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16S rRNA amplicon sequencing was used to investigate changes in the broiler 
gastrointestinal tract (GIT) microbiota throughout the rearing period and in combination 
with antibiotic treatment. Thirty birds (from a commercial flock) were removed at multiple 
points throughout the rearing period on days 13, 27, and 33, euthanised, and their GIT 
aseptically removed and divided into upper (the crop, proventriculus, and the gizzard), 
middle (the duodenum, jejunum, and ileum) and lower (the large intestine, the caeca, and 
the cloaca) sections. In a separate commercial flock, on the same farm with similar 
husbandry practices and feed, doxycycline (100 mg/ml per kg body weight) was 
administered in drinking water between day 8 and 12 (inclusive) of the production cycle. 
Birds were removed on days, 13, 27, and 33 and GIT samples prepared as above. The 
contents of three merged samples from each GIT section were pooled (n = 60), the DNA 
extracted and analysed by 16S rRNA amplicon metagenomic sequencing and analysed. 
Major changes in the broiler microbiota were observed as the birds aged particularly with 
the Firmicutes/Bacteroidetes ratio (F:B) of the lower GIT. Moreover, Chao1, ACE, and 
Shannon indices showed the antibiotic treatment significantly altered the microbiota, and 
this change persisted throughout the rearing period. Further research is required to 
investigate the effect of these changes on bird performance, susceptibility to infections 
and Campylobacter carriage.

Keywords: broilers, 16S rRNA amplicon sequencing, gastrointestinal tract microbiota, antibiotic treatment, 
Firmicutes/Bacteroidetes ratio

INTRODUCTION

Poultry is the most consumed meat in the world, with ~14.7 kg/capita consumed annually 
(OECD, 2021). To satisfy this demand, aviculture systems have become very effective at converting 
feed into muscle protein (Clavijo and Flórez, 2018). The microbiota of the gastrointestinal 
tract (GIT) has an important function in this system as they release nutrients from feed, 
provide immunity and promote gut health. Thus, an improved understanding of the broiler 
microbiome could provide the scientific basis for enhanced broiler health, wellbeing and 
productivity (Clavijo and Flórez, 2018; Glendinning et  al., 2019). However, there is currently 
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a dearth of information on the bacterial composition of the 
broiler gut and how this varies depending on the location 
within the GIT.

Firmicutes, Cyanobacteria, Actinobacteria, Proteobacteria, 
and Bacteroidetes are abundant in the broiler GIT (Dragana 
et  al., 2013; Feye et  al., 2020), but the relative abundance of 
the different genera vary considerably depending on the section 
of the GIT (Dragana et  al., 2014; Rychlik, 2020). Lactobacilli, 
for example, are known to be  major colonisers of the upper 
GIT of broilers, where they digest starch and ferment lactate 
(Clavijo and Flórez, 2018).

Several factors affect the microbial composition at different 
regions of the broiler GIT, including breed type, age, gender, 
diet/feed type, antibiotic use, broiler house hygiene, maternal 
factors, and litter type (Clavijo and Flórez, 2018; Kers et  al., 
2018). Antibiotics effectively prevent and treat avian diseases 
in broilers and may also promote growth, although they have 
been banned for the latter use in the European Union since 
2006 and in the United  States of America since 2017 (Roth 
et  al., 2019). Antibiotic treatments suppress pathogens (Maki 
et  al., 2019) but may also cause a dysbiosis that adversely 
effects systemic energy metabolism (Le Roy et al., 2019). Villous 
atrophy, diminished thickness of the tunica muscularis, and 
an increase in T lymphocyte infiltration of the gut mucosa 
have also been associated with microbiota disturbance in the 
broiler GIT after antibiotic treatment (Pereira et  al., 2019). 
Moreover, antibiotics reduce both the stability and composition 
of the microbiota. Lactobacillus spp., for example (essential 
for immunity, metabolism, and bird growth), may decrease in 
treated birds depending on the antimicrobial used (Gao et  al., 
2017; Clavijo and Flórez, 2018; Haberecht et  al., 2020).

Doxycycline was the antibiotic used on the broiler farm in 
this study. It is a broad-spectrum tetracycline antibiotic that 
is widely used in farming (Pavlova, 2015; Blau et  al., 2019). 
However, specific information on how it affects the broiler 
microbiota is lacking.

Broilers are typically provided with three feed types throughout 
their life cycles (starter, grower, and finisher feeds) which may 
affect the GIT microbiota (Saleh et  al., 1997; Greene et  al., 
2020). Starter feeds are high in protein and low in carbohydrates, 
with protein to carbohydrates ratios reversed in finisher feeds 
(Greene et al., 2020). Compositional variations in the successive 
formulations can affect different regions of the broiler GIT 
(Haberecht et  al., 2020). Simple digestible carbohydrates have 
a strong effect on the small intestine as they are quickly 
absorbed and utilised by the microbiota. Dietary fibres, like 
non-digestible carbohydrates, non-starch polysaccharides, 
non-digestible oligosaccharides, and resistant starch, travel to 
the lower intestines and caeca, largely undigested, promoting 
the growth of beneficial bacteria such as Bifidobacterium, 
Lactobacillus spp., Akkermansia muciniphila, and Faecalibacterium 
prausnitzii. Moreover, the metabolic products released by these 
bacteria during the digestion of dietary fibre are beneficial to 
the host’s intestinal and general health (Haberecht et al., 2020). 
While previous studies have examined the broiler gut microbiota, 
data on bacterial composition at different stages of the production 
cycle as the feed type changes and the birds get older is lacking.

The objectives of this study were to provide information 
on the different bacterial phyla and genera in the upper, middle, 
and lower sections of the broiler GIT at different stages in 
the production cycle and to investigate the effect of early 
antibiotic treatment in the production cycle on the broiler 
GIT microbiota.

MATERIALS AND METHODS

Study Design
The two flocks used in this study were raised in separate 
broiler houses on the same commercial farm in County Monaghan 
in Ireland. The treated flock received Doxivex, a commercial 
form of the antibiotic doxycycline, used to treat broilers for 
pasteurellosis, caused by Pasteurella multocida and respiratory 
infections caused by Ornithobacterium rhinotracheale. It was 
administered in drinking water at a concentration of 100 mg/
ml per kg body weight, for 5 days between days 8 and 12, 
inclusive. The untreated birds (control) did not receive any 
antibiotics. Apart from this, all other husbandry practices, 
including feed were similar. Exactly 30 birds were removed 
from each flock on days 13, 27, and 33, midway through their 
starter (provided from day 1–14), grower (day 15–27), and 
finisher feed (day 28–42) diets. These birds were transported 
to a veterinary practice, euthanised via cervical dislocation 
and their gastrointestinal tract (GIT) aseptically removed. GIT 
samples were transported under chilled conditions to our 
laboratory (a journey of ~90 min), where each was immediately 
divided into upper (the crop, proventriculus, and the gizzard), 
middle (the duodenum, jejunum, and ileum), and lower (the 
large intestine, caeca, and cloaca) segments and their contents 
removed. Three of the same sample type were pooled (n = 180) 
and immediately frozen at −80°C. Thus, there were 18 different 
GIT section-treated/untreated-sampling time combinations as 
follows; upper GIT samples; [1] antibiotic treated birds at day 
13 (UT13); [2] treated birds at day 27 (UT27); [3] treated 
birds at day 33 (UT33); [4] untreated birds at day 13 (UU13); 
[5] untreated birds at day 27 (UU27), and [6] untreated birds 
at day 33 (UU33); middle GIT samples; [7] treated birds at 
day 13 (MT13); [8] treated birds at day 27 (MT27); [9] treated 
birds at day 33 (MT13); [10] untreated birds at day 13 (MU13); 
[11] untreated birds at day 27 (MU27), and [12] untreated 
birds at day 33 (MU33); lower GIT samples; [13] treated birds 
at day 13 (LT13); [14] treated birds at day 27 (LT27); [15] 
treated birds at day 33 (LT33); [16] untreated birds at day 13 
(LU13); [17] untreated birds at day 27 (LU27), and [18] untreated 
birds at day 33 (LU33; Table  1).

DNA Extraction, Quantification, 
Qualification, Purification, and Sequencing
DNA was extracted from samples using the DNeasy PowerSoil 
Pro kit (Qiagen, Manchester, United Kingdom). The quality and 
concentration was measured using the NanoDrop 
spectrophotometer (NanoDrop  1,000, ThermoFisher Scientific, 
Dublin). The DNA was then diluted, in sterile water, to a final 
concentration of 1 ng/μl. Next, amplicon generation was performed 
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at Novogene Bioinformatics Technology Co., Ltd. (Beijing, China), 
where distinct 16S rRNA genes of interest were amplified using 
the primer set 16S V3/V4: 515F-806R (amplicon size 466 bp) 
with the barcode included in the PCR product (Yu et  al., 2005). 
PCR reactions were performed using Phusion® High-Fidelity 
PCR Master Mix (New England Biolabs, United  States). PCR 
products were mixed with 1X loading buffer containing SYBR 
green in a 1:1 ratio and electrophoresed on a 2% agarose gel. 
Samples with a bright band at the 400–450-bp marker were 
excised using the Qiagen Gel Extraction Kit (Qiagen, Germany). 
DNA libraries were prepared using the NEBNext® Ultra™ DNA 
Library Prep Kit (New England Biolabs, United  States) for 
Illumina and quantified via Qubit and qPCR. Libraries were 
analysed on the Illumina NovaSeq  6000 platform.

Statistical Analysis
Processing of Sequence Data
Paired end reads were assigned to samples using the unique 
barcodes incorporated into each amplicon. Following this the 
barcode and primer sequences were excised and truncated paired 
end reads were merged using FLASH (V1.2.7; Magoč and 
Salzberg, 2011). Quality filtering of these raw tags was performed 
using the Qiime (V1.7.0) quality controlled process, yielding 
high quality clean tags (Caporaso et  al., 2010; Bokulich et  al., 
2013). The SILVA (release 138) database was used as a reference 
database for comparison of high quality tags using the UCHIME 
algorithm to detect chimera sequences, which were removed, 
producing the effective tags (Edgar et al., 2011; Haas et al., 2011).

OTU Cluster and Taxonomic Annotation
Uparse software (v7.0.1090) was used to perform sequence 
analysis on all effective tags (Edgar, 2013). Sequences with 
≥97% similarity were assigned to the same Operational 
Taxonomic Unit (OTU) and a representative sequence for each 
OTU was screened, as follows, for further annotation. Each 
representative sequence was screened via Qiime (Version 1.7.0) 
using the Mothur pipeline and SILVA’s SSUrRNA database, 
providing species annotation at each taxonomic rank (Altschul 
et al., 1990; Wang et al., 2007; Quast et al., 2013). The phylogenetic 
relationship of all OTUs was obtained using MUSCLE (version 
3.8.31; Edgar, 2004). This data was then normalised using the 
sequence number corresponding to the sample with the least 
sequences as a standard. Alpha and beta diversity analyses 
were performed on this normalised data.

Alpha Diversity, Beta Diversity, LEfSe Analysis, 
and Statistical Analysis
The complexity and diversity of samples was analysed using 
three alpha diversity indices: ACE, Chao1, and Shannon. All 
diversities were calculated using Qiime (version 1.7.0) and 
visualised with R software (version 2.15.3). Differences in the 
species complexity of samples was analysed via beta diversity 
utilising both weighted and unweighted unifrac, using Qiime 
software (version 1.7.0). Principal component analysis (PCA) 
was used to perform cluster analysis. The dimension of the 
original variables was reduced using the FactoMineR and ggplot2 
packages in R software (version 2.15.3). Principal Coordinate 
Analysis (PCoA) was then used to obtain principal coordinates 
and visualise the complex multidimensional data. A distance 
matrix of weighted and unweighted unifrac data was transformed 
into a new set of orthogonal axes where the maximum factor 
was demonstrated by first principal coordinate, and the second 
maximum factor by the second principal coordinate, et cetera. 
The WGCNA, stat, and ggplot2 packages in R software (version 
2.15.3) were used to display PCoA analysis. Linear discriminant 
analysis Effect Size (LEfSe) software was used to conduct LEfSe 
analysis. A permutation test was used to calculate p-value, 
(White et  al., 2009) and T-test and drawing was conducted 
using R software. The relative abundance of the top five phyla 
and genera at each time point and in each GIT section were 
compared between treated and untreated birds using the paired 
Wilcoxon test and p-values were adjusted using the 
Bonferroni correction.

Ethical Approval
The experimental design and protocols in this study were 
approved by the Teagasc Animal Ethics Committee on the 
27th May 2021 (TAEC2021-305).

RESULTS

OTU Identification and Taxonomic 
Annotation
There were 82,087, 74,009, 75,472, 80,994, 75,963, and 74,591 
OTUs in the UT13, UT27, UT33, UU13, UU27, and UU33 
samples, respectively. The corresponding number of OTUs in 
the MT13, MT27, MT33, MU13, MU27, and MU33 samples 
were 69,376, 76,307, 79,951, 69,497, 77,290, and 79,130, 
respectively, while those in the LT13, LT27, LT33, LU13, LU27, 

TABLE 1 | The 18 different GIT section-treated/untreated-sampling time combinations in this study.

Time (day) Untreated Treated

Upper Middle Lower Upper Middle Lower

13 UU13 MU13 LU13 UT13 MT13 LT13
27 UU27 MU27 MU27 UT27 MT27 LT27
33 UU33 MU33 LU33 UT33 MT33 LT33

The upper consists of the crop, proventriculus, and the gizzard, the middle consists of the duodenum, the jejunum, and the ileum, and the lower consists of the large intestine, the 
caeca, and the cloaca.
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and LU33 samples were 57,342, 55,941, 54,013, 58,308, 56,352, 
and 57,352, respectively.

The top  10 phyla for each section of the GIT at the 
different sampling times for the untreated and treated birds 
is shown in Figure 1. The most common phylum was Firmicutes, 
which made up  60 to 96% of the bacterial composition, 
regardless of the sample type. Thereafter the most common 
phyla were Proteobacteria, Bacteroidetes, and Actinobacteria, 
which made up  1%–38%. However, the exact order varied 
depending on the GIT section, treatment/no treatment and/
or the sampling time. Other phyla detected included 
Cyanobacteria, Tenericutes, Melainabacteria, Fusobacteria, 
Euryarchaeota, Verrucomicrobia, Deferribacteres, 
and Lentisphaerae.

In the upper GIT at the first time point Blautia, unidentified 
Cyanobacteria, unidentified Lachnospiraceae, Faecalibacterium, 
Subdoligranulum, Bifidobacterium, Bacteroides, Ralstonia, 
unidentified Clostridiales, unidentified Ruminococcaceae, 
Anaerostipes, Butyricicoccus, and Intestinimonas were detected 
at a higher concentration in the antibiotic treated birds 
(UT13) than in the samples from untreated (UU13), which 
contained Streptococcus, and Helicobacter in higher 
concentrations (Figure  2A). At the second sampling time 
similar genera were present in both the UT27 and UU27 
samples, with no genera found to have a higher relative 
abundance between samples. At the final sampling 
Acinetobacter, Brevibacterium, Brachybacterium, Aerococcus, 

Jeotgalicoccus, unidentified Corynebacterium, Dietzia, 
Facklamia, Jeotgalibaca, Barnesiella, Kurthia, and 
Parabacteroides were detected at a higher concentration in 
the UT33 samples, while a greater amount of Rothia, 
Leuconostoc, unidentified Enterobacteriaceae, Enterococcus, 
Staphylococcus, and Weissella were found in the UU33 GIT 
contents. A similar pattern was observed in the middle GIT 
sections with Sellimonas, Faecalibacterium, Bifidobacterium, 
unidentified Cyanobacterium, Ralstonia, Aerococcus, 
Erysipelatoclostridium, Eisenbergiella, Anaerostipes, Candidatus 
Arthomitus, Intestinimonas, unidentified Ruminococcaceae, 
unidentified Erysipelotrichaceae, and Negativbacillus genera 
present at a higher concentration in the MT13 samples, while 
a higher concentration of the genus Dietzia was identified 
in the MU13 treatment group (Figure  2B). By day 27, with 
the exception of Bacteroides, which was elevated in treated 
samples, the same genera were detected in the treated and 
untreated middle GIT samples.

At day 33, the genera found in the treated and untreated 
samples were different, with Parabacteroides and Barnesiella 
present in a higher abundance in the MT33 samples and 
Weissella, Rothia, and Megamonas found in a larger quantity 
in the MU33 samples. Interestingly, there were fewer 
differentiating genera between treated and untreated samples 
in the lower GIT compared to the upper and middle sections. 
The only difference in the LT13 and LU13 samples was the 
presence of Bifidobacterium in the former and Megamonas in 

A B

C

FIGURE 1 | The top 10 phyla for each GIT section is shown, demonstrating the microbiome changes occurring in antimicrobial treated (T) and untreated (U) birds in 
the (A) upper (U), (B) middle (M) and (C) lower (L) GIT and following changes in feed type on day (D) 13, 27, and 33.
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the latter (Figure 2C). The LT27 samples contained Intestinimonas, 
unidentified Clostridiales, and unidentified Ruminococcaceae, 
which was not found in the LU27 samples but 
Phascolarctobacterium was exclusively present in the latter. At 
final sampling, the LT33 samples had six genera (Parabacteroides, 
Oscillibacter, Enterococcus, Romboutsia, unidentified 
Corynebacteriaceae, and Streptococcus) that differentiated them 
from the LU33 samples. Moreover, these contained Desulfovibrio, 
Satterella, and Faealitalea that were not detected in the 
treated birds.

Despite these observed differences, analysis of the relative 
abundance of the top five phyla between treated and untreated 
birds in each GIT section at each time point indicated few 
significant differences were observed, except in the lower GIT 
where, at days 13 and 27 the relative abundance of Bacteroidetes 
was significantly decreased in treated birds in comparison with 
untreated birds (p < 0.005; Supplementary Figure S1). On the 
other hand the relative abundance of Actinobacteria was 
significantly increased in treated birds in the lower GIT on 
day 13 (p < 0.05). In the upper GIT there was a significantly 
greater relative abundance of Bacteroidetes on day 13 in treated 
birds (p < 0.0005).

A similar outcome was observed in the comparison of the 
relative abundance of the top five genera between treated and 
untreated birds in each GIT section at each time point, with 
the main changes being observed in the lower GIT. The relative 
abundance of Bifidobacterium was significantly greater (p < 0.05; 
Supplementary Figure S2) in treated birds on Day 13, while 
it was significantly greater (p < 0.05) for Lactobacillus on day 
27. The relative abundance of the Bacteroides genus was 

significantly reduced (p < 0.005) in treated birds in the lower 
GIT at all three time points.

Alpha Diversity Analysis
The number of shared and unshared OTUs are shown in 
Figure  3 for the upper (A), middle (B) and lower (C) GIT 
samples. Comparing treated vs. untreated broilers, the number 
of unshared OTUs in the upper GIT were 266 and 60, 14 
and 23, and 78 and 281 at times 13, 27, and 33 days, respectively. 
The corresponding values for the middle GIT were, 421 and 
93, 131 and 52, and 33 and 56, respectively, while in the 
lower GIT samples, unshared OTUs numbered 75 and 72, 134 
and 114, and 109 and 102, respectively. Three indices were 
used to measure the alpha diversity in both flocks, in each 
section of the GIT, at every time-point. Wilcox and Tukey 
tests were performed on each diversity index in order to 
establish statistical significance (Table 2). Statistical significances 
(p ≤ 0.05) were observed in at least one diversity index in all 
of the following comparisons: the untreated flock vs. the treated 
flock at the same time-point (day 13, day 27, and day 33), 
the untreated flock at day 13 vs. day 27, and day 27 vs. day 
33, and the treated flock at day 13 vs. day 27, and day 27 
vs. day 33.

Beta Diversity Analysis
The NMDS plot (Figure  4) for the upper, (A), middle (B), 
and lower (C) GIT show six distinct clusters of OTUs in the 
upper and five in the middle and lower GIT samples. Thus, 
the OTUs obtained are distinct for each of the treated/untreated 

A B C

FIGURE 2 | Heat maps showing the 35 top genera in each section of the GIT. (A) Shows the relationship between the top 35 genera in the upper GIT in both 
flocks at all sampling points, while (B) shows the middle GIT, and (C) shows the lower GIT.
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and sampling time combinations with the exception of the 
MT13 and MU27 samples.

LEfSe analysis was used to identify differential OTUs present 
between the samples (Figure  5). On day 13, the difference in 
the OTUs was attributed to the prevalence (presence and/or 
abundance) of Lactobacillus salivarius, Clostridia, Clostridiales, 
Bambusa oldhamii, Ruminococcaceae, and Lachnospiraceae in 
the UT13 samples, Corynebacterium, Staphylococcus, 
Staphylococcaceae, Corynebacteriaceae, and unidentified 
Corynebacteriaceae in MU13 samples, 6 different OTUs (3 
Bifidobacteriaceae, unidentified Actinobacteria, Actinobacteria, 
and Clostridium marseillep-3244) in the LT13 samples, and 7 
OTUs (Selenomonadales, Negativicutes, Megamonas, 
Veillonellaceae, Bacteroides dorei, Subdoligranulim, and 
Megamonas hypermegale.) in the LU13 samples. On day 27, 
the differentiating OTUs included Lactobacillus agilis in the 
UU27 samples, and 3 OTUs within the family Streptococcaceae 
in MT27 samples. On day 33 differentiating OTUs included 
Corynebacterium stationis in the UT33 samples, L. agilis in 
the UU33 samples, Lactobacillus aviarius, an unidentified 
bacterial phylum, campylobacterales, an unidentified bacterial 
class, and Helicobacter in MU33, and 2 OTUs (Lactobacillales 
and Bacilli) in MT33 (Figure  5B). On day 33, the differences 
in the lower GIT section were attributed to the prevalence of 
nine distinct OTUs (three Streptococcaceae, two Parabacteroides, 
Tannerellaceae, L. salivarius, Peptostreptococcaceae, and 

Romboutsia) in the LT33 samples and three OTUs in the LU33 
samples (Bacteroides cascicola, Rikenellaceae, and Allistipes) 
(Figure  5C).

DISCUSSION

16S rRNA amplicon sequencing was used in this study to 
investigate changes in the broiler gastrointestinal tract (GIT) 
microbiome with age and antibiotic treatment. The limitations 
to this study included the sample size, the use of a single 
antibiotic, limited repetition and the absence of data on the 
microbiota of the broilers before treatment. Although 180 
samples were analysed, this was divided into 18 different GIT 
section-treated/untreated-sampling time combinations and thus 
there were only 10 samples per combination. Sampling was 
also limited to three separate time points, when the birds 
were on starter, grower and finisher feeds. Thus the microbiota 
were influenced by the combination of antibiotic × age × feed 
type. While it could be  argued that the control covers the age 
and feed factors, the two flocks were raised in separate broiler 
houses when ideally the treated and untreated birds would 
have been in the same broiler house as the specific environment 
will influence the microbiota (Kers et  al., 2018). However, this 
was not possible in a commercial setting and the best that 
could be  achieved was to have the two broiler houses on the 

A B

C

FIGURE 3 | Flower Venn diagram depicting the shared and unshared OTUs between for the upper (A), middle (B) and lower (C) GIT samples at each time point. 
Each petal represents a single sample group at a single time point. The number inside each petal represents the number of unique OTUs for that sample.
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same farm. This study examined the effect of one antibiotic, 
doxycycline, administered in drinking water at a single 
concentration of 100 mg/ml per kg body weight between days 
8 and 12 thus the results only apply to this particular treatment 
strategy. Regardless of these limitations, the data generated, 
none-the-less, add to our growing knowledge and understanding 
of the broiler GIT microbiota including how this may vary 
depending on location, specific antibiotic treatment, age and/
or feed.

The most common phylum was Firmicutes (regardless of 
GIT section or sampling time) while Cyanobacteria, 
Actinobacteria, Proteobacteria, and Bacteroidetes were also 
relatively abundant. Other studies have also reported that these 
phyla are abundant in the broiler GIT (Dragana et  al., 2013; 
Feye et  al., 2020). In contrast, the relative abundance of the 
different genera varied considerably depending on the section 
of the GIT and/or the sampling time, as previously reported 
(Dragana et al., 2014; Rychlik, 2020). These included Lactobacillus, 
known to be  major colonisers of the upper GIT of broilers, 
where they digest starch and ferment lactate (Clavijo and Flórez, 
2018) and Ralstonia, a phytopathogen associated with huge 
agricultural losses worldwide (Elsayed et  al., 2020) and with 
nosocomial infections in immunocompromised patients (Fang 
et  al., 2019).

The relative abundance of Lactobacillus (phylum Firmicutes, 
class Bacilli, order II Lactobacillales, and family Lactobacillaceae) 
and Bifidobacterium (phylum Actinobacteria, class Bacilli, order 
Bifidobacteriales and family Bifidobacteriaceae) varied over the 
course of this study, possibly due to the different composition 
of carbohydrates in the starter, grower and finisher feeds. The 
former are usually higher in corn based feeds while wheat 
favours Bifidobacterium (Shang et  al., 2018).

As the birds got older, the relative abundance of Lactobacillus 
and Weissella (phylum Firmicutes, class Bacilli, order 
Lactobacillales and family Leuconostocaceae) increased in the 
upper and middle GIT. Di Cesare et  al. (2019) made a similar 
observation and attributed this to the decrease in the crude 
protein concentration of the feed as the birds matured. However, 
changes in the fibre content in the feed may also play a role 
in bacterial selection, especially soluble fibres which act as 
prebiotics, promoting the growth of beneficial bacteria such 
as Lactobacillus and Weissella (Jha and Mishra, 2021).

When these bacteria digest finisher feed, they produce short 
chain fatty acids, which in turn, serve as an energy source 
for other bacteria. Thus, as previously observed by Walugembe 
et  al. (2015), it was not unexpected that Megamonas (phylum 
Firmicutes, class Negativicutes, order Selenomonadales, and 
family Veillonellaceae), Helicobacter (phylum Proteobacteria, 
class Epsilonproteobacteria, order Campylobacterales, and family 
Helicobacteraceae) and Rothia (phylum Actinobacteria, class 
Actinobacteria, order Micrococcales, and family Micrococcaceae) 
were relatively abundant in the untreated flock on day 33.

Doxycycline is a broad-spectrum antibiotic in the tetracycline 
class of antibiotics and is used to treat colibacillosis, pasteurellosis, 
mycoplasmosis, and chlamydiosis in poultry (Cristina et  al., 
2010; Pavlova, 2015; Blau et  al., 2019). Bifidobacterium (all 
samples), Bacteroidetes (upper GIT on day 13 and in the lower TA
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GIT on days 13, 27, and 33), Enterobacteriaceae (middle GIT 
on day 13) and Lactobacillus (upper and middle GIT) were 
more abundant in the treated vs. untreated birds. Environmental 
factors influence broiler microbiota (Kers et  al., 2018) and may 
have contributed to the observed differences in the microbiota 
from the treated and untreated birds in our study. However, as 
the house design, broiler husbandry practices, biosecurity level, 
litter, feed access and climate were the same in the two broilers 
houses used, the impact of these factors was likely to be minimal.

Although comparative studies are scarce, Videnska et  al. 
(2013) reported a decreased abundance of Bifidobacteriales, 
Bacteroidales, Clostridiales, Desulfovibrionales, Burkholderiales, 
and Campylobacterales and an increased prevalence of 
Enterobacteriales and Lactobacillales (specifically Enterococcus 
and Escherichia) in the faecal microbiota of broilers that received 
tetracycline therapy. Interestingly, this effect was reversed 
24-h post treatment. (Maki et  al., 2019) and the authors also 
observed increased shedding of Enterococcus and Escherichia 
in tetracycline treated broiler faeces.

In the present study, microbial diversity was significantly 
(p ≤ 0.05) affected by sampling time, antibiotic treatment and 
location within the GIT. Gao et  al. (2017) suggested that 
antibiotic treatments delayed microbiota maturation while 
Dragana et al. (2014) previously reported significant differences 
in the microbiota of the different sections of the broiler GIT.

The NMDS and LEfSe analyses clearly demonstrated changes 
in the microbiota over time, possibly driven by changes in 

feed or maturation of the GIT. Our previous research suggested 
that the microbiota has a key role in establishing conditions 
that facilitate the survival and growth of Campylobacter (Greene 
et  al., 2020). Although it may be  coincidental, these pathogens 
are rarely detected in broilers before day 14 (Facciolà et  al., 
2017; Greene et  al., 2020), which corresponds with the change 
in feed type from starter to grower and changes in the microbiota. 
Campylobacter is the most common cause of bacterial 
gastroenteritis globally with broilers the primary reservoir [26% 
of broilers and 38% of broiler carcasses within the European 
Union were found to be  contaminated with Campylobacter in 
2018 [EFSA (European Food Safety Authority), 2019]. Although 
not an objective of this research, our data suggests that further 
studies should be  undertaken to investigate the link between 
age, diet, microbiota and Campylobacter carriage in broilers.

CONCLUSION

It was concluded that the microbiota in the broiler GIT is 
influenced by doxycycline treatment but also the age of the 
birds and the location within the GIT. Future research should 
focus on gaining a better understanding of the factors such 
as gut maturation and changes in feed type that influence 
the microbiota and, in turn, how the microbiota can 
be  manipulated to prevent carriage of human pathogens such 
as Campylobacter.

A B

C

FIGURE 4 | NMDS plots of the three GIT sections showing distinct clusters of OTUs in the upper (A), middle (B), and lower (C) GIT samples.
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