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A frequently sought output from a shotgun proteomics experiment is a list of proteins that we
believe to have been present in the analyzed sample before proteolytic digestion. The standard
technique to control for errors in such lists is to enforce a preset threshold for the false
discovery rate (FDR). Many consider protein-level FDRs a difficult and vague concept, as the
measurement entities, spectra, are manifestations of peptides and not proteins. Here, we argue
that this confusion is unnecessary and provide a framework on how to think about protein-level
FDRs, starting from its basic principle: the null hypothesis. Specifically, we point out that two
competing null hypotheses are used concurrently in today’s protein inference methods, which
has gone unnoticed by many. Using simulations of a shotgun proteomics experiment, we show
how confusing one null hypothesis for the other can lead to serious discrepancies in the FDR.
Furthermore, we demonstrate how the same simulations can be used to verify FDR estimates of
protein inference methods. In particular, we show that, for a simple protein inference method,
decoy models can be used to accurately estimate protein-level FDRs for both competing null
hypotheses.
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1 Introduction

Just as for any other type of high-throughput experiment,
a typical outcome of a shotgun proteomics experiment is a
list of inferences, usually in the form of peptide-spectrum
matches (PSMs), peptides, or proteins. Ideally, each infer-
ence is associated with a score that reflects the confidence we
have in it. We are normally only interested in the best scor-
ing inferences and therefore only keep the ones that score
better than a certain threshold [1]: the discoveries.1 An intu-
itive way to set such a threshold is to use a False Discovery
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1Note that, contrary to the prevalent nomenclature, we employ the
term discovery instead of positive to indicate significant features, for
example, false discovery instead of false-positive. We feel that this em-
phasizes its relation to the FDR as opposed to creating a confounding
connection to the false-positive rate.

Rate (FDR), that is, the expected fraction of discoveries for
which the null hypothesis is true [1–3]. The null hypothesis
commonly represents the position that the observations are
the result of chance. It often coincides with the inverse of the
question that we are trying to answer by assembling the list
of inferences. For example, a common question for a PSM
is, “is the spectrum correctly matched to a peptide?” and the
null hypothesis can then be formulated as “the spectrum is
spuriously matched to a peptide” [4–6].

However, lists of PSMs are often not a satisfying end-result;
in most analytical proteomics experiments, the entities that
one is most interested in are not PSMs or peptides, but pro-
teins [7]. There is currently a wide availability of schemes
to infer proteins, based on different principles such as par-
simony [8] or probability theory [9–11]. For a review on the
subject, see [12].

A common approach to arrive at a set of discovered
proteins is to infer the proteins from FDR-thresholded lists
of peptides or PSMs, and rest at reporting the peptide, or
PSM-level FDR. However, this can be rather misleading, as
the PSM- and peptide-level FDR are far lower than the error
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Significance of the study

Protein inference methods attempt to reconstruct the pro-
tein content of a sample from a list of inferred peptides
from a shotgun proteomics experiment. As this reconstruc-
tion process is error-prone, methods ideally should report
the protein-level false discovery rate (FDR) of their reported
list of significant proteins. In this context, the FDR loosely
means the expected proportion of “wrongly inferred” pro-
teins. This article attempts to take away the confusion about
protein-level FDR, by providing an easy framework in which
to think about it. Different protein inference methods use
different definitions of what it means to be “wrong” and one

should therefore be careful when interpreting and compar-
ing their results. By showing the potential consequences of
mistaking one definition for another, we want to encourage
researchers to be aware of the definition of “wrong” they
use and explicitly state this in their reports. Additionally, we
show how one can assess the accuracy of the protein-level
FDRs reported by a protein inference method. This can be
done by formulating the appropriate null hypothesis and us-
ing simulated data for which we can check the validity of that
null hypothesis for each simulated protein.

rate of the derived set of proteins. This increase in error
rate is a consequence of present proteins agglomerating
more PSMs and peptides than spurious proteins [13, 14]. A
more transparent and straightforward way to assess errors
is to first infer proteins and then assess their protein-level
FDR.

It has been pointed out that there are varying opinions
on how to approach the problem of estimating protein-level
FDRs and that protein-level FDRs can be difficult to esti-
mate [15,16]. As a result, its usage has not been as widespread
as one would hope for. Here, we attempt to clarify the discus-
sion by emphasizing the need to separate the definition of a
protein-level FDR from the skepticism one might have about
the FDR estimates provided by a protein inference method.

1.1 Defining protein-level FDRs

An important fact that many are not aware of is that protein
inference methods do not agree on how a false protein dis-
covery should be defined. Some define a false discovery as a
protein being inferred from incorrect PSMs [9, 13, 17], while
others define a false discovery as an absent protein [10, 11].
Interestingly, while some consider the difference between
these two approaches as obvious, many actually have trouble
distinguishing them. A quick aid in differentiating the two
definitions is to note that even if a protein is present, it is
quite possible that it has no correctly inferred peptides, as
present peptides are not guaranteed to produce high-quality
spectra.

The first definition typically employs a generative model
to construct the distribution of truly null inferences and can
be considered to conform to the Fisherian interpretation of
frequentist statistics [18]. The second definition weighs the
evidence for the null hypothesis against an alternative hypoth-
esis and can best be viewed from the perspective of Bayesian
statistics [19]. However, regardless of the chosen foundation,
be it frequentist statistics, Bayesian statistics, or any other fla-
vor within, between or outside of these frameworks, the FDR
can typically be defined. While statisticians might have strong

opinions regarding which foundation of statistics should be
utilized for hypothesis testing [20], we view the problem from
a much more practical point of view. Both frequentist and
Bayesian definitions are regularly used when describing pro-
teomics experiments and it is therefore important to investi-
gate these definitions while taking the limitations and impli-
cations of their corresponding frameworks into account.

One of the crucial points we want to discuss in this arti-
cle is the importance of clearly stating which definition an
estimated FDR adheres to, in order to facilitate the correct
interpretation of the results. In particular, we will use sim-
ulations of shotgun proteomics experiments to demonstrate
that FDRs from the two null hypotheses stated above can
quickly diverge and should therefore not be mistakenly inter-
changed.

Additionally, many methods try to incorporate evidence of
peptides that can stem from several proteins and, in an ef-
fort to accommodate this, also group proteins that share all
or some of their peptides [8–11]. This creates a multitude of
possible definitions regarding false discoveries for proteins
or protein groups [21]. While these definitions are in risk
of becoming uninformative for experimentalists and overly
complicated, a good start would, again, be to explicitly men-
tion which definition is chosen.

1.2 Verifying protein-level FDR estimates

The second issue, that is, verifying FDR estimates given a
definition of a null hypothesis, is highly dependent on the
protein inference method. Here, we will provide an outline
for how one can convince oneself of the validity of protein-
level FDR estimates from existing or new protein inference
methods.

To accomplish this, one has to know which proteins
are actually present and absent, or incorrect and correct. A
common approach is to analyze mixtures of known proteins,
such as the ISB 18 [22] or the Sigma UPS1/UPS2 protein
mixtures. However, the measured accuracy on these low
complexity mixtures is not necessarily representative of the
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accuracy on the highly complex samples we normally analyze
in high-throughput experiments [23]. More fundamentally,
one normally cannot actually assess the “correctness” of a
protein from such mixtures, as we neither know the ground
truth for the peptide-spectrum matching step, nor which
protein(s) a shared peptide actually came from.

Here, we propose the utilization of simulations of shotgun
proteomics experiments to assess the accuracy of protein-level
FDR estimates [24,25]. Simulations ensure that we know the
ground truth about the presence or other simulated variables
of each protein, and at the same time they allow us to gen-
erate the complexity of protein mixtures that we encounter
in practice. Although some assumptions in the simulation
might be oversimplifying results from an actual experiment,
accurate predictions on simulated data can be viewed as
a minimal requirement for a method to be considered
accurate.

To demonstrate these principles and highlight the impor-
tance of explicitly stated null hypotheses, we selected two
commonly asked questions together with an intuitive defini-
tion of a null hypotheses, representing the two views on false
discoveries presented above:

HI : Which proteins are inferred where the best scoring pep-
tide is correctly matched so that it can be used for subse-
quent quantification? For this case, the corresponding
null hypothesis for each individual protein is HI : “The
protein’s best scoring peptide is incorrectly matched.”

HA : Which proteins are present in my sample? For this case,
the corresponding null hypothesis for each individual
protein is HA : “the protein is absent from the sample.”

We simulated lists of peptide inferences and used a simple
protein inference method to derive lists of protein inferences.
This protein inference method disregarded shared peptides,
thereby avoiding complications in definitions of false dis-
coveries due to shared peptides and protein grouping. We
show that under these settings, the FDRs of the two null hy-
potheses diverge rapidly, but both FDRs can still be estimated
accurately using simple decoy models [26–28].

2 Methods

2.1 Simulation

To be able to test our hypotheses, we needed a dataset with
a clear definition of present and absent proteins, as well as
correct and incorrect peptide matches. This was most easily
obtained by a simulation of a digestion and matching exper-
iment. Next, we will describe the details of our simulations,
which is also outlined in Algorithm 1.

We designed a python script that, given a protein database,
creates a list of peptide inferences, where each peptide infer-
ence is assigned a score and can either represent a correct or
incorrect peptide match. This corresponds to a situation in

which fragment spectra have been matched to peptides by a
database search engine and the resulting PSMs are grouped
by peptide. Furthermore, we assume that the database
searching was done on a concatenated target–decoy protein
database [28], such that the number of incorrect peptide
matches should be equally divided over target and decoy
peptides.

To create the list of peptide inferences, we started off by
making an in silico digestion of the protein database (fully
tryptic, 7 ≤ peptide length ≤ 50) to form a protein to peptide
bipartite graph with the target proteins and peptides. We also
created a decoy model by creating a copy of this graph and
subsequently reversing the peptide sequences, thereby cre-
ating decoy proteins and peptides. Using a given fraction of
absent proteins, �A, we randomly assigned a fraction (�A) of
the target proteins as being absent and the remaining fraction
(1 − �A) as being present; decoy proteins were evidently al-
ways absent. Note that, in a Bayesian framework, the fraction
�A can be considered the prior probability for a protein to be
absent.

We analyzed several peptide inference lists from shotgun
proteomics experiments and observed that the inferences
could roughly be classified into three groups based on their
posterior error probabilities (PEPs). The PEP, sometimes known
as the local FDR, has its origin in Bayesian statistics and repre-
sents the probability of an inference having a particular score
to be incorrectly inferred. This can be contrasted to the FDR,
which is the probability of an inference having a particular
score or better to be incorrectly inferred.

The first group consisted of very confident peptide infer-
ences with PEPs close to 0. The second group contained very
low-confident peptide inferences with PEPs close to 1. The
third group was composed of inferences with PEPs roughly
uniformly distributed over the interval [0, 1]. To emulate this
behavior, we first created a list of l “empty” peptide infer-
ences, that is, having only a PEP as its score without a pep-
tide sequence associated to it yet, and assigned a fraction f1

of them a PEP of 0 and a different fraction f0 a PEP of 1.
For the remaining m = l (1 − f0 − f1) peptide inferences, we
assigned a PEP according to a linear ramp from 0 to 1 as
pi = i−1/2

m for i = 1 . . . m.
Next, we assigned peptide sequences to these “empty” pep-

tide inferences, based on their PEPs. For example, if a pep-
tide inference had a PEP of 0.3, then we first drew a random
number from U(0, 1), the uniform distribution from 0 to 1,
to determine if the peptide inference was correct or not, that
is, if the random number was below 0.3, we marked it as a
correct inference and otherwise as an incorrect inference. If
the inference was marked as correct, we proceeded with ran-
domly assigning a peptide sequence from the pool of present
peptides. If the inference was marked as incorrect, we did
another draw from U(0, 1); if it was below 0.5, we randomly
assigned a peptide sequence from the pool of target peptides,
present and absent, and otherwise from the pool of decoy pep-
tides. All random assignments from the peptide pools were
done without replacement.
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Algorithm 1: Protein digestion and peptide inference simulation

1: procedure SIMULATEPEPTIDELIST(Rt, �A, l, f0, f1)
�Rt : list of target proteins

��A: fraction of absent proteins
�l: output peptide inferences list length

� f0: fraction of peptide inferences with PEP = 1
� f1: fraction of peptide inferences with PEP = 0

2: n ← |Rt | � Set n to the number of proteins
3: Rp ← RANDOMSELECT (Rt, (1 − �A) · n) �randomly select (1 − �A) · n proteins as present
4: Pt ← DIGEST (Rt) � digest target proteins into peptides
5: Pp ← DIGEST (Rp) � digest present proteins into peptides
6: Pd ← REVERSE (Pt) � reverse sequences for decoy peptides
7: L ← {} �initialize list of tuples (peptide, PEP, isCorrect, isDecoy)
8: global Pp, Pt, Pd � make peptide pools global for calls to DRAWPEPTIDE

9: for j ← 1, f1 · l do � randomly select f1 · l correct peptide inferences
10: L ← L∪ DRAWPEPTIDE (0.0)
11: m← (1 − f0 − f1) · l
12: for j ← 1, mdo � randomly select mpossibly correct peptide inferences

13: L ← L∪ DRAWPEPTIDE
( j− 1

2
m )

14: for j ← 1, f0 · l do � randomly select f0 · l incorrect peptide inferences
15: L ← L∪ DRAWPEPTIDE (1.0)
16: return L � return list of tuples (peptide, PEP, isCorrect, isDecoy)

17: procedure DRAWPEPTIDE(p) � p: posterior error probability
18: u ∼ U(0, 1) � draw from uniform distribution
19: if u < p then

20: isCorrect ← False
21: v ∼ U(0, 1)
22: if v < 0.5 then

23: isDecoy ← True
24: {y} ← RANDOMSELECT (Pd, 1)
25: else

26: isDecoy ← False
27: {y} ← RANDOMSELECT (Pt, 1)
28: else

29: isCorrect ← True
30: isDecoy ← False
31: {y} ← RANDOMSELECT (Pp, 1)
32: Pd ← Pd \ {y},Pt ← Pt \ {y},Pp ← Pp \ {y}
33: return (y, p, isCorrect, isDecoy)

In particular, a PEP of 0 guaranteed that the peptide se-
quence would be drawn from the pool of present peptides,
while a PEP of 1 guaranteed that we followed the steps for
an incorrect peptide inference. Furthermore, the rules for in-
correct peptide inferences ensured that they were sampled
from the target peptides as frequently as from the decoy pep-
tides. Also, note that this simulation was independent of any
subsequent protein inference algorithm.

2.2 Protein inference

For inferring proteins from peptide inferences, we used the
most simple protein inference method we could think of.
We first removed any peptides shared by multiple proteins.
We then inferred any protein with a link to at least one of

the remaining peptides as present. We used the PEP as the
peptide inference’s score and the score of the protein’s best
scoring peptide inference as the score of the protein.

We generated two lists of ranked proteins. For the classical
target–decoy protein list, we concatenated the lists of target
and decoy proteins and sorted them by protein score. We also
assembled a picked target–decoy protein list, as described in
Savitski et al. [17]. For such lists, we eliminated the lower
scoring protein out of each pair consisting of a protein and
its corresponding reversed decoy protein, before concatenat-
ing and sorting the remaining proteins. The original paper
employed peptide-level FDRs for the protein score instead of
peptide-level PEPs, as was done here. However, replacing the
scores would largely have resulted in the same eliminations
and ordering due to the typically monotonic relationship be-
tween FDRs and PEPs.
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3 Results

3.1 Different null hypotheses result in vastly

different FDRs

We implemented a simple python script that simulated the
protein tryptic digestion, MS experiment, and database search
engine peptide-spectrum matching. The advantage of this
method over using a real dataset is that it gave us direct
information about correctness and presence of proteins. As
input for the digestion and matching simulation, we used the
human protein sequences from the Ensembl database [29],
release 74. Unless stated otherwise, we used the following pa-
rameters: the number of (target and decoy) peptide inferences
l = 20 000, the fraction of surely incorrect peptide inferences
f0 = 0.5, and the fraction of surely correct target peptide in-
ferences f1 = 0.1.

The FDR is an expected value of the proportion of true
null hypotheses among the discoveries at a given threshold.
To facilitate the reasoning, we used the term Observed FDR to
mean the actual, opposed to an expected, proportion of true
null hypothesis given such a threshold. The FDR is thus the
expected value of the Observed FDR. Using simulations, we
can measure such Observed FDRs for our two null hypothe-
ses.

We ran simulations for different fractions of absent pro-
teins, �A, and calculated the mean and SD of the proportion
of simulated proteins for which HA and HI are true over
ten randomized runs (see Fig. 1). The two null hypotheses
indeed gave very different outcomes. The proportion of
proteins for which HA was true (Observed FDRA) was lower

Figure 1. The two null hypotheses, HI and HA, gave different
proportions of true null hypotheses among the discoveries. Here,
we plotted the mean and SD of the Observed FDRA as a function
of Observed FDRI over ten randomized simulations with different
absent protein fractions, �A. The two Observed FDRs do not agree
and for lower values of �A, that is, higher fractions of present
proteins, this effect becomes more apparent.

than the proportion for which HI was true (Observed FDRI ).
This follows from the fact that a protein that attracts an
incorrect match, could still either be absent or present. Also,
we can see that the difference becomes more prominent
with lower values of the absent protein fraction, �A.

3.2 A decoy model captures the number of incorrect

protein inferences

We subsequently turned our attention to how well one can
estimate the FDRI using a decoy model. Here, we simulated
decoy peptide inferences under the assumptions of target–
decoy analysis, that is, incorrect peptides have an equal prob-
ability of being a target as decoy peptide (see Section 2) [30].
First, we plotted the fraction of proteins with incorrect best
scoring peptide inference as a function of the classical decoy–
target ratio, that is, the number of decoy proteins divided by
the number of target proteins taken from the classical target–
decoy protein list (Fig. 2).

The classical decoy–target ratio serves as a way to capture
the fraction of proteins with incorrect best scoring peptide
inference. This makes sense as decoy proteins are models of
incorrect inferences, an idea that holds up for PSMs, peptides,
and proteins.

This approximation holds well as long as the set of peptide
inferences belonging to present proteins is not sampled too
deep. For long lists of peptide inferences (typically > 40 000
in our simulations), the probability of producing incorrect
peptide matches belonging to proteins whose best scoring
peptide inference is correct has to be taken into account [13].
This effect causes the number of decoy proteins to be an
overestimation of the number of incorrect proteins. One way
to account for this effect is using the picked decoy–target
ratio [17], that is, the number of decoy proteins divided by
the number of target proteins taken from the picked target–
decoy protein list (Fig. 3). We can hence say that the FDR
of a list made using HI is approximately equal to the picked
decoy–target ratio obtained at the threshold,

FDRI (t) ≈
∑

s∈Dpicked
1s>t

∑
s∈Tpicked

1s>t
.

3.3 To estimate the number of absent proteins

above threshold, we need an estimate of the

global fraction of absent proteins

Next, we investigated the relationship between the proportion
of absent proteins and the classical decoy–target ratio. From
our simulated data, we calculated the proportion of absent
proteins for a given protein list. We plotted the absence ratio
as a function of the classical decoy–target ratio (Fig. 4).

By multiplying the decoy–target ratio by the absent protein
fraction, �A, the absence ratio can be estimated accurately.
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Figure 2. The number of proteins not supported by the best scoring peptide inference can be estimated by a decoy model. Here, we
plotted the reported fraction of proteins with incorrect best scoring peptide inference as a function of the classical decoy–target ratio,
for ten randomized simulations for three different values of the absent protein fraction, �A, and 20 000 peptide inferences. The classical
decoy–target ratio accurately matches the fraction of proteins with incorrect best scoring peptide inference.

The absent protein fraction corrects for present proteins be-
ing inferred even though none of its peptides are actually
correctly inferred. We can hence say that using the classical
target–decoy protein list,

FDRA(t) ≈ �A ·
∑

s∈Dclassical
1s>t

∑
s∈Tclassical

1s>t
.

Without the �A correction, FDRA is overestimated by the
classical decoy–target ratio. Therefore, the classical decoy–
target ratio can be considered a conservative estimate of
FDRA.

Note that using a picked target–decoy strategy would not
give the same relation between its decoy–target ratio and
FDRA. This is a consequence of correct target proteins more
often eliminating their corresponding decoy protein than vice

versa, which breaks the symmetry between target proteins
with incorrect peptide matches and decoy proteins. Multiply-
ing the picked decoy–target ratio by �A would in fact under-
estimate the fraction of absent proteins and should therefore
be refrained from.

4 Discussion

Most practitioners of shotgun proteomics are interested in the
lists of proteins, and a large fraction of all MS studies chooses
to report a number of protein discoveries. A prerequisite for
reporting error rates is a definition of what is meant with a
false discovery, that is, a null hypothesis. It is important that
MS-based proteomics studies do not just report FDRs of their
findings, but also which null hypothesis was used.

Figure 3. For high coverage of the present peptide set, the picked target–decoy strategy should be used instead of the classical target–
decoy strategy for an accurate estimation of the fraction of proteins with incorrect best scoring peptide inference. Here, for ten randomized
simulations, we plotted the reported fraction of proteins with incorrect best scoring peptide inference as a function of (a) the classical
decoy–target ratio and (b) the picked decoy–target ratio, for the same simulations of 80 000 peptide inferences and absent protein fraction,
�A = 0.25. The classical decoy–target ratio is no longer a good estimator for the fraction of proteins with incorrect best scoring peptide
inference, and the picked decoy–target ratio should be used instead.
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Figure 4. The protein absence ratio can be estimated by the classical decoy–target ratio, as long as we compensate for the absent protein
fraction �A. We plotted the reported fraction of absent proteins as a function of the classical decoy–target ratio (red), together with a line
y = x (solid, black) and y = �A · x (dashed, blue) for ten randomized simulations with 20 000 peptide inferences. The protein absence ratio
roughly corresponds to the classical decoy–target ratio times the absent protein fraction.

The FDR of a list of inferences is married to the specific
question such a list answers. Here, we have demonstrated that
the number of false discoveries made when inferring a list of
proteins is dramatically different for two such null hypothe-
ses, “false discoveries are proteins with incorrect best scoring
peptide inference,” HI , and “false discoveries are absent pro-
teins,” HA. Specifically, a researcher erroneously interpreting
an FDR estimate generated under the null hypothesis HA, as
the FDR estimated using the null hypothesis HI could end
up with many more rejected null hypotheses than expected.

The null hypothesis, HA, that regards the absence of the
protein and does not primarily include notions of peptides
seems attractive for typical shotgun proteomics experiments.
However, it should be noted that the approximation of the
FDRA(t) using a decoy model involves the absent protein
fraction, �A, which is usually unknown. Estimation of �A is
not trivial due to the indistinguishability of present proteins
for which no peptides are detected and absent proteins.
Currently, we have no good methods for estimating �A

other than very conservative upper boundaries, such as
the difference in the number of target and decoy proteins
containing a spectrum match divided by the number of
proteins in the target database.

The null hypothesis, HI , that regards the correctness of
the best scoring peptide inference for a protein does not
contain such an unknown parameter. However, it gives a
somewhat unsatisfactory answer to what the sample actually
contains. Furthermore, we cannot use mixtures of known
protein content to verify its FDR estimates, nor can we verify
its estimates on mixtures of unknown content by further
experiments.

Here, we have shown that simulated data from a diges-
tion and matching experiment can be used as a first check to
assess the accuracy of FDR estimates. Given a well-defined
null hypothesis, one can simulate data in which the validity of
the null hypothesis is known for each inference. Simulations
thus provide a quick way to identify inaccurate estimates.
One should, however, stay aware of the limitations imposed
by the assumptions made. For instance, our simulation used

a simplistic score distribution, and also does not try to mimic
the effects of the difference in concentration of proteins. Fur-
thermore, our sampling is done without replacement, which
is a better model for low than high coverage situations.

One could think of many other questions regarding lists
of proteins. Here are some examples: “Which proteins are
inferred where all its protein-specific peptides at a specific
peptide-level FDR are correctly matched?” “Which proteins
contain more than N correctly inferred peptides that I can use
for subsequent quantification?” “Which inferred proteins are
present in different quantities in sample A and B?” “Which
proteins are correctly inferred and present in different quan-
tities in sample A and B?” As there is such a plethora of
possible questions and corresponding null hypotheses, we
see that reasoning about protein-level FDRs becomes even
harder, if we do not clearly define what we mean when we
use the term.

The fact that the FDR is connected to the question posed
when assembling the investigated list implies that one cannot
trivially carry over an FDR of one list of inferences to another
list of inferences, even if the lists contain similar information.
We have shown this here for protein lists and different null
hypotheses, but this rule is much more general. We cannot,
for example, report PSM-level FDR as the error measure for
lists of unique peptides [14] or proteins. Nor can we trans-
fer an FDR of a list of proteins from one experiment to a
concatenated list of protein inferences [25].

We deliberately used an inference procedure that does
not take peptides shared between different proteins into
account. Lists of protein inferences in which shared peptide
information is used correspond to more complicated ques-
tions, as we would need to make a more thorough definition
of what is meant with correct and incorrect proteins. For
example, should a protein with a correct peptide inference
that is shared with other proteins be considered correct or
not?

Grouping proteins based on shared peptides is commonly
done in current methods, and can complicate the issue of
shared peptides even further. For example, one could define
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a protein group to be a false discovery if all its proteins are
absent or incorrect, but this is quite uninformative as we do
not know which of its proteins are actually present or correct.
Alternatively, one could define a false discovery as a protein
group in which one of the proteins is absent or incorrect, but
this would normally be too conservative. More fundamentally,
such procedures force us to define the entities to which the
null hypothesis applies to after we have seen data, that is,
the protein groups are constructed after we inferred peptides
from spectra [21].

Returning to the question of how one should talk about
protein-level FDRs, we think that one should separate the
discussion about which null hypotheses are meaningful from
the question of how accurate the FDR estimates are. Here,
we have listed two null hypotheses that are meaningful, pro-
vided they are used in the right context, and can be accurately
estimated. We highly encourage developers and users of pro-
tein inference methods to explicitly state their employed null
hypothesis and, furthermore, to verify protein-level FDR esti-
mates with simulated data for a variety of common scenarios.
We feel that these two simple steps will help to improve the
field’s understanding of protein-level FDRs, as well as its
confidence in them.
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