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Review Article

Introduction

Neutrophils are an essential component of the host response 
against invading pathogens, thought to be the first line of defense 
in the innate immune system against infection and constitute 
approximately 70% of the leukocytes in the peripheral blood.[1] 
In response to inflammatory stimuli, neutrophils migrate from 
the circulating blood to infected tissues, where they can 
efficiently bind, engulf, and inactivate pathogens through 
phagocytosis, degranulation, and the release of neutrophil 
extracellular traps  (NETs).[2] The formation of NETs is a 
recently discovered mechanism of host defense against invading 
pathogens. When an organism becomes infected or stimulated 
to induce inflammation, neutrophils are activated and release 
NETs. These NETs are composed of granules and nuclear 
constituents that disarm and kill pathogens extracellularly 

through a series of activated signaling pathways. However, 
NETs can both also cause potential detriment, depending on 
the location, timing, and extent of inflammatory response. 
Therefore, the creation of too many NETs at a particular time 
or location can cause tissue damage of the host organism.

Asthma and chronic obstructive pulmonary disease (COPD) 
are representative chronic inflammatory airway diseases 
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responsible for a considerable burden of disease.[3] Both 
asthma and COPD involve an obstruction in airflow, which 
is reversible in asthma but progressive and irreversible 
in patients with COPD.[4] In addition, both diseases are 
recognized for their heterogeneous nature, particularly 
regarding the type of inflammation within the lungs.[3] 
However, the underlying pathogenesis of asthma and COPD 
remains poorly understood, treatment options contain 
deficiencies, and further exploration of targeted therapy is 
urgently required.

Existing research indicated that intra‑airway neutrophils are 
associated with the resistance of corticosteroids in asthmatics,[5] 
disease progression in COPD,[6] and the clinical severity and 
exacerbations of COPD.[7] Despite the positive role of NETs 
in the resistance to infection, one recent study demonstrated 
that NETs exist in the airways of patients with chronic 
inflammatory airway diseases.[8] Moreover, the accumulation 
of NETs is related to the activation of the innate immune 
response, which contributes to the disease pathogenesis in 
chronic inflammatory airway diseases.[8] Although it remains 
unclear how NETs participate in the pathogenesis of chronic 
inflammatory airway diseases, the significance of NETs in 
that diseases should not be ignored. This article provides an 
overview of the recent advances in NETs research, including 
the composition and functionality of NETs, as well as their 
relationship with asthma and COPD [Figure 1].

Neutrophil Extracellular Traps

Neutrophil extracellular trap structure
In 2004, Brinkmann et al.[2] first reported that NETs consist of 
extracellular three‑dimensional web‑like scaffolds of DNA 
strands adorned with histones and antimicrobial proteins, 
which are released from activated neutrophils.[9] DNA is a 
major structural component of NETs consisting of granule 
and cytoplasmic proteins  (e.g.,  neutrophil elastase  [NE], 
myeloperoxidase  [MPO], cathepsin G, proteinase 3, 
gelatinase, cathelicidins, lysozyme, defensins, lactoferrin, 
and calprotectin) as well as histones H1, H2A, H2B, H3, and 
H4, embedded in the DNA backbone.[1,10] The integrity of the 
NET structure provides the basis for its functionality and the 
structure of NET can be seen in recent reports[1,11] [Figure 1].

Neutrophil extracellular trap formation
Multiple studies demonstrated that a variety of biological 
molecules  (e.g.,  interleukin‑8  [IL‑8],[11] tumor necrosis 
factor‑α [TNF-α],[12] platelet‑activating factor (PAF),[13] 
lipopolysaccharide  [LPS],[14] antineutrophil cytoplasmic 
antibodies,[15] and granulocyte/macrophage colony‑stimulating 
factor [GM-CSF] with complement factor 5a [C5a].[16]) 
produced by organisms or pathogens can induce the activation 
of neutrophils. Subsequently, activated nicotinamide adenine 
dinucleotide phosphate oxidase 2  (NOX2) generates a 
large amount of reactive oxygen species  (ROS) which 
can lead to fission of the neutrophil nuclear membrane 
through binding to toll‑like receptor 4 (TLR4). Moreover, 
intracellular NE and MPO migrate to the nucleus through 
the division of the neutrophil nuclear membrane, where they 
partially degrade specific histones and promote chromatin 
decondensation.[17] In addition, the citrullination of histones 
induced by peptidylarginine deiminases 4 (PAD4) further 
promotes chromatin decondensation.[18] However, the precise 
mechanisms that lead to PAD4 activation in this process 
remain largely unknown. Only one study reported that 
calcium binding may be involved in the activation of PAD4 
and ROS may be involved in regulating PAD4 activation.[19] 
Following chromatin decondensation, the loose chromatin 
mixes with the granular cytoplasm and various proteins, and 
then all of which are ejected into the extracellular space, 
forming NETs.

Mechanism of neutrophil extracellular trap occurrence
Due to the release of NETs, a novel cell death program 
termed NETosis, which is distinct from apoptosis and 
necrosis, is triggered.[10] NETosis is an irreversible process 
that studies have found to be highly dependent on ROS 
production, known as NOX‑dependent NETosis; however, 
a recent groundbreaking report revealed that in response to 
an acute infection with Staphylococcus aureus, neutrophils 
retain the ability to multitask when releasing NETs, which 
was found to be NOX‑independent.[20] Currently, studies 
reported that platelet TLR4 and activated PAD4 are crucial 
to the process of NETs formation,[13,21] while others indicated 
that the direct contact between neutrophils and LPS without 
the involvement of platelet TLR4 can also cause NET 
formation.[22‑24] To date, the mechanism of NETosis remains 

Figure 1: Role of neutrophil extracellular traps in the chronic obstructive 
airway diseases. In the airways of asthmatic and chronic obstructive 
pulmonary disease patients, neutrophils can be stimulated by a variety 
of biological molecules  (eg., interleukin‑8 [IL-8], tumor necrosis 
factor‑α [TNF-α], lipopolysaccharide [LPS], granulocyte/macrophage 
colony‑stimulating factor [GM-CSF]) produced by organisms or 
pathogens. Activated neutrophils can release neutrophil extracellular 
traps (NETs) which are composed of histones, neutrophil elastase (NE), 
myeloperoxidase (MPO), cathepsin G, and DNA. The components of 
neutrophil extracellular traps could damage airway epithelium and 
trigger inflammatory responses (the structure of neutrophil extracellular 
trap is adapted from Camicia 2014 and Cheng 2013). Furthermore, 
the components of neutrophil extracellular traps might induce mucus 
hypersecretion and airway remodeling to exacerbate asthma and 
chronic obstructive pulmonary disease.
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poorly understood and requires further study. However, it is 
known that the activation of NOX plays an important role in 
NETosis and the NOX‑dependent NETosis signaling cascade 
includes the Raf/mitogen‑activated protein kinase (MEK)/
extracellular signal‑regulated kinase (ERK) and p38 
mitogen‑activated protein kinases (MAPK) pathways.[25‑27] 
Furthermore, the TLR4‑myeloid differentiation factor 
88  (MyD88) signaling pathway is also essential for the 
release of NETs from neutrophils.[28,29]

Function of Neutrophil Extracellular Traps

Positive effect of neutrophil extracellular traps
NETs have been shown to aid in the entrapment and 
killing of Gram‑positive bacteria, Gram‑negative bacteria, 
fungi, parasites, and protista.[10,21,22,29] They are also formed 
during viral infections,[30] likely providing a protective role 
in the infected host. The constructive function of NETs 
was indirectly demonstrated in chronic granulomatous 
disease (CGD) patients with severe aspergillosis. CGD is an 
inherited immunodeficiency disease caused by nonfunctional 
NOX2;[25] this defect interferes with phagocytic killing 
and prevents NET formation. The ability of NETs to trap 
and kill pathogens depends on the integrity of the DNA 
network structure and its internal bactericidal substances,[2,25] 
including histones, MPO, serine proteinase, lactoferrin, 
and lipocalin 2. It has been well established that histones 
are able to kill bacteria more effectively than common 
antimicrobials.[31] In particular, NE can cleave a number 
of enterobacterial virulence factors and prevent bacterial 
escape from the phagolysosome.[2,32] In addition, serine 
proteinase is positioned to penetrate and disrupt bacterial 
membranes through their cationic charge,[33] and lactoferrin 
and lipocalin 2 can restrict the supply of important nutrients 
to microbes through chelating iron and interfere with 
its absorption.[33,34] Furthermore, MPO can catalyze the 
formation of hypochlorite which is bactericidal. NETs might 
also help prevent the spread of microbe by forming a physical 
barrier and scaffold to enhance antimicrobial synergy while 
minimizing damage to host tissues. However, increasing 
evidence revealed that many pathogenic microorganisms 
can avoid entrapment by NETs using diverse methods. For 
example, Streptococcus pneumonia can escape NETs by 
changing their surface charge, creating a polysaccharide 
capsule or secreting deoxyribonuclease (DNase) which can 
degrade NETs.[35,36] Importantly, one study of gout found that 
aggregated NETs are formed during the gout inflammatory 
process when there is a high neutrophil density and are 
capable of degrading cytokines and chemokines via serine 
proteases.[37] Furthermore, aggregated NETs constitute an 
anti‑inflammatory mechanism and reduce the recruitment 
and activation of neutrophils during acute gout.[37]

Negative effects of neutrophil extracellular traps
NETs are important components of the host defense 
response and provide a novel immune mechanism against 
infectious agents. While under normal condition, human 
DNase and monocyte‑derived macrophages can clear NETs 

efficiently,[38] growing evidence suggested that the excessive 
production of NETs and the inefficient dismantling of these 
structures might potentially damage the host. Research 
suggested that the decreased ability of lupus nephritis 
patients to degrade NETs is due to the production of DNase 
I inhibitors or anti‑NETs antibodies, thereby contributing 
to disease progression.[39] Moreover, Saffarzadeh et  al.[31] 
found that NETs can directly induce the death of human 
epithelial and endothelial cells, suggesting that NETs have 
potentially cytotoxic effects. The general cytotoxic capability 
of NETs is associated with its components, with histones 
playing a predominant role in the cytotoxic effect. Other 
substances, such as NE, can efficiently degrade extracellular 
matrix components that mediate neutrophil‑induced tissue 
damage,[40] and cathepsin G digests the connective tissue and 
cell surface proteins resulting in lung injury. Furthermore, 
MPO can degrade endothelial cell matrix heparan sulfate 
proteoglycan in concert with NE to induce capillary leakage 
and proteinuria.[41]

Therefore, there appears to be a balance between pathogen 
defense and host tissue damage regarding the functionality 
of NETs. On the one hand, NETs are able to entrap and kill 
pathogens, degrade cytokines and chemokines, as well as 
function as a valuable antimicrobial defense mechanism. On 
the other hand, NETs can lead to organ failure and even death 
if the regulatory mechanisms are absent or fail. Therefore, it 
is of great clinical significance to acknowledge the beneficial 
effects of NETs and simultaneously reduce their potentially 
harmful effects.

Neutrophil Extracellular Traps and Asthma

Asthma is a highly prevalent chronic inflammatory lung 
disease characterized by airway hyperresponsiveness to 
allergens, reversible airflow obstruction, airway edema, 
and increased mucus secretion.[42] Currently, asthma can be 
divided into four distinct phenotypes termed eosinophilic, 
neutrophilic, mixed granulocytic, and pauci-granulocytic 
phenotypes by investigating granulocyte infiltration in 
induced sputum.[43] Although the majority of patients with 
eosinophilic asthma are sensitive to corticosteroids, there 
is recognition that some asthmatics, particularly those who 
have severe disease and are resistant to corticosteroids, have 
elevated neutrophil counts in their airways. The number 
of neutrophils in the induced sputum of asthmatics is 
significantly correlated with the degree of airway obstruction 
and the levels of IL‑8.[11] Moreover, the neutrophilic 
granulocyte count in the bronchoalveolar lavage fluid of 
asthmatic patients is used to distinguish moderate to severe 
asthma from mild asthma.[11] Furthermore, it has been 
shown that neutrophils play a vital role in the exacerbation 
of asthma by inducing mucus hypersecretion and airway 
remodeling, which results in acute reversible and progressive 
irreversible airway obstruction, respectively.[44] In addition, 
glucocorticoid administration to neutrophilic asthmatics 
can aggravate lung inflammation and damage lung tissue, 
since glucocorticoids can augment the potential effect 
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of neutrophils by delaying their apoptosis and ultimate 
clearance from lung tissue.[45] Although neutrophils are 
thought to decrease lung function, the specific mechanism 
of neutrophils affect lung functionality remains unclear. 
A new perspective has emerged in light of one recent report, 
which showed that extracellular DNA traps can be generated 
by eosinophils and neutrophils in human atopic asthmatic 
airways in vivo.[46] Moreover, it is suggested that both NETs 
and eosinophil extracellular traps (EETs) are present in the 
airways of asthmatics.[46] The levels of extracellular DNA and 
NETs components in the induced sputum are significantly 
higher in neutrophilic versus nonneutrophilic asthma.[47] In 
addition, antimicrobial proteins and extracellular DNA were 
found to be positively correlated with airway neutrophils 
and negatively associated with lung function, respiratory 
symptoms, and disease control.[47] These effects lead to 
the extensive accumulation of NETs which aggravate the 
condition of asthmatics and promote the progression of the 
disease. A new study demonstrated that NETs can damage 
airway epithelium and trigger inflammatory responses, 
which could aggravate the severity of asthma.[48] However, 
to the best of our knowledge, the mechanisms by which 
NETs influence the progression of asthma have not been 
clearly elucidated. The initiating factor for inducing 
NETosis remains undefined. A interestingly report showed 
that although allergen challenge can increase eosinophils 
and neutrophils in the bronchoalveolar lavage fluid of 
asthmatics which cannot increase NET or EET formation in 
the airways of asthmatics.[46] It has been found that the level 
of LPS in asthmatics is elevated, indicating that NETosis 
might be related to the presence of LPS.[8] In addition, 
IL‑8 is a potential trigger of NETosis in these airways as 
it has previously been shown to induce NETosis in other 
studies.[2,10,48,49] Côté et al.[50] revealed that NETs formation 
in an equine model of recurrent airway obstruction was 
significantly reduced in a time‑ and concentration‑dependent 
manner by secretoglobin family 1A member 1 (SCGB 1A1), 
a small protein primarily secreted by mucosal epithelial cells 
of the lungs. Therefore, the low concentration of SCGB 1A1 
in asthmatics might promote NET formation. Moreover, 
SCGB 1A1 might play a role in regulating NETosis in the 
lung; however, the factors that affect the formation of NETs 
in the airways of asthmatics are also unclear and require 
further study.

In the airways of asthmatics, NETs produced by activated 
neutrophils might enhance resistance to infection; however, 
the enhanced accumulation of NETs will aggravate the 
patients’ condition, particularly in neutrophilic asthmatics 
in whom the ability of alveolar macrophages to degrade 
and remove NETs is impaired.[38,51] Similarly, the sputum 
of patients with cystic fibrosis  (CF) contains abundant 
NETs that make it difficult to expectorate thick sputum. 
Moreover, DNase therapy can degrade the structure of 
DNA so that to treat CF.[52] Therefore, we consider that 
reducing the formation of NETs will be beneficial to 
asthmatics. However, Dubois et  al.[53] demonstrated that 
CF patients treated with DNase resulted in an increasing in 

NE activity and subsequent injury to the lung tissue. In a 
mouse model of asthma,[42] it was observed that extracellular 
DNA in mucous was involved in lower airway obstruction 
in an ovalbumin‑induced model of asthma. In particular, 
lung functionally was improved by means of treatment 
with an intranasal administration of recombinant human 
DNase.[42] This study provides a novel viewpoint that the 
use of recombinant human DNase is a potential strategy 
for preventing tissue damage in asthmatics when the NET 
formation appears to be detrimental.

Neutrophil Extracellular Traps and Chronic 
Obstructive Pulmonary Disease

COPD is affiliated with smoking and the exposure to 
environmental fumes and is typically characterized 
by recurrent bacterial infections, persistent neutrophil 
infiltration, emphysematous alveolar wall destruction, and 
persistent airflow limitation.[9,54] It has a substantial impact 
on the quality of life and life expectancy, as well as currently 
being the third leading cause of mortality and the fifth leading 
cause of disability on a global scale.[55,56]

The infection is the main predisposing factor to cause 
COPD patients to change from being in periods of a stable 
condition to severe episodes of worsening (exacerbations), 
leading to an increasing impairment of lung function. The 
activation and aggregation of neutrophils in the lung is 
an important part of COPD inflammatory process, and 
neutrophils can induce chronic airway mucus hypersecretion 
and the destruction of the lung parenchyma through the 
release of NE, which is the main constituent of NETs and 
other active substances. The NE plays a pro‑inflammatory 
role in COPD, particularly by stimulating the secretion of 
IL‑8.[57] Thus, COPD is a prominent candidate for NETs 
formation and NETosis‑mediated tissue damage, with 
clearly morphological evidence showing that NETs are 
present in the induced sputum of patients in both stable and 
exacerbated COPD.[9,58] Furthermore, Grabcanovic‑Musija 
et al.[58] demonstrated that NETs formation in COPD patients 
were correlated with the severity of the airflow limitation. 
Therefore, it is assumed that NETs are responsible for the 
chronic inflammatory and lung function decline in COPD 
patients. However, the pathophysiology of NETs involved 
in the airways inflammation and lung injury in patients 
with COPD remains unclear. NETs, containing a mixture of 
extracellular DNA, histones, and granular proteins, might 
be directly cytotoxic to airway epithelial and endothelial 
cells,[59] or indirectly induce injury to the lung tissue through 
the promotion of autoimmune reactions against an aberrant 
amount of NETs components.[60] The level of NETs and NET 
components in the airways of COPD patients is associated 
with other markers of activate innate immune responses, 
including the expression of pro‑inflammatory cytokines 
IL‑1β and C‑X‑C motif chemokine ligand 8 and the 
inflammasome component NOD‑like receptor family, pyrin 
domain containing 3.[8] Consequently, the positive feedback 
of pro‑inflammatory cytokines and neutrophilic chemokines 
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contributes to the persistent airway neutrophilia observed 
in COPD and promotes the production of additional NETs, 
thereby creating a vicious circle. This partially explains a 
possible mechanism of the substantial number of NETs in 
the airways of patients with COPD; however, the precise 
mechanism remains unknown.

Smoking cessation can decrease the rate of lung function 
decline in patients with COPD;[61] nevertheless, the 
relationship between smoking and NET formation remains 
controversial. Some studies revealed that NETosis‑induced 
lung injury might have occurred in smokers who do not 
exhibit an airflow limitation, and NETs can also be induced 
by nicotine which is the addictive component of tobacco.[58,62] 
Moreover, others showed that NET formation was not 
affected by the current smoking status of COPD patients,[54] 
which indicates that smoking might not trigger NET 
formation in COPD patients. Currently, glucocorticoids are 
the main method of treatment for acutely exacerbated chronic 
obstructive pulmonary disease (AECOPD). Although some 
AECOPD patients exhibit a superior response to systemic 
glucocorticoid therapy, there is an existing portion of patients 
who do not respond to glucocorticoid.[63] Moreover, the 
long‑term use of glucocorticoids is associated with multiple 
side effects, including fluid retention, hypertension, diabetes, 
and osteoporosis. Recent experimental evidence showed 
that systemic corticosteroid treat for AECOPD patients is 
insufficient to reduce NET formation.[64] This might be one 
of the reasons that patients with AECOPD appear to respond 
poorly to glucocorticoid drugs. Based on these findings, 
further studies are needed to explore whether modulating 
NETosis can ease the symptoms of COPD patients who are 
insensitive to glucocorticoid treatment. Fortunately, previous 
studies indicated that C‑X‑C motif chemokine receptor 2 
antagonists can reduce neutrophils in the lungs of patients 
with COPD and limit the harmful effects of neutrophils on 
the lung tissue.[65]

Conclusion

To date, since their discovery, there has been substantial 
research progress regarding the antibacterial properties 
of NETs, and it has been widely accepted that NETs 
play an essential role in trapping and killing microbes 
to prevent microbial dissemination. However, growing 
evidence demonstrates that the formation of these 
extracellular structures contributes to the pathogenesis of 
several diseases (e.g., acute lung injury,[66] systemic lupus 
erythematosus,[67] CF,[68] and thrombosis.[69]). In particular, 
studying the role of NETs in asthma and COPD has become 
an area of growing interest. Existing researches indicated that 
there is a substantial level of NETs present in the airways of 
asthmatics and COPD patients. In addition, it appears that 
NETs are beneficial to fighting infection in the presence of 
chronic inflammatory airway diseases, and fine‑tuning of 
NET formation throughout the course of the above diseases 
is the goal for the development of novel NET‑targeted 
therapies of infected patients. The excessive NETs in the 

airways or lung tissue can cause varying degrees of damage 
to the lung, resulting in impaired pulmonary function and 
the acceleration of disease progression. The severity of these 
patients’ condition is positively correlated with the level of 
NETs in the airways. Thus, inhibiting NET formation is an 
attractive strategy for preventing the deleterious effects of 
NETs or their components in patients with asthma or COPD. 
It is uncertain whether regulating neutrophil activation 
or directly targeting NETs can inhibit the occurrence and 
development of disease in such patients; however, we hope 
to provide new potential therapeutic targets and customize 
treatment for chronic inflammatory airway diseases in the 
future. This can be achieved by increasing our understanding 
of the molecular mechanisms behind NET formation, 
elucidating the regulation of NETosis and investigating the 
function of these processes in chronic inflammatory airway 
diseases.
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