular space. Once there, they are taken up by 

neighboring cells, including neurons, where they can seed the aggregation of endogenous α-

syn through “permissive templating” by the misfolded α-syn species. Because misfolded α-

syn can undergo axonal transport between brain regions, this hypothesis also accounts for 

how α-syn pathology spreads along, e.g., neural connections in the olfactory system. The 

realization that α-syn aggregates are present in the extracellular space during part of this 

pathogenic process, has led to suggestions that it might be possible to therapeutically target 

extracellular α-syn or, e.g., the molecular machinery involved in its cellular uptake (Dehay 

and Fernagut, 2016). The possible existence of specific “strains” of α-syn fibrils has led to 

the proposal that pathobiological differences between the family of synucleinopathies (e.g. 

PD, DLB and MSA) are due to the properties of the α-syn fibrils that propagate between 

cells (Melki, 2015; Peelaerts et al., 2015). It has been suggested that α-syn can directly cross 

seed tau (Guo et al., 2013), which could explain why tau aggregates also occur in 

synucleinopathies, but these observations of possible cross-seeding in mice remain debated.

4.1.2. Incidental Lewy body disease—LB pathology does not appear to follow Braak 

staging in incidental Lewy body disease (iLBD). The OB exhibits Lewy pathology in 83% 

of cases (Sengoku et al., 2008), but only 1 patient out of 11 showed inclusions in the OE 

(Saito et al., 2016). In 77% of cases, LBs and LNs are also found in the AON, along with a 

minimal amount of neurofibrillary tangles (NFTs) (Tsuboi et al., 2003). It has been proposed 

that iLBD constitutes prodromal PD, however, as mentioned above only some iLBD cases 

appear to be consistent with Braak staging, while others show pathology mainly in cortical 

regions, which could correspond to preclinical DLB ((Frigerio et al., 2011); importantly the 

OB was not investigated in this study).
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4.1.3. Dementia with Lewy bodies—Similar to those with iLBD, patients with DLB 

frequently exhibit severe pathology in the OB. However, study of the olfactory mucosa in 

two recent cases found α-syn pathology only in the cribriform plate (Funabe et al., 2012; 

Saito et al., 2016). Currently, the staging of PD and DLB relies on the presence of LBs or 

LNs. Novel methods allow the detection of oligomeric α-syn (Roberts et al., 2015) and 

suggest that accumulation of oligomeric α-syn precedes the appearance of LBs and LNs. 

Investigating other forms of pathology might help us understand better the clinical 

variability in the pathology of synucleinopathies (Halliday et al., 2011).

In addition to α-syn pathology, PD, DLB, and Parkinson’s disease dementia (PDD) patients 

also display tau (neurofibrillary tangles) and Aβ pathology (senile plaques) (Hepp et al., 

2016; Horvath et al., 2013; Lei et al., 2010). A limited overlap in pathology is thus observed 

between diseases. Tau pathology is observed notably in the OB/AON in cases of PD, AD, 

DLB, and FTD, which are diseases accompanied with severe olfactory alterations, but tau 

pathology is absent from PSP and CBD, two disorders with no or minor olfactory loss 

(Mundiñano et al., 2011; Tsuboi et al., 2003), suggesting a role for aggregated tau in the 

olfactory dysfunction of synucleinopathies.

4.2. Alzheimer’s disease

In AD, brain regions critical to olfactory function are burdened with pathology, including the 

classic hallmark features of plaques and neurofibrillary tangles (NFTs). NFTs are made up 

of hyperphosphorylated forms of the microtubule-associated protein tau. Plaques are 

composed mainly of the amyloid precursor protein-derived amyloid-beta (Aβ). Similar to 

that for PD, a staging system in six neuropathological stages has been proposed by Braak 

and colleagues based on the localization of NFTs (H. Braak and E. Braak, 1991). According 

to this model, pathology is believed to start in the entorhinal cortex and spread to the 

hippocampus and then to the basal forebrain. While more recent models have proposed the 

locus coeruleus as the initial site of tau pathology in AD (Braak and del Tredici, 2016, 2012, 

2011) the collective evidence for the entorhinal cortex and associated olfactory structures 

being affected early in the disease process remains compelling. Thus, the olfactory structures 

are affected early in AD (as in PD), prior to the appearance of cognitive symptoms (Attems 

et al., 2005; Jellinger and Attems, 2005; Price et al., 1991). NFTs appear first in 

transentorhinal region and entorhinal cortex at stage 1, and progress to CA1 of the 

hippocampus at stage 2. Some studies describe tau pathology in all the layers of OB (Kovács 

et al., 1999; Ohm and Braak, 1987) and in the olfactory tract as early as the appearance of 

NFTs in the entorhinal cortex (stage 1) (Christen-Zaech et al., 2003) or at stage 0 (Kovács et 

al., 2001); some others at stage 2 only (Attems et al., 2005; Tsuboi et al., 2003). Tau 

pathology is also present in the AON at early stages ((Esiri and Wilcock, 1984; Kovács et 

al., 2001; Ohm and Braak, 1987; Price et al., 1991) (stages 0–1), (Tsuboi et al., 2003) (stage 

2), (Jellinger and Attems, 2005) (stage 2)). The periamygdaloid cortex and anterior 

amygdala are involved later, at or after stage 2 (Kovács et al., 2001). The piriform cortex is 

also affected early by NFTs, possibly in early stages, but only one study has investigated it 

and no assessment of Braak stages were done (Reyes et al., 1987). At Braak stage 3, NFTs 

develop in limbic regions (subiculum) and they progress to the amygdala and thalamus at 

stage 4. They later reach the isocortex (associative area) at stage 5 and ultimately affect the 
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primary sensory, motor, and visual cortex at stage 6 (Braak and Braak, 1991). Tau 

aggregates, that make up the NFTs in AD and numerous other tauopathies, have repeatedly 

been shown to be capable of undergoing cell-to-cell transfer and propagate aggregate 

pathology in a prion-like fashion in experimental models of disease (Goedert et al., 2016; 

Walker et al., 2013). Nonetheless, in contrast to α-syn fibrils in PD which we described 

above, AD and other tauopathies do not exhibit the distinct preference for olfactory 

pathways (Braak and del Tredici, 2016). Why there are differences between α-syn and tau 

aggregates regarding preferred anatomical pathways for propagation, despite both types of 

pathology affecting the olfactory pathways, is presently unclear. One possibility is that the 

site of initial misfolding events differs between the disorders, with the OB being a stronger 

candidate in PD than in AD. Another option is that elements of the underlying cell biology 

of the neuron-to-neuron transfer differ between α-syn and tau aggregates in ways that are 

not yet understood. Furthermore, some tauopathies primarily affect glial cells (Clavaguera et 

al., 2013), which can explain that the spreading pattern does not follow neural pathways. 

However, this still does not account for why the pattern of NFT propagation in AD does not 

strictly follow axonal pathways in the olfactory system (Braak and del Tredici, 2016).

The progression of Aβ plaques in the brain is less predictable than that of NFTs, and data 

regarding the involvement of the olfactory system are subject to a lot of variance. Braak et 

al. described the progression of senile plaques in three stages (A, B, and C), mainly observed 

in cortical regions. Amyloid plaques are first present in the basal frontal, temporal, and 

occipital cortices during stage A. Plaques then progress to isocortical areas (sensory, motor, 

and visual cortices excluded) at stage B, and finally reach the primary isocortical areas and 

the striatum, thalamus, and hypothalamus notably (H. Braak and E. Braak, 1991). The Thal 

classification system of amyloid plaques comprises 5 stages. Stage 1 involves isocortical 

regions, progressing then to allocortical regions in stage 2 (entorhinal cortex, amygdala, 

insular and cingulate cortex, and hippocampal formation). Stage 3 involves subcortical 

nuclei (striatum, thalamus, hypothalamus notably). Ultimately, amyloid plaques develop in 

brainstem structures (substantia nigra, medulla oblongata, colliculi, red nucleus) at Thal 

stage 4 and the pons (LC, raphe nucleus) at stage 5 (Thal et al., 2002).

Amyloid plaques are rarely detected in early stages (tau Braak staging) of AD, because 

patients exhibiting tau inclusions did not all show amyloid plaques (Hardy and Higgins, 

1992; Kovács et al., 1999; Schönheit et al., 2004; Struble and Clark, 1992), leading to the 

idea that tau pathology precedes Aβ pathology, an idea still debated (Price and Morris, 

2004). Neuritic plaques have been found in the OB and AON in some studies (Christen-

Zaech et al., 2003; Kovács et al., 1999), while others never detected them in the OB (Attems 

et al., 2005; Tsuboi et al., 2003). Finally, central olfactory regions are involved in confirmed 

cases of AD (Reyes et al., 1993).

Aβ and tau pathology progress differently during the course of AD (Price and Morris, 2004). 

As AD develop, the density of these pathologies increases. Although a peripheral brain 

structure, the OE also is impacted pathologically during the progression of AD. In one study 

(Arnold et al., 1998), Aβ was present in the OE of 71% of AD cases but only in 22% of 

normal control cases. Paired helical filament tau was also elevated in AD versus control 

cases.
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There are a limited number of studies in humans on the cellular and molecular mechanisms 

underlying olfactory dysfunction. For example (and as mentioned above), in aged 

individuals without MCI or AD, olfactory dysfunction is related to the level of AD 

pathology, including Aβ plaques and NFTs (Wilson et al., 2009).

Severe cell loss occurs in many brain regions in AD. Patients exhibit severe MC loss in the 

OB before the clinical symptoms emerge (Struble and Clark, 1992) and in the entorhinal 

cortex when patients exhibit the mildest clinically detectable dementia (Gomez-Isla et al., 

1996). However, it is unclear whether the cell loss is a consequence of the accumulating 

pathology. Neuromodulatory systems are also severely affected in AD, with 30–90% 

cholinergic cell loss in the nucleus of Meynert (Whitehouse et al., 1983) and severe 

noradrenergic cell loss in the LC ((Marien et al., 2004) for review), structures both 

implicated in Minimal Cognitive Impairment (MCI) (Arendt et al., 2015). Neuronal death 

has also been described in the hippocampus (Kril et al., 2002). In brief, neuronal death in 

olfactory regions and neuromodulatory systems could, and are likely to, contribute 

significantly to olfactory deficits in AD.

4.3. Other neurodegenerative diseases

Among the diseases that have mild or no olfactory deficits, MSA is the only one with 

pathological inclusions in olfactory regions (Katzenschlager and Lees, 2004; Tsuboi et al., 

2003). Although neuronal α-syn inclusions are present in MSA (Costa and Duyckaerts, 

1993), the main pathological hallmark is the presence of glial cytoplasmic inclusions 

(GCIs), which are mainly composed of aggregated α-syn, and are found in oligodendrocytes 

of the putamen, the substantia nigra, the pontine base, inferior olive, and globus pallidus. 

Consistently, the substantia nigra, caudate nucleus, and the frontal and parietal cortices 

exhibit neuronal loss, and the putamen and globus pallidus exhibit in addition a loss of 

oligodendrocytes (Salvesen et al., 2015). A few studies have shown that GCIs are also 

present in the OB (100% cases), the olfactory tract (Daniel and Hawkes, 1992; Fujishiro et 

al., 2008; Kovács et al., 2003), and the olfactory tubercle (correlating with the number of 

GCIs in the OB), but are rarely found in the AON despite severe cell loss in this structure in 

57% of cases (Kovács et al., 2003). The presence GCIs and the severe cell loss in the 

peripheral olfactory system could play a role in the development of mild olfactory 

disturbances by altering local neuronal activity.

Other diseases that have more-severe olfactory deficits all exhibit pathological inclusions in 

the olfactory system. The prion disorder CJD severely affects the olfactory structures, with 

accumulation of misfolded prion protein PrPSc in the olfactory tracts and cortices (olfactory 

uncal cortex, prepiriform, periamygdaloid, entorhinal cortices). Regrettably, cell loss has 

never been investigated specifically in the olfactory system. In two reports, PrPSc was 

detected to a lesser extent in cilia of ORNs and in basal cells of the OE (Tabaton et al., 2004; 

Zanusso et al., 2003, 2009). Smaller amounts of inclusions have also been found in the 

thalamus, basal ganglia, and cerebellum, and severe neurodegeneration has been observed in 

widespread brain regions (Faucheux et al., 2009; Ferrer, 2002; Liberski and Ironside, 2004; 

Tabaka et al., 2003; Tabaton et al., 2004), It is unclear where pathology starts in CJD, but 

inclusions have been observed in olfactory regions in patients with short disease duration, 
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suggesting that the olfactory system is affected early (Tabaton et al., 2004; Zanusso et al., 

2003). Biopsies of the OE have been proposed for diagnosis of CJD (Zanusso et al., 2009). 

The DMX is also affected in two subtypes of CJDs (MV2 and VV2), which raised the 

question of a dual-hit hypothesis of propagation in CJDs (Zanusso et al., 2009), akin to what 

has been proposed for PD (Hawkes et al., 2007).

In ALS, intracytoplasmic inclusions of the protein TDP-43 accumulate in the frontotemporal 

cortex and subcortical regions (Neumann et al., 2006), brainstem, and spinal cord (Fatima et 

al., 2015). These inclusions are associated to severe loss of motor neurons (Brettschneider et 

al., 2014; Ilieva et al., 2009) and the degeneration and atrophy of many central brain regions 

(Bede et al., 2013; Brettschneider et al., 2014; Fatima et al., 2015; Oyanagi et al., 2015; 

Smith, 1960; Wakabayashi et al., 2001). A recent study investigated olfactory regions and 

showed that TDP-43 inclusions affect the secondary olfactory centers (hippocampus and 

orbitofrontal cortex), the primary olfactory cortex (AON, entorhinal and piriform cortex), 

and the OB (Takeda et al., 2015). However, the OB seems to be preserved from cell loss in a 

small study on 3 patients (Oyanagi et al., 2015). Reductions in the volume of the amygdala 

have also been reported (Machts et al., 2015; Pinkhardt et al., 2006). The severity of TDP-43 

pathology follows a rostro-caudal gradient, and it was proposed that the pathology would 

start in the motor cortex, brainstem, and spinal cord and spread to the hippocampus 

(Brettschneider et al., 2013; Fatima et al., 2015). Thus, olfactory regions could also be 

involved in the latest stages of ALS, meaning that the progression would follow a direction 

opposite to the direction of pathology progression proposed for PD.

In FTD, Pick’s bodies (tau inclusions) are predominantly found in the cerebral cortex 

(Goedert et al., 2012). Pick’s bodies are also found in many cells of the AON and in a lesser 

extent in the OB (MCs and TCs) and olfactory tubercle (Yoshimura, 1989). NFTs (8 cases 

out of 11) and amyloid deposits (3 cases out of 11) were observed in the OB (Mundiñano et 

al., 2011) and might be associated with its atrophy (Mundiñano et al., 2011; Yoshimura, 

1988), but they were reported to be absent from one FTD case in another study (Yoshimura, 

1989). Finally, FTD is associated with severe cell loss in the neocortex, hippocampal region 

and brainstem, akin to HD (Dayalu and Albin, 2015; Kersaitis et al., 2004; Radanovic et al., 

2003; Santillo et al., 2013; Seeley et al., 2006).

Studies of HD have never investigated pathology and cell loss in anterior olfactory 

structures, despite olfactory deficits occurring early in the course of the disease. Inclusions 

of mutated huntingtin protein develop markedly in the midbrain and the cortex during early 

stages of the disease (Aronin et al., 1999; Vonsattel et al., 1985). “Neuropathological 

alterations” then appear in the brainstem, amygdala, and cerebellum (Vonsattel et al., 1985). 

Curiously, NFTs are described in atrophied entorhinal cortex, as well as in the hippocampus, 

frontal and parietal lobe, amygdala, thalamus, midbrain, and locus coeruleus of HD patients, 

and senile plaques are present in the frontal temporal and piriform cortex (reviewed in 

(Gratuze et al., 2016)). The presence of pathology in the piriform cortex and the amygdala 

could be responsible for the severe olfactory dysfunction in HD.

Many neurodegenerative diseases show pathological hallmarks characteristic of another 

disease: NFTs in PD (Hepp et al., 2016; Horvath et al., 2013; Iseki et al., 2003; Lei et al., 

Rey et al. Page 18

Neurobiol Dis. Author manuscript; available in PMC 2018 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2010), DLB, and FTD (Mundiñano et al., 2011; Tsuboi et al., 2003), and α-syn inclusions in 

AD (R. L. Hamilton, 2000; Morales et al., 2013). These occurrences led to the idea that a 

misfolded protein could be a template for the aggregation of a different protein (cross-

seeding) (Morales et al., 2013). The first evidence of direct cross-seeding of tau by Aβ 
trimers was recently published (Sherman et al., 2016) and, as mentioned above, it has been 

suggested that that α-syn fibrils can cross-seed tau (Guo et al., 2013). However, whether 

such cross-seeding occurs in vivo for other proteins is still controversial, and it is unclear if a 

third protein (or more) is required or if direct cross-seeding occurs.

In summary, alteration of olfactory perception occurs as part of neurodegenerative diseases, 

accompanied by pathology and cell loss in the primary, secondary, and tertiary olfactory 

structures. We propose that the OE, OB, and AON are particularly vulnerable to injuries and 

dysfunction. Unfortunately, these regions have only rarely been investigated in diseases 

other than AD and PD.

5. Why are the olfactory epithelium and olfactory bulb so vulnerable?

Directly accessible from the external environment, the OE is exposed to a variety of 

environmental insults. While the OE has several barriers to such insults, ranging from 

physical to enzymatic and immune defenses (Fig. 1), these barriers deteriorate with age, 

rendering them more permeable to xenobiotics and toxins. We hypothesize that external 

agents (bacteria, viruses, toxins, airborne pollutants, micro- and nanoparticles) might trigger 

disease via the OE. Either these agents gain access to the brain through the OE and spread 

along its associated connections, or they trigger protein misfolding locally in the OE and OB 

that, in turn, leads to prion-like propagation of protein aggregates via olfactory pathways. 

Beyond an anatomically vulnerable location, the OE and the OB have certain characteristics 

that could make them vulnerable to disease. Our hypothesis does not exclude the existence 

of other neuronal systems that exhibit inherent properties that could render them vulnerable 

(e.g. long axons affected early in ALS). Nor does our hypothesis exclude that other neuronal 

system also are exposed to external agents that potentially can trigger pathological 

conversion of proteins (e.g. enteric nerves in PD). However, in this review we have chosen to 

focus on the potential role of the olfactory system in neurodegenerative diseases. Therefore, 

in the following section, we will review evidence that the OE and OB are sensitive to 

inflammation and to oxidative stress; express high levels of proteins involved in 

neurodegenerative diseases; and exhibit intrinsic neural activity that could make them 

sensitive to cell stress and promote protein accumulation.

5.1. Increased permeability of olfactory epithelium due to infection, mutation, or normal 
aging

Among external factors that deteriorate the OE are respiratory pathogens and external insults 

that impair tight junctions between the epithelial cells of the nasal epithelium and the OE, 

increasing epithelial permeability to external substances (Dando et al., 2014). The loss of 

detoxifying enzymes in nasal mucus can also affect the permeability of the OE (Lafreniere 

and Mann, 2009). People with mutations of the cytochrome P450-CYP2D6-debrisoquine 

hydroxylase, involved in detoxification of xenobiotics, show increased risk of developing PD 
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(Elbaz et al., 2004; Smith and Jones, 1992), possibly due to a compromised barrier in the OE 

(Doty, 2012a; Hawkes and Doty, 2009b).

Also, the OE dramatically changes with age; the ORNs can undergo necrosis and the OE 

becomes thinner (Attems et al., 2015). Although not demonstrated in the OE, misfolded α-

syn can perturb the expression of tight junction proteins (Kuan et al., 2016) and could 

contribute to increased permeability of the OE. Other changes in the OE with aging, include 

a decrease in calbindin-D28k expression, which potentially makes neurons more vulnerable 

to calcium overload and excitotoxicity (Yamagishi et al., 2016). Furthermore, 

monoaminergic innervation of the OE decreases (Chen et al., 1993), which affects mucosal 

secretions. Nasal mucociliary clearance is also less effective in the elderly (Sakakura et al., 

1983). Thus, as a consequence of infection, environmental stresses, and aging, the OE 

becomes more vulnerable to pathogen entry.

5.2. The olfactory mucosa and bulb, a gateway to the brain for viruses

Numerous studies have tentatively linked the exposure to pathogens, particles, or pesticides 

with increased risk of developing PD. Hawkes et al. proposed a dual-hit hypothesis: PD 

could be triggered by the entry and the propagation of a viral agent through both the OE and 

the enteric mucosa. Essentially, the viral agent would be inhaled and then access the gut via 

the swallowing of saliva and nasal mucus, and could cause nervous system pathology while 

spreading along olfactory pathways and enteric nerves that access the central nervous system 

(Braak et al., 2003b; Doty, 2008; Hawkes et al., 2007). As an alternate model, it was 

suggested later that this neuropathological agent could trigger pathology at the entry site 

where assemblies of misfolded α-syn could accumulate in neurons in the OB and in enteric 

nerves of the gut wall, and misfolded α-syn itself would spread in a prion-like manner to 

connected brain regions (Brundin et al., 2008; George et al., 2013; Li et al., 2008). These 

two hypotheses are consistent with the appearance of olfactory deficits and of 

gastrointestinal dysfunction in people before they develop PD or DLB, i.e., during the 

prodromal stage (McKeith et al., 2016; Meissner, 2012).

Viruses (and toxins, see further below) can reach the brain through the ORNs (Baltazar et 

al., 2014; Dando et al., 2014; Doty, 2008; Prediger et al., 2011; Tjälve and Henriksson, 

1999; van Riel et al., 2015) (reviews; (Hobson, 2012; van Riel et al., 2015)). By penetrating 

ORNs, they can travel via axonal transport, within the olfactory ensheathing cells, or within 

the perineural space, and pass through the cribriform plate to access the subarachnoid space 

(Dando et al., 2014). Viruses, for example, can migrate from the OB to other brain regions 

(for a review, see (Dando et al., 2014). The trigeminal nerve can also be a route of entrance 

to the central nervous system from the oral, nasal cavity and from the cornea (Dando et al., 

2014). PD risk is increased following exposure to certain viruses (Wu et al., 2015; Zhou et 

al., 2013), and viral infections can also affect α-syn. Infection of mice with H5N1 virus 

triggers the phosphorylation and aggregation of α-syn (Jang et al., 2012, 2009). 

Interestingly, though, α-syn expression in neurons inhibits viral infection (Beatman et al., 

2016), so an increase in α-syn expression could be a defense against viral infection that 

inadvertently increases PD risk. It has also been shown that antibodies to Epstein Barr Virus 

can cross-react with α-syn (Woulfe et al., 2016), which has been hypothesized to promote its 
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aggregation in the olfactory system and gut in people who later develop PD (Woulfe et al., 

2014).

5.3. Xenobiotics and airborne pollutants affect protein aggregation

PD risk is also higher after exposure to several agents that can be inhaled, e.g. pesticides 

(Baltazar et al., 2014; T. P. Brown et al., 2005; Chin-Chan et al., 2015; Saeedi Saravi and 

Dehpour, 2016; Tanner et al., 2014), pollutants (Block and Calderón-Garcidueñas, 2009), 

micro- or nanoparticles (Chin-Chan et al., 2015), organic solvents (R. C. Brown et al., 

2005), and metals (R. C. Brown et al., 2005; Chin-Chan et al., 2015; Finkelstein and Jerrett, 

2007). In addition, exposure to the bacterial amyloid protein curli promotes α-syn 

aggregation (Chen et al., 2016). Exposure to environmental toxins, some of which can be 

inhaled and therefore can gain access to the olfactory system, has been associated with 

increased PD risk (Goldman, 2014). Laboratory studies have provided insight into 

mechanisms that might contribute to the triggering of PD following toxin exposure. For 

example, in vitro experiments have shown that, under certain conditions, metals (e.g. 

copper) directly induce conformational changes in α-syn and can promote α-syn 

fibrillization (similar to pesticides (Paik et al., 1999; Uversky et al., 2002; Villar-Piqué et al., 

2016)) or increase in α-syn expression (Wu and Xie, 2014). Recent work in mice has shown 

that systemic exposure to the fungicide maneb and the herbicide paraquat can increase 

formation of α-syn radicals in the brain, which can promote aggregation of the protein 

(Kumar et al., 2015). Furthermore, systemic injection in rats with the mitochondrial complex 

I inhibitor rotenone, which is used as a pesticide, insecticide and fish killer, was recently 

found to lead to increased levels of phosphorylated and aggregated α-syn (Di Maio et al., 

2016) These recent reports on effects of environmental toxins are in agreement with earlier 

findings (Ischiropoulos and Beckman, 2003) that oxidative damage to (Paxinou et al., 2001) 

and mitochondrial dysfunction (Przedborski et al., 2001) can promote a-syn aggregation.

Beyond direct effects on α-syn, airborne pollutants, environmental agents and xenobiotics 

that can penetrate the central nervous system through the olfactory route, producing 

undesirable effects in the brain such as inflammation, oxidative stress (Block and Calderón-

Garcidueñas, 2009; Cheng et al., 2016), increased apoptosis (Chin-Chan et al., 2015), and 

dysfunction of mitochondria and proteasome (Saeedi Saravi and Dehpour, 2016). All of 

these effects could affect neuronal function and protein aggregation.

The risk of developing AD is increased by exposure to pesticides (Baltazar et al., 2014; T. P. 

Brown et al., 2005; Chin-Chan et al., 2015; Saeedi Saravi and Dehpour, 2016; Tanner et al., 

2014), viruses (Ball et al., 2013; S. A. Harris and E. A. Harris, 2015; Licastro and Porcellini, 

2016; Zhou et al., 2013), pollutants (Block and Calderón-Garcidueñas, 2009), and metals 

that are able to stimulate Aβ production (R. C. Brown et al., 2005; Chin-Chan et al., 2015). 

Few studies have investigated DLB, but exposure to metals has been implicated as a risk 

(McAllum and Finkelstein, 2016). MSA has been linked to metal and organic solvent 

exposure (Vanacore et al., 2001), environmental toxins, and pollutants (Hanna et al., 1999), 

but a link to pesticides is controversial (Chrysostome et al., 2004; Vanacore et al., 2001). 

ALS is also associated with pesticides ((Baltazar et al., 2014), metals (Bozzoni et al., 2016; 

Johnson and Atchison, 2009; Su et al., 2016; Tanner et al., 2014), solvents, viruses (Zhou et 
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al., 2013), and possibly to pollutants (Malek et al., 2015). CJD is obviously related to 

infection by the misfolded protein PrPsc itself. Animal models of PrPSc spread show that 

the nasal route is more efficient for prion infection than the gastric route (Kincaid and Bartz, 

2007) and that in infected hamsters, prions can be released in nasal fluid (Bessen et al., 

2010). Further, OE damage favors the release of prions in the nose (Bessen et al., 2012).

5.4. Myelination and energy expenditure

Another possible vulnerability to neurodegenerative disease is the myelination level of 

neuronal populations in the brain. The absence of myelination requires a higher energy 

expenditure to convey neural impulses (Braak and del Tredici, 2004; Nieuwenhuys et al., 

1998; Van der Knaap et al., 1991) and make the cells more susceptible to oxidative stress. 

Myelination, on the other hand, might protect the cells better against pathogens (Braak et al., 

2003b) and against aberrant axonal sprouting (Cafferty et al., 2008; Caroni and Schwab, 

1988; Vanek et al., 1998). Braak et al. have proposed that neurons that are unmyelinated or 

sparsely myelinated, have long, thin axons, and have high energy turnover are more 

susceptible to disease (Braak et al., 2006; Braak and del Tredici, 2004). The ORNs could 

thus be particularly sensitive, because they fit these three criteria (Doty, 2003; Nawroth et 

al., 2007). The MCs and TCs also possess long axons but are often myelinated (M. Tigges 

and J. Tigges, 1980). It is conceivable that MCs and TCs are thus more resistant to 

developing inclusions, which would be consistent with the observation of more severe 

pathology in AON cells than in the mitral cells of OB (Ubeda-Bañon et al., 2010). It is also 

notable that this lack of myelin coincides with a reduced integrity of the blood brain barrier 

at the level of the olfactory bulb (Minn et al., 2002).

5.5. Sensitivity of the OE and OB to inflammation and oxidative stress

Many xenobiotics and particles that can penetrate the brain through the OE are known to 

trigger reactive oxygen species (ROS) production and inflammatory reactions, similar to the 

effects of misfolded proteins. As an interface between the external environment and the 

brain, the OE and OB are particularly subject to inflammatory reactions. As mentioned 

earlier, the OB and olfactory nerve hosts selective dense populations of microglia that act to 

prevent particles and pathogens from penetrating the brain. The microglia of the OB show 

more rapid and higher levels of activation for longer periods (lasting for months) relative to 

microglia in other regions of the brain (Lalancette-Hebert et al., 2008). OB microglia can 

also be activated by injury or infections occurring in distant sites and might play a role of 

sentinel for the whole brain (Lalancette-Hebert et al., 2008; Smithson and Kawaja, 2010). 

Inflammation in the OB is affected by changes in neurotransmitters (a decrease in 

noradrenaline release by the locus coeruleus increase inflammation level, for example) 

(Feinstein et al., 2002; Heneka et al., 2010a; Scanzano and Cosentino, 2015). Also, activated 

microglia release proinflammatory cytokines and ROS that can damage cells (Surace and 

Block, 2012). These proinflammatory cytokines and ROS (Dvorska et al., 1992; Rhodin et 

al., 1999), as well as changes in neurotransmitters release (Kalinin et al., 2006) can disrupt 

the blood–brain barrier, thus facilitating the penetration of xenobiotics and particles into the 

brain.
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While aggregated proteins (α-syn, Aβ, PrP, SOD1, and tau) induce microglial activation 

(Eikelenboom et al., 2002; Heneka et al., 2010a, 2010b; Y. Li et al., 2014; Zhao et al., 2013), 

inflammation can in return promote the aggregation of some prion-like proteins in the brain 

and peripheral cells (Correia et al., 2015; He et al., 2013; Kitazawa et al., 2005; Lee et al., 

2008; Sy et al., 2011; Vieira et al., 2015). Similarly, excessive ROS production increases 

inflammation and favors prion-like protein aggregation (Alavi Naini and Soussi-Yanicostas, 

2015; Borza, 2014; Cohen et al., 2011; Milhavet and Lehmann, 2002; Quilty et al., 2006; 

Rcom-H’cheo-Gauthier et al., 2014; Shodai et al., 2013; Singh et al., 2010), which in return 

increases oxidative stress (Alavi Naini and Soussi-Yanicostas, 2015; Borza, 2014; Quilty et 

al., 2006; Rcom-H’cheo-Gauthier et al., 2014).

Hence, a vicious feed-forward loop of inflammation, involving a complex interplay of ROS 

production and protein aggregation, could play an important role in the pathogenesis of 

prion-like diseases (Lema Tomé et al., 2012; Rcom-H’cheo-Gauthier et al., 2014), and 

anterior olfactory regions could be particularly vulnerable due to the presence of highly 

sensitive microglia and a blood–brain barrier that is easily compromised.

5.6. Level of expression of misfolding-prone proteins in the olfactory epithelium and bulb

5.6.1. α-syn—Genetic forms of PD have taught us that the simple elevation of α-syn 

expression by gene duplication can cause disease (Singleton et al., 2003). One can imagine 

that a transient increase in α-syn expression could also contribute to the initiation of disease 

and that brain regions that naturally express higher levels of α-syn might be more prone to 

developing α-syn pathology triggered by stochastic events. Another possibility is that an 

increase in α-syn expression could be a physiological response of an injured cell trying to 

maintain correct synaptic function. As mentioned above, a local increase in α-syn 

expression has been suggested as a defense mechanism against viral infection, because α-

syn expression was shown to restrict RNA viral infections in the brain (Beatman et al., 

2016).

In humans, only a few studies have defined the normal spatial pattern of expression of α-

syn, and those focused only on few brain regions (olfactory brain structures were not 

investigated). More α-syn was reported in the cell body of neurons in the temporal and 

frontal cortex, CA2 and CA3. In healthy humans, high levels of α-syn, exacerbated by 

aging, and increased mRNA for proteins that are associated to LBs were detected in the 

substantia nigra relative to other brain regions (Chu and Kordower, 2007; Freer et al., 2016; 

F. Mori et al., 2002). When comparing different diseases (PD, DLB, and AD versus healthy 

controls), no difference in α-syn mRNA levels was found, but protein levels were lower in 

DLB and PD relative to controls in some brain regions (Quinn et al., 2012). Those studies 

investigated the brains of patients with severe disease, so the results might not reflect the α-

syn levels in early phases of the disease. One study investigated the presence of α-syn in the 

olfactory mucosa in humans and found that α-syn is most abundant in basal cells and ORNs 

but is also expressed in sustentacular cells of the OE and in the Bowman’s glands (Duda et 

al., 1999). In mouse, the pattern of α-syn in the brain was studied in depth by Taguchi et al. 

(2015). In this study, brain regions that typically are affected early in PD contain high 

amounts of α-syn. The OB (GL), DMX, and substantia nigra pars compacta display high 
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amounts of α-syn in the neuronal soma. Other layers of the OB (external plexiform and 

granule cell layers), the AON, the LC, the central and basolateral amygdala, piriform, 

entorhinal cortices, and the hippocampus display moderate to high amounts of α-syn within 

presynaptic terminals (Taguchi et al., 2015).

5.6.2. APP—APP is a large membrane-bound glycoprotein that forms the Aβ peptide when 

metabolized. The APP transcript is highly expressed in neurons of the associative neocortex 

and hippocampus (Neve et al., 1988), and APP protein is dense in the cortex, particularly in 

the entorhinal, occipital cortex, and superior temporal gyrus (Caušević et al., 2010). No data 

are available regarding this protein’s expression in olfactory structures in human. In rats, 

APP mRNA is found in the cortex, the hippocampus, the piriform cortex, olfactory tubercle, 

and cerebellum (Mita et al., 1989). The APP protein is highly expressed in the OB, in the 

nerve layer, EPl and GL of adult rats, and damages to the OE exacerbate the expression of 

APP in the OB (Struble et al., 1997). Unfortunately, the expression of APP in the OE and 

AON was not investigated.

5.6.3. Tau—Tau expression has not been investigated in olfactory structures in humans. The 

only studies exploring olfactory regions were conducted in rats, and showed that tau is 

highly expressed in the ORNs and in the axons of the ORNs in the OB (Schoenfeld and 

Obar, 1994), and is also present in mitral cells and interneurons of the OB (Viereck et al., 

1989). Tau mRNA has been found in cortical areas in humans (Neve et al., 1988), and the 

protein is highly expressed in the cortex, particularly the entorhinal, occipital cortex, the 

frontal cortex, and the superior temporal gyrus; it is moderately expressed in the 

hippocampus (Caušević et al., 2010; Trabzuni et al., 2012; Trojanowski et al., 1989). The 

recent transcriptome-wide microarray study by Freer et al. revealed elevated levels of tau 

and Aβ in the brain regions that are affected early in AD (olfactory regions were not 

investigated). In addition, Freer found that proteins involved in homeostasis are differentially 

expressed in AD: aggregation protectors are downregulated while aggregation promoter 

proteins are upregulated (Freer et al., 2016). This suggests that changes in the pattern of 

expression of proteins involved in homeostasis within brain regions that express more of 

those proteins might make those regions more vulnerable to developing disease.

5.6.4. PrP—The regional location of PrPc in human brain has not been studied in detail. 

Kuczius et al. describe its expression in the frontal neocortex, thalamus, hippocampus, and 

cerebellum (Kuczius et al., 2007), but olfactory structures were not assessed. In the mouse, a 

strong immunoreactivity for PrPc is observed in the cerebral cortex (piriform and cingulate), 

striatum, ventral pallidum, OB, and hippocampus (Beringue, 2003). PrPc is also present in 

the mouse substantia nigra (Beringue, 2003).

In conclusion, the spatial patterns of expression of α-syn, APP, tau, and PrP remain unclear, 

especially in humans. No data are available for TDP-43, and for other proteins, many brain 

structures have not been investigated. For brain regions that express high levels of a prion-

like protein, any event that disturbs the balance between protein level and protein clearance 

might contribute to the development of pathology. Another key element of protein 

expression is the intrinsic neural activity of brain regions.
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5.7. Intrinsic neural activity and prion-like proteins

Here we discuss the observations of changes in neural activity in the OE and OB during 

disease and their consequences. The level of protein expression can be modulated by 

neuronal activity, exaggerating the pathological accumulation of protein. As a consequence, 

high levels of pathological proteins might also disturb cellular function and lead to aberrant 

neuronal activity. This is particularly interesting in the context of prion-like propagation, 

where an increase of neuronal activity in one brain region could lead to increase release of 

prion-like protein at the synaptic level into downstream structures, thus contributing to the 

propagation of pathological proteins within the brain.

Neuronal hyperactivity increases Aβ production via endocytic pathways (see (Stargardt et 

al., 2015) for a review) and favors the release of Aβ in interstitial fluid, which is dependent 

on synaptic activity (Cirrito et al., 2005; Kamenetz et al., 2003). Such events take place at 

early stages of AD, when the degradation of Aβ is decreasing (Stargardt et al., 2015). On the 

other hand, high levels of Aβ promote neuronal hyperactivity, due to a decrease in synaptic 

inhibition and increased incidence of action potential bursts (Busche and Konnerth, 2015). 

Thus, a vicious cycle between the production of Aβ, its release, and changes in neuronal 

activity of neurons probably contributes to AD pathogenesis. Because AD is associated with 

increased risk for epileptic seizures (Busche and Konnerth, 2015; Stargardt et al., 2015), 

particularly in people with early-onset dementia (Amatniek et al., 2006), the interaction 

between neuronal hyperactivity and Aβ in AD has been well studied, mainly in hippocampal 

regions. In AD, neuronal hyperactivity occurs both in large brain networks leading to 

epileptiform activity and in localized foci. Neuronal hyperactivity occurs at early stages of 

AD, when epileptiform activity is associated with high level of Aβ (Busche and Konnerth, 

2015). In healthy elderly individuals, high levels of amyloid deposits have been linked to 

aberrant neuronal activity by fMRI (Sperling et al., 2009). The presence of Aβ and tau 

pathology in central and peripheral brain regions suggests that the neural basis for olfactory 

dysfunction in AD is not simply dysfunction in one structure at one stage of processing, but 

dysfunction at numerous stages of processing, from the initial binding of the odorant to the 

OR to the more central cortical processing of perceptually relevant aspects of olfaction. 

ORNs of the OE display spontaneous firing in the absence of any odor stimulus in wild-type 

mice (Joseph et al., 2012). Some findings support the notion that the olfactory system, 

including the OB and piriform cortex, engages in sparse coding of odor information wherein 

only a minimal number of cells are needed to be active and to function with the optimal level 

of excitation and inhibition (Davison and Katz, 2007; Poo and Isaacson, 2009; Rinberg et 

al., 2006). Modeling evidence suggests that the spare coding of odors in the OB uses low 

energy and leads to high representational capacity (Yu et al., 2014). This type of activity 

might be particularly perturbed by hyperactive neurons (Busche and Konnerth, 2015).

Studies in mice have provided some evidence for possible mechanisms of olfactory 

dysfunction and their influence on neural circuits (Cao et al., 2012; Cheng et al., 2011, 2013; 

Cramer et al., 2012; Guérin et al., 2009; Morales-Corraliza et al., 2013; Rey et al., 2012; 

Wesson et al., 2011; Yang et al., 2010). These studies suggest a crucial role of soluble Aβ 
for neuronal hyperexitability in the hippocampus and OE (Busche et al., 2015; Cao et al., 

2012). In some cases, alterations in normal neural activity have been reported, including 
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early-life hyperactivity in the OB (Wesson et al., 2011) that may result in enhanced post-

synaptic release of Aβ and other APP metabolites into down-stream structures. Some of 

these studies have reported aberrations in intrinsic neural activity, including hyper- and 

hypoactive neural systems in mouse models of AD. The end result of all the proposed 

mechanisms suggests that AD-associated pathologies and factors associated with them (e.g., 

cytokines) impair neural function within key olfactory structures, which thereby result in 

deficits in olfaction.

In synucleinopathies, hyperactivity of neuronal circuits had not been studied extensively, and 

olfactory circuits have not been explored. One single study investigated network activity in 

mice overexpressing α-syn and reported changes of network activity in the hippocampus 

(M. Morris et al., 2015). A high occurrence of myoclonus has been observed in DLB 

patients, a sign of disturbed neuronal activity; α-syn is suggested to be partially responsible 

of the hyperactivity of the network (Morris et al., 2015). Phantosmia (olfactory 

hallucinations) could reflect also hypersensitivity of the olfactory network. Phantosmia is 

believed to be a clinical manifestation of circuit disinhibition, notably following 

deafferentation due to OE damage and resulting loss of sensory input (Henkin et al., 2013). 

Phantosmia has been reported in PD and could also be a symptom of AD, although it is 

rarely evaluated by physicians (Bannier et al., 2012; Landis and Burkhard, 2008; Tousi and 

Frankel, 2004). Although not investigated in olfactory structures, neural hyperactivity in PD 

could be due to an interplay between pathological α-syn and Ca2+ flux, potentiating each 

other (Hüls et al., 2011; Lowe et al., 2004; Rcom-H’cheo-Gauthier et al., 2014).

TDP-43 aggregation and its effect on neuronal activity have never been studied. However, in 

a model of frontotemporal dementia with Parkinsonism overexpressing human mutated tau, 

spontaneous epileptic activity and seizures were observed by EEG, as well as 

hypersensitivity to a GABAa receptor antagonist (García-Cabrero et al., 2013).

Finally, the loss of PrPc function also contributes to the hyperexcitability of networks in the 

neocortex and hippocampus, and it can lead to epileptic seizures (Walz et al., 2002). Thus, 

hyperexcitability of neuronal networks might also occur in CJD.

The molecular mechanisms underlying neuronal hyperactivity induced by pathological 

protein are unclear. Dysfunction in glutamatergic transmission, which leads to excitotoxicity, 

is involved in many neurodegenerative diseases (for review: (Ambrosi et al., 2014; Dong et 

al., 2009). Although not studied specifically in the olfactory system, alteration of 

glutamatergic transmission by pathological proteins, mutations, or inflammatory 

mechanisms (Barger et al., 2007; Helton et al., 2008; Parameshwaran et al., 2008; Plowey et 

al., 2014) could occur in the OE/OB, where glutamatergic cells are particularly vulnerable 

(Ubeda-Bañon et al., 2010), and could underlie hyperactivity and excitotoxicity.

6. Conclusion

Neuropathological data and olfactory functional measurements support the early 

involvement of olfactory structures in PD, AD, DLB, HD, and, to some extent, CJD. 

Pathology and functional alterations are also involved in other neurodegenerative diseases 
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such as MSA and ALS, where the timing of olfactory disturbances is not yet defined. By 

contrast, in FTD the olfactory network is involved late in the course of the disease, 

suggesting a spreading mechanism inverted relative to that in PD or DLB. Further work is 

needed to better understand the involvement of olfactory regions in disease development. 

Comparisons of propagation patterns between diseases could help determine the spatial 

origin and etiology of the pathology. For example, in PD, monitoring impairments in 

olfaction will also allow for better prediction of clinical course (e.g. if a patient is likely to 

exhibit cognitive decline soon), stratification of patients entering clinical trials, and the 

possibility to start future disease-modifying therapies before the onset of motor symptoms. 

Together, the literature reviewed herein support our argument that pathological changes 

following environmental insults might contribute to the initiation of protein aggregation in 

the olfactory bulb, which then triggers the spread of the pathology within the brain by a 

templating mechanism in a prion-like manner.
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Abbreviations

α-Syn α-synuclein

Aβ beta-amyloid

AD Alzheimer’s disease

AON anterior olfactory nucleus

ALS amyotrophic lateral sclerosis

APP amyloid precursor protein

CBD corticobasal degeneration

CJD Creutzfeldt-Jakob disease

DLB dementia with Lewy bodies

FTD frontotemporal dementia

HD Huntington’s disease

iLBD incidental Lewy body disorder

LBs Lewy bodies
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MCs mitral cells

MCI mild cognitive impairment

MSA multiple system atrophy

OB olfactory bulb

OE olfactory epithelium

ORNs olfactory receptor neurons

ORs olfactory receptors

PAF pure autonomic failure

PD Parkinson’s disease

PSP progressive supranuclear palsy

ROS reactive oxygen species

TCs tufted cells
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Fig. 1. 
Schematic of the olfactory mucosa and different defense mechanisms against pathogens 

entry and cellular damages by environmental exposure. 1) Bowman’s glands secrete the 

olfactory mucus that contains immune factors, lysozymes, enzymes, antioxidants, and 

possibly xenobiotic-metabolizing enzymes capable of viral inactivation, detoxification, 

bacterial degradation, and destruction of pro-inflammatory molecules. 2) The mucus layer in 

which cilia of olfactory receptor neurons (ORNs) are immersed provides electrical insulation 

to the neurons and catches particles and odorants in suspension in the air. 3) Sustentacular 

cells maintaining water and salt balance in the mucus and metabolize xenobiotics. 4) Dense 

network of tight junctions between sustentacular cells and ORNs, and between the serous 

cells of Bowman’s glands, prevent pathogens from infiltrating the olfactory epithelium (OE). 

5) Sustentacular cells might phagocytose debris and dying cells. 6) Damaged ORNs are 

constantly replaced by newborn ORNs, differentiating from the globose cells that derive 

from the horizontal cells. 7) In case of damage to the OE or contamination, neutrophils and 

macrophages can invade the olfactory mucosa though the lamina propria. 8) Ensheathing 

cells protect and electrically isolate the axons of ORNs. 9) Nerve bundles are protected by 

fibroblasts enveloping them. 10) Microglial population localized in nerve bundles and in 

external layers of the olfactory bulb is believed to be in a contact state alert.
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