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Abstract. Constitutive expression of basic fibroblast 
growth factor (bFGF), a common characteristic of 
metastatic melanomas, was reproduced in vitro by in- 
fection of normal murine melanocytes with a recom- 
binant retrovirus carrying a cDNA for bFGE Expres- 
sion of bFGF in these cells conferred autonomous 
growth in culture and extinguished differentiated func- 
tions, such as the synthesis of melanin and formation 
of dendrites. Independence from exogenous bFGF and 
loss of differentiated functions in vitro were induced 
also by transformation of melanocytes with the on- 
cogenes myc, E/a, ras, and neu, although bFGF was 
not expressed by the respective transformants. As 
shown in skin reconstitution experiments onto syn- 
geneic mice and subcutaneous injections into nude 
mice, the various transformants differed in their be- 
havior in vivo. The bFGF transformants did not form 

tumors. They reverted to having a normal, melanotic 
phenotype and restricted growth. Myc and Ela trans- 
formants grew as tumors in nude mice but not in syn- 
geneic, immunocompetent animals. Ras-tmnsformed 
melanocytes were always tumorigenic, whereas the for- 
mation of tumors by neu transformants was suppressed 
by the concomitant grafting of keratinocytes in recon- 
stituted skin of syngeneic mice. These data show that 
melanocytes genetically manipulated to produce bFGF 
acquire properties in vitro similar to those of 
metastatic melanoma cells or those induced by various 
oncogenes but that constitutive production of bFGF by 
itself is insufficient to make melanocytes tumorigenic. 
The experiments also show that melanocytes trans- 
formed by the selected oncogenes respond differen- 
tially to various environments in vivo. 

I 
NTERACTIONS among cells or tissues are mediated 
through direct cellular contacts or via the release of 
dilfusable substances that act over a wide range of dis- 

tances in minute quantities. An important question concerns 
the role of such interactions in the control of normal tissue 
homeostasis and the development of tumors. Skin is an ideal 
tissue in which to study these interactions, given the unique 
accessibility of its cells in vivo, in vitro, and upon reconstitu- 
tion onto the animal. 

Keratinocytes and fibroblasts are the major cell types in 
skin. Melanocytes make up a third population of cutaneous 
resident cells, with a well-defined course of differentiation 
and secretory function. They are important in photoprotec- 
tion and are the cells of origin of one of the most malignant 
neoplasms, melanoma. Recent advances in the cultivation of 
melanocytes (Halaban, 1988) have defined the growth char- 
acteristics of these cells in vitro and allowed a comparison 
of some properties of normal melanocytes with those of their 
transformed counterparts. One of the most significant 
findings has been that normal melanocytes require exoge- 
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nous basic fibroblast growth factor CoFGF) I to proliferate in 
culture (Halaban et al., 1987; Halaban, 1988). bFGF substi- 
tutes for the phorbol ester 12-0-tetradecanoylphorbol-13- 
acetate (TPA) used routinely to grow mass cultures of normal 
melanocytes (Eisinger and Marko, 1982). In vivo, the re- 
quirement for exogenous bFGF appears to be met by basal 
keratinocytes and possibly dermal fibroblasts (Halaban et 
al., 1988a). bFGF is not produced by normal melanocytes 
but it is made constitutively by metastatic melanoma cells 
that grow in culture in the absence of added growth factor 
(Halaban et al., 1988b). Acquisition of the ability to produce 
bFGF may, therefore, be one of several transitional steps 
from a normal melanocyte to a highly malignant melanoma 
cell that is able to escape environmental control. 

In this report, we evaluate the interplay between genetic 
events and cellular environment in control of melanocyte 
transformation and tumorigenesis. Murine melanocytes ex- 

1. Abbreviations used in this paper: bFGE basic fibroblast growth factor; 
DOPA, L-B-3,4-dihydroxyphenylalanine; FGF, fibroblast growth factor; 
TPA, 12-O-tetradecanoylpborbol-13-acetate. 
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pressing bFGF or one of several activated oncogenes as a re- 
sult of retroviral infection acquire a similar transformed 
phenotype in vitro but, as shown by skin reconstitution ex- 
periments, the similarities break down in vivo since the vari- 
ously transformed melanocytes are affected differently by the 
cutaneous enviroment. 

Materials and Methods 

Cells 
L-BI0.BR melanocytes, established from newborn B10.BR mice (Tamura et 
al., 1987), were grown in Ham's F-10 medium (American Biorganics, Inc., 
N. Tonawanda, NY) supplemented with 48 nM TPA (Chemsyn Science 
Laboratories, Lenexa, KS), 10% newborn calf serum (Gibco Laboratories, 
Grand Island, NY), 200 U/ml penicillin, and 100 #g/ml streptomycin 
(Gibco Laboratories). 

Primary keratinocytes were cultured from newborn B10.BR mice as de- 
scribed by Yuspa and Harris (1974) and plated (107 cefls/55-cm 2 dish) in 
MEM (Gibco Laboratories) at low CaCI2 concentration (0.05 mM) sup- 
plemented with 4% Chelex-treated FBS (Flow Laboratories, McLean, VA) 
and 10 ng/ml epidermal growth factor (Collaborative Research, Bedford, 
MA) as previously described (Hennings et al., 1980; Dotto et al., 1986, 
1988). Keratinocyte cultures were used for grafting 7-10 d after plating. Un- 
der these conditions, the primary keratinocyte cultures were free of con- 
taminating fibroblasts but retained some melanocytes, which were carried 
over at the time of grafting. 

Dermal fibroblasts were prepared from newborn BI0.BR mice as de- 
scribed (Dotto et al., 1988). Cells were plated (2 × 106 celis/55-cm 2 dish) 
in DME (Gibco Laboratories) supplemented with 10% calf serum (Gibco 
Laboratories). Cells were grown to confluence (in 1-2 d) and split (1:4) 
twice before grafting. 

Retro~ral Vectors 
The MD-bFGF virus was constructed by inserting a complete 1.4-kb cDNA 
copy of bovine fibroblast growth factor (FGF) (Abraham et ai., 1986) be- 
hind the internal SV-40 promoter of the retroviral vector MD at its unique 
Bgl II site (Fig. 1). Details of the construction of the MD vector will be 
presented elsewhere. Briefly, the vector was derived from pC663, a plasmid 
clone 0retaining the complete genome of myeloproliferntive sarcoma virus 
(Stocking et al., 1985). A gene for resistance to 0418 (Southern and Berg, 
1982) was inserted at the unique Bam HI site of pC663, while the internal 
part of the viral genome (from the unique Barn HI to Cla I sites) was 
replaced with a cassette containing the SV-40 early promoter (Korman et 
al., 1987) and, behind it, a unique cloning site for either Bgl H/Barn HI 
or Xho I/Sal I. Psi-2 helper cells (Mann et al., 1983) were transfected with 
the MD-bFGF recombinant construct, and one clone was selected for 
production of high-viral titers (measured in terms of G418-resistant colony 
forming units per milliliter). 

The ms-zip 6 and VM-myc retroviruses carry the viral Harvey ms and 
avian MC29 gag-myc oncogenes, respectively (Dotto et al., 1985). 

The Giu664-neu virus carries a complete cDNA copy of the transforming 
rat neu oncogene as described by Bargmann and Weinbcrg (1988). This vi- 
I'us is able to induce full transformation of established fibroblasts (Bargmann 
and Weinberg, 1988) and keratinocytes (Dotto et al., 1989) with concomi- 
tant high expression of the neu oncoprotein. 

The Mp-p53 virus carries a complete cDNA copy of a p53 gene of mu- 
rine origin (Wolf et ai., 1985) inserted into a derivative of the DOL vector 
(Korman et al., 1987) where the MuLV long terminal repeat of the vector 
had been substituted with a long terminal repeat derived from MpSV (Stock- 
ing et al., 1985). Biological activity of this virus was demonstrated in a 
previous study by transformation of papilloma-derived keratinocytes (Dotto 
et al., 1989). MD-p53 is essentially equivalent to Mp-p53 except that it was 
constructed by insertion of the 1753 cDNA copy into the MD vector at the 
Bgl II site. 

The MD-E/a virus contains a cDNA copy of the 13s transcript of the E/a 
region Of adenovirus 5 (Roberts et al., 1985) inserted behind the SV-40 pro- 
moter of the MD vector, l~igh-titerpsi-2 producer cells (Mann et al., 1983) 
were used for subsequent studies. Infection of fibroblasts with this virus 
conferred high expression of the E/a gene product and readily caused mor- 
pboiogical transformation of monolayer cultures, inducing a typical cobble- 
stone appearance (Roberts et al., 1985). 

The pC6M-neo virus (Stocking et al., 1985) carries only the 0418 resis- 
tance gene with no oncogene and was used as a negative control. 

Infection of Melanocytes and Selection 
of Tmnsformants 
Melanocyte cultures, at '~25% confluency in 25-cm 2 flasks, were infected 
with the various retroviruses by a 2-h exposure to undiluted viral stock with 
the addition of 8 izg/ml polybrene (Aldrich Chemical Co., Milwaukee, WI). 
The viral preparations were then removed and replaced with melanocyte 
medium supplemented with TPA. Infected cultures were grown to conflu- 
ency (7-10 d) and then split (1:2) into selective media containing 800 ~g/ml 
(3418 (Gibco Laboratories) with or without TPA. 

In Vitro Characterization of Transformed Melanocytes 
Growth. Kinetics of cell proliferation with and without G418, with and with- 
out TPA, were measured by seeding melanocytes in 12-well plates (~104 
cells/cm 2) and counting cells from two wells in a cell counter (Coulter 
Electronics Inc., Hialeah, FL) at intervals of 2-3 d. Population doubling 
times were calculated from the slopes of the linear portions of the growth 
curves. 

Mitogenicity. Assays for the mitogenic activity present in cell extracts, 
described by Halaban et al. (1987), involved addition of crude extracts made 
from the various transformants to cultures of normal human melanocytes 
(in duplicate 2-cm 2 well, 24-well cluster plates) in chemically defined PC-1 
medium (Ventrex Laboratories, Inc., Portland, ME) plus 1 mM dibutyryl 
cAMP (Sigma Chemical Co., St. Louis, MO) for 24 h. During the last 3 h, 
the cells were incubated in MEM without calcium and magnesium (Gibco 
Laboratories) supplemented with 5 ~tCi/ml [3H]thymidine (90 Ci/mmole; 
Amersham Corp., Arlington Heights, IL). The cells were then detached 
from the culture dishes with trypsin-EDTA solution and trapped onto No. 
30 glass filters in the minifold apparatus of Schleicher & Schuell, Inc. 
(Keene, NH). The filters were washed three times with distilled water, 
dried, and placed in scintillation fluid, and radioactivity was determined in 
a scintillation counter. 

bFGF and Oncogene Expression 
lmmunoprecipitation. Specific gene products were immunoprecipitated af- 
ter metabolic labeling of cells with 250 ~tCi/ml [35S]methionine (for bFGF 
and p53 transformants) or [35S]cysteine (for neu transformants) in me- 
thionine- or cysteine-free DME for 0.5 or 14 h, respectively. Immunopre- 
cipitations with anti-bFGF-(l-24) (Halaban et al., 1987), anti-p53, and 
anti-neu antibodies were performed as described (Halaban et ai., 1983). 
The PAb421 monoclonal antibodies againstp53 (Harlow et al., 1981) were 
a gift of Dr. A. Levine (Department of Biology, Princeton University, 
Princeton, N J). The monoclonal antibody 7.16.4 against the neu gene prod- 
uct (Drebin et al., 1984) was provided by Dr. D. E Stern (Department of 
Pathology, Yale University, New Haven, CT). Immunoprecipitated proteins 
were resolved by SDS-PAGE, and dried gels were fluorographed. 

lmmunoblotting. Total cell extracts, prepared in electrophoresis sample 
buffer (5 mM sodium phosphate, pH 7, 2% SDS, 0.1 M DTT, 5% 2-mer- 
captoethanol, 10% glycerol, 0.4% bromophenol blue) were run on discon- 
tinuous 10% acrylamide, 0.13% bisacrylamide gels. The gels were washed 
for 5 rain in water and once in transfer buffer, and proteins were transferred 
to nitrocellulose by electrophoresis for 2 h at 50 V in the cold. The transfer 
buffer and procedures for blocking and washing the filters were as described 
by Kamps and Sefton (1988). Blots were incubated with monocfonal anti- 
body Ab-1 against adenovirus E/a gene product (Oncogene Science, Inc., 
Manbasset, NY) followed by incubation in blocking buffer containing 
1/tCi/ml ~25I-protein ,A (ICN Radiocbemicals, Costa Mesa, CA; 35 ttCi/ 
/tg) and placed on film for autoradiography. 

RNA Blotting. 20 ~tg of total cellular RNA was run on an agarose gel 
and blotted as described by Dotto et al. (1989). Probes were prepared by 
gel purification of DNA fragments corresponding to v-Harvey ms and 
MC29 myc oncogenes (Dotto et al., 1985) and labeled with [32p]dCTP by 
random oligonucleotide priming as described by Feinbcrg and Vogelstein 
(1983). 

Grafting 
Cells were grafted by the technique of Worst et al. (1982) as described 
(Dotto et al., 1988, 1989). At first, a glass disk was implanted subcutane- 
ously onto the back of each mouse. 2-4 wk later, the glass disk was replaced 
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by a dome-shaped, open-bottom silicon chamber, which provided a barrier 
to invasion of the graft bed by the surrounding host skin. Cells were then 
suspended in MEM (Gibco Laboratories) at low calcium concentration 
(0.05 raM), mixed in various combinations, and injected into the chambers. 
They readily attached to the underlying granulation tissue and proceeded 
to form stratified skin in 2-3 wk. The numbers used for injection of each 
cell type into the chambers were 2 × 105 melanocytes (normal or trans- 
formed), 2 × 106 keratinocytes, and 8 × 106 dermal fibroblasts. Mice 
were killed 21-28 d later, and the graft tissues were fixed for histologic and 
electron microscopic analysis. 

Electron Microscopy 

Tissues retrieved from the grafts were immersed in cold aldehyde and sliced 
vertically to allow embedding in an oriented fashion. Cells in culture were 
trypsinized, fixed as pellets, and processed like a piece of tissue. Further 
treatments, including histochemical incubation with DOPA for the localiza- 
tion of tyrosinase, were described elsewhere (Halaban et al., 1988c; Slo- 
minski et al., 1988). 

R e s u l t s  

Transformation of  Melanocytes In Vitro by 
bFGF cDNA 

A recombinant retrovirus (MD-bFGF; Fig. 1) carrying a 

complete cDNA copy of  bovine bFGF (Abraham et al., 
1986) was constructed starting from the retroviral vector 
MD. Production of  a bFGF-like factor by NIH-3T3 cells in- 
fected with this virus was verified by a mitogenicity assay 
with human melanocytes as test cells (Table I). 

MD-bFGF was used to infect melanocytes of the L-B10.BR 
cell line (Tamura et al., 1987). Although these cells have 
been passaged in culture for a relatively long time and have 
lost some of  the characteristics of  primary melanocytes, such 
as dependence on external inducers of  cAMP, they have re- 
tained many other normal properties, including pigment 
forming ability, TPA and bFGF dependence in culture, and 
inability to form tumors in animals (our unpublished obser- 
vations). The chromosome complement of  these cells is 
close to normal, diverging only by inclusion of an isochrom- 
osome 6 (Tamura et al., 1987). 

Approximately 10% of L-B10.BR melanocytes from cul- 
tures infected with the MD-bFGF virus grew in the presence 
of  G418, and a subfraction acquired the ability to grow in the 
absence of  TPA (Fig. 2). Independence of  the melanocytes 
from TPA after MD-bFGF infection was associated with loss 
of  melanocyte-specific functions, such as tyrosinase activity, 
melanogenesis (Table II and Fig. 3), and the ability to form 

Figure 1. Schematic diagram of the retroviral constructs used in these studies. The viruses are described in Materials and Methods. Indicated 
are the transduced genes, included the G418 resistance gene (neo), as well as the direction of the transcription from the SV-40 promoter 
and from the long terminal repeats derived from myeloproliferative sarcoma virus (MpSV-LTR, clear boxes), murine sarcoma virus (MSE 
stippled boxes), and Moloney leukemia virus (MULE solid boxes). 
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Table L Mitogenic Activity of  CeU Extracts 

[3H]Thymidine incorporation 
Additions. by human melanocytes 

cpm/well per 3 h 

Experin~nt  1 bFGF 14,750 
NIH-3T3 fibroblast extract 1,560 
NIH-3T3-bFGF fibroblast 

extract 17,220 
No additions 270 

Experiment 2 bFGF 38,500 
L-B 10.BR-bFGF 

melanocyte extract ~ 12,500 
Extracts from L-BI0.BR 

melanocytes transformed 
with other viruses 

Conditioned medium from 
L-B IO.BR-bFGF and 
NIH-3T3-bFGF 
transformants 

No additions 

<420 

<180 
<610 

Human melanocytes were seeded in PC-I medium plus I mM dibutyryl cAMP 
in 24-well cluster plates (,~,40,000 cells/W'ell) with and without the various ad- 
ditions. [3H]Thymidine was incorporated during the last 3 h of a 24-h incuba- 
tion. Additions were 1 ng/ml bFGF (Collaborative Research, Inc.); extracts 
from NIH-3T3 and NIH-3T3-bFGFcelIs at 10/~g rni; and L-BI0.BR melano- 
cytes transformed with bFGF cDNA or myc, neu, ras or Ela oncogenes at 50 
/~g protein/ml. Values are averages of counts per minute from two wells. Pure 
bFGF or cell extracts without dibutyryl cAMP were not mitogenic toward hu- 
man melanocytes (Halaban et al., 1987; data not shown). 
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dendritic cell processes (Fig. 3). At passage 20, no preme- 
lanosomes were found by electron microscopy, and, despite 
the presence of an elaborate Golgi apparatus, the trans-Golgi 
reticulum was negative for DOPA oxidase (tyrosinase) activ- 
ity (Fig. 4). 

Extracts of transformed L-B10.BR melanocytes were 
tested in the mitogenicity bioassay with human melanocytes. 
Mitogenic activity toward normal melanocytes was present 
in extracts of MD-bFGF-transformed melanocytes (Table I) 
but not in extracts prepared from uninfected cells (data not 
shown) or cells infected with known oncogenes (Table I). 
The mitogenic agent was not detectable in the culture 
medium of MD-bFGF-transformed melanocytes (Table I) as 
had been shown also for human melanoma cells and normal 
human keratinocytes, both of which when used as cell ex- 
tracts were mitogenic toward normal human melanocytes 
(Halaban et al., 1988a,b). bFGF in MD-bFGF-transformed 
melanocytes was demonstrated by immunoprecipitation with 
anti-bFGF antibodies (Fig. 5). 

L-B10.BR melanocytes infected with the control pC6M- 
neo virus (Stocking et al., 1985), which transduces only the 
G418 resistance gene (Fig. 1), were able to proliferate in the 
presence of G418 but remained dependent on TPA for growth 
(data not shown). No colonies of proliferating cells appeared 
upon removal of TPA, even after 3 mo of cultivation in the 
presence of TPA and G418, a time span corresponding ap- 
proximately to eight population doublings. These melano- 
cytes retained their dendritic shape and their ability to syn- 
thesize melanin (Fig. 3) and tyrosinase (Table II). In the 
absence of TPA, the cells flattened out in a manner character- 
istic of growth-arrested melanocytes (Fig. 3). 

I l l  I I I I I 

0 2 4 6 8 I0 

Days 
Figure 2. Growth kinetics of control and variously transformed me- 
lanocytes in the absence of TPA. Melanocytes were plated in 
medium containing G418 (800 ~,g/ml). Included in this experiment 
were uninfected (control) L-BIO.BR melanocytes (*) and melano- 
cytes infected with viruses MD-p53 (c3), MD-bFGF (zx), VM-myc 
(v), MD-E/a (1), ras-zip 6 (O), and Glu664-neu (o). 

In  Vitro Transformation o f  Melanocytes by 
Known Oncogenes 

Several oncogenes encoding nuclear, cytoplasmic, or mere- 

Table II. Expression of  Differentiated Functions In Vitro 

Melanocyte culture Tyrosinase activity Pigmentation 

ltU/mg protein 

LB10.BR 250-1 ,800 + + + 
L-BIO.BR-neo 510 + + + 
L-BlO.BR-p53 1,640 + + + 
L-BIO.BR-bFGF 13 - 
L-B I O.BR-myc 2 - 
L-B 10.BR-EIa 2 - 
L-B 10.BR-ras 7 - 
L-BIO.BR-neu 1 - 

Tymsinase assays were performed as described by Halaban et al. (1983) with 
extracts from the various types of melanocytes 1.5-3 mo after selection for 
growth in the absence of TPA but in the presence of 800 #g/ml G418-sulfate. 
A unit of tymsinase was defined as the activity of enzyme that catalyzed the 
oxidation of I t~mol of tyrosine/min. Assays were performed for 10-30 rain. 
Melanocytes that lost their pigmentation could not be stimulated m regain it by 
the addition of TPA and/or isobutylmethyl xanthine. Pigmentation was as- 
sessed by the color of the cell pellets (see Fig. 3). 
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Figure 3. Phase-contrast micrographs of untransformed and transformed melanocytes in culture and loss of pigmentation as demonstrated 
in cell pellets. (TOp) Untransformed L-B10.BR in the presence of TPA or 24 h after withdrawal of TPA. (Middle) 1~Lsformed melanocytes 
growing in medium lacking TPA. Morphology of cells infected with the pC6M-neo, MD-p53, and Mp-p53 was indistinguishable from 
that of untransformed melanocytes in the absence of TPA (Top, right). (Bottom) Amelanotic bFGE ras, neu, and Ela transformants are 
shown from left to right followed by melanotic pC6M-neo- and MD-p53-infected cells and parental L-BI0.BR melanocytes. Bar, 17/am. 

brahe-bound gene products were introduced into L-B10.BR 
melanocytes by means of retroviral vector infection (Fig. 1). 
As above, cells were selected for acquisition of G418 resis- 
tance and tested for their ability to grow in medium not sup- 
plemented with TPA. 

Of three oncogenes encoding nuclear proteins-the mu- 
tated, oncogenic form ofmurinep53 CO¢olf et al., 1985; Fin- 
lay et al., 1988), avian v-myc (Dotto et al., 1985), and 
adenovirus E/a (Roberts et al., 1985)-only v-myc and E/a 
were able to transform melanocytes. L-B10.BR cells infected 
with either of two p53 recombinant viruses, Mp-p53 or MD- 
p53 (Fig. 1), remained indistinguishable in phenotype from 
their uninfected or pC6-neo--infected counterparts (Figs. 2 
and 3) despite the expression of viral oncoprotein as shown 

by immunoprecipitation with anti-p53 monoclonal antibody 
(Fig. 5). 

L-B10.BR melanocytes infected with a retroviral vector 
carrying the avian MC29 gag-myc oncogene, VM-myc 
(Dotto et al., 1985), initially behaved like Mp- or MD- 
p53-infected cells: whereas little or no proliferation oc- 
curred in the absence of TPA, many cells acquired the ability 
to grow in the presence of G418 in permissive (with TPA) 
medium and remained pigmented and dendritic. After 3-4 
wk of TPA starvation, however, colonies of cells appeared 
that were able to grow in a restrictive (without TPA) medium 
(Fig. 2). Like the cells transformed by MD-bFGF, the TPA- 
independent v-myc transformants were amelanotic, with ex- 
tremely low tyrosinase activity (Table H and Fig. 3). Ability 
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Rgure 4. Electron micrographs of MD-bFGF-tmn~rmed L-BI0.BR 
melanocytes in vitro and in the dermis of incompletely reeonstimtad 
syngeneic skin. Pure populations of bFGF transformants were 
grafted without addition of keratinocytes or dermal fibroblasts. Il- 
lustrated are the loss of melanogenesis and DOPA reactivity in vitro 
(a) and reversion to the melanotic phenotype in the dermal environ- 
ment in vivo (b). (7, collagen bundles. Bars: (a) 10 #m; (b) 1 #m. 

to grow in the absence of TPA correlated with elevated levels 
of v-myc-RNA expression (Fig. 5). 

L-B10.BR melanocytes were transformed rapidly by infec- 
tion with a virus carrying a third "nuclear" oncogene, the 
adenovirus E/a-13s region (Roberts et al., 1985) (MD-E/a; 
Fig. 1). 3-4 d after infection with MD-E/a, the great majority 
of melanocytes acquired the ability to proliferate equally well 
whether or not TPA was present (Fig. 2). Rapid proliferation 
was accompanied by loss of pigmentation and change in mor- 
phology, which, in turn, correlated with a drastic decrease 
in tyrosinase activity (Table II and Fig. 3). MD-E/a-infected 
L-B10.BR melanocytes expressed high levels of the E/a gene 
product as shown by immunoblotting with E/a-specific 
monoelonal antibodies (Fig. 5). 

Melanocytes infected with viruses carrying the v-Harvey 
ras or rat neu oncogenes (ms-zip 6 and Glu664-neu; Fig. 1), 
encoding, respectively, a cytoplasmic and a plasmalemmal 
protein (Dotto et al., 1985; Bargmann and Weinberg, 1988), 
were transformed with the same rapidity as those infected 
with the MD-E/a virus and were, like the latter, distinguish- 
able in the phase microscope by their altered morphology 
within 3-4 d (Fig. 3). The cells grew rapidly under all cul- 
ture conditions tested (Fig. 2) and quickly lost their pigment- 
forming ability (Table II and Fig. 3). Oncogene expression 
in the transformants was verified by RNA blotting (ms) or 
immunoprecipitation (neu) (Fig. 5). 

The amelanotic ms and neu transformants were examined 
with the electron microscope at passages 15 and 17, respec- 
tively, and were found to contain residual melanosomes. 
These were segregated in large compartments presumed to 
be autophagosomes (ms transformants) or they were dis- 
persed singly (neu transformants; Fig. 9 a, insert). Cultures 
from both transformants included cells that, on incubation 
with DOPA, showed evidence of tyrosinase in elements of 
the trans-Golgi reticulum. Many cells contained DOPA- 
positive lysosome-like granules, similar to the "granular 
melanosomes" observed in cultures of amelanotic Bomirski 
hamster melanoma cells after induction of melanogenesis by 
L-tyrosine (Slominski et al., 1988). 

Tumorigenicity Assay I: Skin Reconstitution 
Experiments 

An important criterion for cell transformation involves as- 
sessment of tumorigenic behavior. In previous work with 
oncogene-transformed keratinocytes, skin reconstitution ex- 
periments provided a sensitive tumorigenicity assay of 
malignant transformation at stages not easily detected by 
conventional methods (Dotto et al., 1988, 1989). In addi- 
tion, and perhaps more importantly, these grafting assays al- 
lowed a study of the effects of various cellular permutations 
under conditions that approximate a normal cutaneous envi- 
ronment (Dotto et al., 1988). 

Grafting experiments onto syngeneic B10.BR mice were 
performed by use of silicon transplantation chambers into 
which cultured skin cells were injected in various combina- 
tions. Grafting of normal L-B10.BR melanocytes together 
with primary keratinocytes and dermal fibroblasts resulted, 
3-4 wk later, in quasinormal skin, with appropriate reassort- 
ment of cells (Fig. 6). The transferred melanocytes func- 
tioned normally (Fig. 7) and were located within or immedi- 
ately beneath the newly formed epidermis (in cases where 
only keratinocytes and melanocytes were grafted) or, in addi- 
tion, admixed with the dermal fibroblasts (when the latter 
were grafted also). As expected, tumors were not formed by 
untransformed L-B10.BR melanocytes (Table HI). 

Despite their transformed phenotype in vitro, melanocytes 
carrying the MD-bFGF virus were not tumorigenic (Table 
III). These highly proliferative, growth factor-independent, 
amelanotic cells (Figs. 2 and 3) behaved after grafting like 
their parental cell line (Fig. 6) and resumed production of 
pigment (Figs. 4 and 6). Reversion to this normal phenotype 
did not depend on concomitant graRing of fibroblasts and/or 
epidermal cells (Table HI). 

Similar lack of tumorigenicity was observed after grafting 
of myc or E/a transformants, both in the presence and ab- 
sence of keratinocytes and dermal fibroblasts (Table HI). 

The Journal of Cell Biology, Volume 109, 1989 3120 



Figure 5. Expression of virally transduced genes. (a) Protein expression was detected by immunoprecipitation (bFGF, neu, and p53) or 
immunoblotting (E/a) with corresponding antibodies as described in Materials and Methods. (Lane 1) bFGF-transformed melanocytes; 
(lane 4) neu transformants; (lanes 5 and 6) cells infected with MD-p53 and Mp-p53 viruses, respectively; (lane 8) E/a transformants; 
and (lanes 2, 3, 7, and 9) negative controls with normal L-BI0.BR cells. Arrows indicate proteins of the expected molecular mass: 17, 
185, 53, and 50 kD for bFGF, neu, p53, and E/a, respectively. (b) Oncogene-specific mRNA expression was detected by Northern blotting 
with DNA probes for v-myc (lanes 1-3) and V-Ha-ms (lanes 4-6) as described in Materials and Methods. (Lane 1 and 2) VM-myc-infected 
cells selected for G418 resistance only or for G418 resistance and bFGF independence, respectively; (lane 3) uninfected control melano- 
cytes; (lane 6) ms-zip6-infected melanocytes; (lane 4) uninfected cells; (lane 5) cells infected with the Glu664-neu virus and used here 
also as a negative control. In the case of VM-myc-infected cells (lanes 1 and 2), two specific bands were detected of which one is likely 
to correspond to the full-length viral transcript (m6 kb). The other is a small segment that might be a product of internal splicing. The 
intensity of both bands is markedly higher in the bFGF-independent transformants than in their bFGF-dependent counterparts. In the case 
of ms-zip6-infected cells (lane 6), two bands were again detected, of which one corresponds to the full-length viral transcript ('~5 kb) 
and the other represents the endogenous c-Ha-ms transcript ('~1.2 kb), detectable also in the uninfected controls (lanes 4 and 5). Approxi- 
mate molecular weights were calculated from the migration of ribosomal RNA marker bands (not shown). 

Figure 6. Histology of grafts in partially or fully reconstituted syngeneic skin containing control melanocytes or ms or bFGF transformants. 
Shown are untransformed L-B10.BR melanocytes grafted with keratinocytes and dermal fibroblasts, ms-transformed melanocytes grafted 
with aormal keratinocytes, and bFGF transformants grafted as a pure cell population without keratinocytes or dermal fibroblasts. Mice 
were killed, and tissues were fixed 4 w after grafting. Bar, 23 #m. 



Table IlL Tumor Growth in Reconstituted Skin 

Cells M M+K M+F M + K + F  

L-B10.BR ND 0[0]:3 ND 0[0]:5 
L-BIO.BR-bFGF 0[0]:7 0[0]:3 ND ND 
LBIO.BR-ras 3[4]:4 7[7]:7 1[1]:1 7171:7 
LBIO.BR-neu 4[4]:8 011]:8 6[6]:6 113]:10 
LBI0.BR-myc 011]:4 ND ND 0[2]:3 
LBIO.BR-EIa 011]:2 ND ND 0[2]:3 

Normal or variously transformed L-B10.BR melanocytes (M) were grafted 
onto syngeneic BI0.BR mice either alone or in association with primary ker- 
atinocytes (K) and/or dermal fibroblasts (F). Number of cells injected and 
grafting procedure were described in Materials and Methods. Mice were killed 
21-28 d after grafting, and the graft tissue was fixed in formalin for histologic 
analysis. The ratio of macroscopically detectable tumors to total number of 
grafts performed with a certain combination of cells is given. Between brackets 
is the number of histologically positive tumors. In all cases, data were pooled 
from several independent experiments. 

Figure 7. Normal function of melanocytes in fully reconstituted syn- 
geneic skin as detected by electron microscopy. Sorting of cells to 
form a new epidermis from an injected suspension of untrans- 
formed L-B10.BR melanocytes, keratinocytes, and dermal fibro- 
blasts resulted in normal basal location of melanocytes (a), transfer 
of melanin granules to keratinocytes (b), and active raelanogenesis 
(a and c). The large citron-dense granules are fully melanized 

However, histologic analysis revealed some foci of limited 
neoplastic proliferation containing a few weakly pigmented 
cells (Table III and data not shown). 

Melanocytes transformed with ms were tumorigenic. 
Small, mostly exophytic and unpigmented tumors formed 
consistently, irrespective of the presence or absence of der- 
mal fibroblasts and/or keratinocytes (Table III). Spindle- 
shaped and large cuboidal cells infiltrated surrounding tis- 
sue. Gray portions of the tumors contained pigmented cells 
with a foamy appearance, suggesting that these might be 
macrophages that had ingested melanin (Fig. 6). Concomi- 
tant grafting of keratinocytes resulted in formation of a 
stratified epidermis on top of the tumors (Fig. 6). No 
metastatic spread was detected to liver, lung, or spleen over 
the duration of the experiments (3-4 wk). 

Similar to the ms transformants, neu-transformed melano- 
cytes were able to grow into amelanotic tumors (Fig. 8, top, 
and Fig. 9 a) when grafted alone or with dermal fibroblasts 
(Table lII). Dermal fibroblasts enhanced the growth of these 
tumors (Table liD. In contrast, when neu-transformed mela- 
nocytes were grafted with keratinocytes, tumor formation 
was drastically suppressed (Fig. 8, bottom; Fig. 9 b; Table 
III). Microscopic foci of neoplastic proliferation were de- 
tected in one case only in areas that happened to be devoid 
of keratinocytes. The presence of dermal fibroblasts en- 
hanced microscopic tumor formation to a limited degree (Ta- 
ble 1II). In all cases, a few differentiated melanocytes were 
present underneath the newly formed epidermis, some in 
close apposition to lymphocytes (Fig. 9 b). These might be 
phenotypically reverted neu transformants or normal mela- 
nocytes carried over with the primary keratinocyte cultures. 

Tumorigenicity Assay II: Subcutaneous Injection of 
Transformants into Nude Mice 

The grafting experiments described above made use of syn- 
geneic, immunocompetent mice. To explore a possible role 
of the immune system in modulating the behavior of the vail- 

melanosomes, and the small Ones transport vesicles of tyrosinase, 
visualized with DOPA. N/, nucleus of melanocyte; D, dermis; N2, 
nucelus of keratinocyte. The arrows indicate basement membrane, 
and the arrowhead indicates histochemicul DOPA reaction product 
showing presence of tyrosinase in trans-Golgi reticulum. Bars 1 ~m. 
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ous transformants, tumorigenicity was assayed also by sub- 
cutaneous injection of cells into nude mice. Even in this envi- 
ronment, bFGF-transformed melanocytes did not grow as 

Table IV. Tumor Growth after Subcutaneous Injection 
of  Transformed Cells into Nude Mice 

Cells Tumors 

L-B 10.BR-bFGF 0/7 
L-BlO.BR-p53 0/5 
L-BIO.BR-myc 3/3 (5 g) 
L-BIO.BR-Ela 2/3 (0.25 g) 
L-B10.BR-ras 3/3 (> l  g) 
L-BIO.BR-neu 7/7 (>1 g) 
L-BIO.BR-neu (4 x 105) 2/2 (6 g) 

" + K 3/3 (3 g) 
" + F 2/2 (1.5 g) 

L-BIO.BR-neu (5 x 104) 2/3 (1 g) 
" + K 2/3 (0.25 g) 
" + F 2/3 (0.8 g) 

L-BIO.BR-neu (5 × 105) 0/3 
" + K 3/3 (0.7 g) 
" + F 1/3 (0.6 g) 

L-BiO.BR melanocytes (5 × I0 5, except where specified) transformed with 
the indicated genes were injected subcutaneously into nude mice. Animals 
were periodically examined for macroscopic tumors and were killed 60 d after 
injection. The tumors were fixed in formalin for histological examination. The 
number of tumors per total number of injections is given as well as the average 
fresh tumor weight, neu-transformed melanocytes in the indicated numbers 
were also admixed with fixed numbers of BI0.BR primary keratinocytes (K; 
2 x l06) or dermal fibroblasts (F; 8 x l06) before injection. 

Figure 8. Histology of  partially reconstituted syn- 
geneic skin consist ing of neu transformants grafted 
with or  without keratinocytes. Mice  were killed 
4 w after grafting. Bar, 120 / tm .  

tumors (Table IV). In two cases, small islands of pigmented 
cells were found subcutaneously at the presumed site of in- 
jection (data not shown). In contrast, rapidly expanding 
tumors were formed by melanocytes that had been trans- 
formed by the myc and E/a oncogenes (Table IV). No tumors 
could be detected after subcutaneous injection of these cells 
into syngeneic mice (data not shown), consistent with the 
lack of tumorigenicity after grafting (Table HI). 

Melanocytes that had been transformed with the ras and 
neu oncogenes produced rapidly expanding tumors (Table 
IV). These grew faster in nude mice than in similarly in- 
jected syngeneic animals (data not shown). Most of these 
tumors contained some pigmented regions. Melanocytes 
transformed with the neu oncogene were also tested for 
tumorigenicity after having been mixed with keratinocytes 
and/or dermal fibroblasts (Table IV). Decreasing numbers of 
neu transformants were injected together with a constant 
number of the other cells. Even under conditions where 
tumors were substantially delayed (by injection of as few as 
5 × l0 3 transformants per mouse), no inhibitory effects of 
added keratinocytes were detected; rather, keratinocytes en- 
hanced the formation of subcutaneous tumors (Table IV). 

Discussion 

Melanomas are highly variable with respect to chromosomal 
aberrations and expression of activated oncogenes, growth 
factors, growth factor receptors, and cell surface antigens 
(Houghton et al., 1982; Pathak et al., 1983; Dracopoli et al., 

Dotto et al. Basic Fibroblast Growth Factor eDNA in Melanocytes 3123 



Figure 9. Neu-transformed L-B10.BR melanocytes in the dermis of incompletely and completely reconstituted syngeneic skin. In the absence 
of the epidermal component, the dermal connective tissue was displaced by tumor cells (a), whereas, in the presence of keratinocytes, 
the dermis was normally stratified and contained some melanotic pigment cells (b). Infiltrating lymphocytes (L) are seen in close apposition 
to melanocytes. (Insert) Evidence of residual melanogeuesis in the grossly amelanotic transformed cells in vitro before grafting. (7, Collagen 
bundles. Bars, 1 pm. 
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1985, 1989; Mukai and Dryja, 1986; Real et al., 1986; 
Westermark et al., 1986; Ellis et al., 1987; Holzmann et al., 
1987; Shin et al., 1987; Yamaguchi et al., 1987; Cowan et 
al., 1988; Adelaide et al., 1988; Linnenbach et al., 1988; 
Raybaud et al., 1988; Richmond et al., 1988). In contrast, 
a characteristic that appears to be common at least to human 
metastatic melanomas is autonomous growth in vitro, inde- 
pendent of exogenous bFGF and cAMP. This trait appears 
to be acquired in part through the abnormal expression of 
bFGF (Halaban et al., 1988b), the natural growth factor for 
human melanocytes normally supplied by keratinocytes and 
possibly fibroblasts (Halaban et al., 1988a). Because bFGF 
is not expressed in normal melanocytes (Halaban et al., 
1988b) and members of the FGF family are so far the only 
known natural mitogens for human melanocytes among at 
least 40 other factors tested (Halaban, 1988), the aberrant 
expression of bFGF by metastatic melanomas must represent 
a critical event in melanocyte transformation, bFGF may 
have two functions in promoting the development of mela- 
nomas: (a) it may play a role in the uncontrolled proliferation 
of melanocytes by releasing the cells from dependence on 
neighboring keratinocytes and fibroblasts; and (b) because of 
its angiogenic properties, it may induce capillary growth re- 
quired for the sustenance of solid tumors (Folkman, 1985). 

In the experiments described here, independence of mela- 
nocyte growth from exogenous bFGF was acquired within 
days of infection with a bFGF recombinant retrovirus, with 
concomitant production of biologically active bFGF at levels 
similar to those observed in human melanomas (Halaban et 
al., 1988b). Remarkably, constitutive expression of bFGF 
was associated with complete loss of differentiated properties 
and acquisition of a fibroblastoid phenotype, which is also 
seen in human melanoma cells grown in vitro. Since similar 
effects are not induced by a continuous supply of exogenous 
bFGF (our unpublished observations) and all other known 
mitogens, such as TPA or isobutylmethyl xanthine, stimulate 
rather than extinguish melanogenesis (Halaban et al., 1983), 
it is likely that loss of differentiated phenotype is due to acti- 
vation of intracellular bFGF receptors by endogenous bFGE 
This implies that mitogenic stimulation of melanocytes by 
exogenous growth factor is coupled to a signaling pathway 
activating genes controlling pigmentation and that continu- 
ous stimulation of that pathway is required to maintain me- 
lanocyte differentiated functions. Fibroblast transformation 
by the sis oncogene appears to be mediated through aberrant, 
intracellular stimulation of the PDGF receptor rather than 
through receptor stimulation from the outside (Keating and 
Williams, 1988). An analogous mechanism is more difficult 
to envision with bFGF, a ligand that lacks the signal peptide 
(Abraham et al., 1986) which would put it in the same subcel- 
lular compartment with its receptor. Nevertheless, indirect 
evidence for the activation of intracellular pools of bFGF 
receptor by endogenous bFGF was provided in the human 
melanoma system in which neutralizing antibodies to bFGF 
as well as anti-phosphotyrosine antibodies-the bFGF 
receptor is a tyrosine protein kinase (Lee et al., 1989)- 
inhibited growth when injected into the cells but not when 
supplied in the culture medium (Halaban et al., 1988b). 

Aberrant expression of bFGF in vitro, however, is not 
sufficient to render melanocytes tumorigenic in vivo. In fact, 
the transformed cells reverted to the untransformed pheno- 
type when placed into the cutaneous environment of host ani- 

mals. To what extent they continued to express bFGF in this 
environment is not known. Likewise, the mediators of the 
phenotypic reversion of bFGF transformants are not known. 
Since comparable effects were seen in syngeneic and im- 
munodeticient mice, the immune system is unlikely to be in- 
volved. Also, keratinocytes or dermal fibroblasts appeared 
not to be required for reversion of the bFGF transformants 
when these cells were grafted onto granulation tissue. It is 
possible that in vivo melanocyte turnover is slowed down and 
the bFGF produced by the transformants is released into the 
extracellular matrix and thus stimulates the plasma membrane 
receptors which then trigger the expression of differentiated 
functions. Suppression of tumor growth by a developing cu- 
taneous environment has been reported for B16 murine mela- 
noma cells injected into murine embryos (Gerschenson et 
al., 1986). In that system, a diffusable melanoma inhibitor 
was shown to be expressed transiently from gestational ages 
10-14 d. The microenvironment in adult organs may also 
influence pigmentation and tumor growth as observed ex- 
perimentally with B16 melanoma in mice (Price et al., 1988; 
Nicolson and Dulski, 1985) and clinically with human me- 
tastatic melanomas. 

Our results are consistent with those of others who have 
shown that transfection of fibrohlasts with a cDNA for bFGF 
can lead to morphological transformation in vitro (Sasada et 
al., 1988; Neufeld et al., 1988). Only high expression of 
transfected bFGF leads to tumorigenicity by fibroblasts 
(Quarto et al., 1989). However, when bFGF cDNA is trans- 
fected after the addition of a signal sequence, producing a 
chimeric protein containing a secretory signal peptide at its 
amino terminus, tumorigenic conversion of fibrohlasts is in- 
duced even at low to intermediate levels of expression 
(Rogelj et al., 1988; Blam et al., 1988). Tumorigenic con- 
version of fibroblasts at low levels of growth factor expres- 
sion has also been obtained with hst/K-FGF, a transforming 
oncogene from the FGF family which produced a secretory 
form of bFGF, suggesting that secreted FGF has a higher 
tumorigenic potential than the cell-associated form, possibly 
acting through an autocrine control loop (Quarto et al., 
1989). 

The results obtained by others with secreted forms of FGF 
are relevant to the newly discovered bFGF-related on- 
cogenes, all of which contain a signal sequence and are 
released as diffusible factors (Delli-Bovi et al., 1987, 1988; 
Yoshida et al., 1987; Zhan et al., 1988; Marics et al., 1989). 
Two members of this family, hst/K-FGF and int-2, both with 
chromosomal assignment 11q13, were found to be coam- 
plified in a conjunctival melanoma (one out of eight primary 
and metastatic melanomas tested; Adelaide et al., 1988). Be- 
cause, like bFGF, hst/K-FGF is also a potent mitogen for 
normal cutaneous melanocytes (Halaban et al., 1988/)), ex- 
pression of these FGF-like growth factors probably gives 
growth advantage to a conjunctival melanoma as well. 

The bFGF- and TPA-dependent, normally differentiated 
murine melanocytes were easily transformed to an autono- 
mous mode of growth not only by bFGF cDNA hut also by 
other oncogenes. Since endogenous bFGF was not induced 
in any of these oncogene transformants, it appears that trans- 
formation to growth factor independence of these melano- 
cytes can be accomplished by several pathways that may con- 
verge at a critical but so far unidentified step. The variously 
transformed melanocytes exhibited differences in morphol- 
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ogy in vitro as well as substantial differences in behavior in 
vivo in response to a variety of environments. In general, 
oncogene-transformed melanocytes grew rapidly as tumors 
when injected subcutaneously into nude mice. However, 
when tested by subcutaneous injection or by grafting onto 
syngeneic, immunocompetent mice, only ms-transformed 
melanocytes were able to form tumors irrespective of their 
environment. 

Neu-transformed melanocytes presented an interesting ex- 
ample of tumor growth modulated by surrounding normal 
cells. Addition of keratinocytes at the time of grafting was 
sufficient to inhibit tumor formation in syngeneic animals. In 
contrast, dermal fibroblasts promoted rather than inhibited 
growth. Since inhibition by kerntinocytes was not observed 
in nude mice, it is likely that tumor growth in immunocom- 
petent syngeneic mice was prevented as the result of an inter- 
play between the keratinocytes and the immune system. It is 
known, for instance, that keratinocytes, which are highly 
phagocytic cells, display class H histocompatibility antigens 
in vitro after treatment with interferon (Wikner et al., 1986), 
suggesting that keratinocytes could function as antigen-pre- 
senting cells. If so, keratinocytes in immunocompetent mice 
may facilitate immune recognition of neu transformants. This 
interpretation would be consistent with the close apposition 
of lymphocytes to residual melanocytes, observed by electron 
microscopy and by the clinical observation of the slow initial 
growth of melanomas while still confined to the epidermis. 

Carcinoma formation by ms-transformed primary ker- 
atinocytes can be suppressed by concomitant grafting of nor- 
mal dermal fibroblasts (Dotto et al., 1988). Those results 
and the results reported here raise the general possibility that 
heterotypic cell interactions play an important role in reg- 
ulating tumor development. The underlying mechanisms are 
likely to be different in the two cases. Since carcinoma inhi- 
bition by dermal fibroblasts can be observed also in nude 
mice, the immune system in this case is unlikely to be in- 
volved (Dotto, G. P., unpublished observation). 

Cells transformed by the E/a or myc oncogenes were 
tumorigenic in nude but not in syngeneic mice irrespective 
of the presence of normal cutaneous cells, suggesting that the 
immune system can recognize these transformants and block 
their growth probably because of the presence of new surface 
antigens or new combinations of surface antigens. A prece- 
dent is the induction of class II histocompatibility antigens 
in human melanocytes after transformation by the ms on- 
cogene (Albino et al., 1986). In addition, a number of 
melanoma-associnted antigens have been described (Herlyn 
et al., 1987; Houghton et al., 1982; Holzman et al., 1987; 
Hotta et al., 1988; Yamaguchi et al., 1987). 

The most effective transforming agent in our system was 
the v-ms oncogene. Work by others has indicated that c-ms 
activation may have occurred in 10-15 % of human metastatic 
melanomas (Albino et al., 1984; Sekiya et al., 1984; Padua 
et al., 1985; Gerhard et al., 1986; Albino, 1988; Raybaud 
et al., 1988). Direct transformation of normal human mela- 
nocytes by v-ms oncogenes resulted in a partially transformed 
phenotype, including induction of new surface antigens and 
ability to grow in soft 'agar (Albino et al., 1986; Albino, 
1988). However, other markers of transformation, such as 
growth factor independence and loss of pigment forming abil- 
ity, were not observed, suggesting that transformation of hu- 
man melanocytes by ms oncogenes alone was not sufficient 

to induce a fully transformed phenotype (Albino et al., 1986). 
Recently, results similar to ours were reported by Wilson et 
al. (1989), who showed that transformation of a nontumori- 
genic line of murine melanocytes with the v-Ha-ms onco- 
gene resulted in tumorigenic conversion (as detected in nude 
mice) together with growth factor independence and amela- 
nosis in vitro. Extinction of differentiated functions was ob- 
served also after transformation of chicken retinal melano- 
cytes with Rous sarcoma virus (Boettiger et al., 1977), and 
uveal melanomas were induced by direct injection of feline 
sarcoma virus into the anterior chamber of the eyes of new- 
born kittens (Albert et al., 1981). 
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