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Abstract 
 
The cognitive ability to go beyond the present to consider alternative possibilities, including 
potential futures and counterfactual pasts, can support adaptive decision making. Complex and 
changing real-world environments, however, have many possible alternatives. Whether and how 
the brain can select among them to represent alternatives that meet current cognitive needs 
remains unknown. We therefore examined neural representations of alternative spatial locations 
in the rat hippocampus during navigation in a complex patch foraging environment with 
changing reward probabilities. We found representations of multiple alternatives along paths 
ahead and behind the animal, including in distant alternative patches. Critically, these 
representations were modulated in distinct patterns across successive trials: alternative paths 
were represented proportionate to their evolving relative value and predicted subsequent 
decisions, whereas distant alternatives were prevalent during value updating. These results 
demonstrate that the brain modulates the generation of alternative possibilities in patterns that 
meet changing cognitive needs for adaptive behavior. 
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Introduction 
 
Animals are continually faced with decisions about what to do and where to go next. In the 
context of behavioral tasks, a long tradition of animal experiments and behavioral models 
suggest that the brain can make adaptive decisions by comparing the expected values of 
available options, which are learned through experience. As an example, in spatial settings, an 
animal may compare the expected values of different rewarded locations and associated paths. 
After making a choice, a rewarding outcome would lead to an update that increases the stored 
value of the rewarded location and the path taken to get there, enabling subsequent adaptive 
decisions even as outcomes change1–4. 
 
While the idea of retrieving and updating expected values of possible options seems relatively 
simple, in real-world situations like navigation, choices often lead to outcomes that are distant in 
space or time. This poses a challenge: the brain must go beyond current experience to decide 
among or learn about alternative “non-local” possibilities. For instance, when making a choice 
among nearby routes, the brain may retrieve values related to their ultimate destinations. 
Further, in complex structured scenarios, rewards received in one location can imply information 
about the availability of rewards in other places, as in zero-sum situations or multi-step planning 
tasks. In such cases, the brain may take advantage of learned structure to make inferences 
across space, and update not only the value of the current location but also the values of 
alternative locations and paths5–8. Additionally, unlike many laboratory tasks, naturalistic 
scenarios can have many alternatives available at once9–14. This indicates a need to prioritize15; 
when deciding among or updating different possibilities, some judicious mechanism is required 
to consider the most relevant non-local alternatives to meet current demands. 
 
The neural mechanisms that enable such prioritized computations about relevant non-local 
possibilities during complex behavior are not understood. Existing data indicate the 
hippocampus and its representations of space as a starting point. First, the hippocampus is 
critical for rapid learning and performance of spatial tasks where animals must learn the 
locations of and routes among rewarded locations16–23. Second, the hippocampus is well known 
for spatially tuned “place cells” whose activity typically signals the actual location of the animal24. 
These cells are often described as the substrate for a cognitive map, or an internal model of the 
world, that encodes the relationships among both locations and experiences more broadly25–27. 
Critically, while place cells are best known for coding an animal’s actual position, they are also 
capable of expressing non-local representations of alternative locations at a sub-second 
timescale8,28–34. Finally, natural behavior often involves experience-guided decision making 
during active navigation, and hippocampal non-local representations can be regularly expressed 
during movement35,36. Thus, during active behavior, generating a non-local representation 
corresponding to a particular alternative location could serve to retrieve or update information 
associated with that location, including its value. 
 
Non-local representations have been linked to cognitive processes for both decision making and 
learning during navigation. These population-level representations are most often associated 
with the sequential firing of place cells corresponding to a trajectory through locations behind, 
at, and ahead of the animal’s actual location28,37,29,38,39. In the context of decision making, as 
animals approach a choice point, these representations can sweep along future paths ahead, 
which is evocative of a role in retrieving at least immediately upcoming options10,35,40–46. These 
sequences also engage place cell activity on timescales consistent with synaptic plasticity, 
suggesting a role in learning28,29,47–51, and potentially updating internal representations based on 
experience. 
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Yet, whether or how the brain generates representations of different alternatives as cognitive 
demands change throughout experience-guided decision making and learning remains unclear. 
We therefore combined approaches typically used to separately study decision making and 
reinforcement learning, or experience-guided navigation. We developed a dynamic patch-
foraging task where changing reward probabilities across six locations challenged animals to 
continually update their internal models to make experience-guided choices about where to go 
for reward. By leveraging a computational model, we estimated internal cognitive variables from 
animal behavior related to both value-guided decision making and value updating. As these 
cognitive variables evolved across successive trials of experience, we monitored hippocampal 
neural activity to identify non-local representations expressed during active navigation. We 
observed a range of representations of alternatives, corresponding to potential paths not only 
ahead of, but also behind the animal, including along counterfactuals, and to distant locations in 
remote foraging patches. We further found that these representations were modulated across 
successive trials in two distinct patterns, one for representational content and the other for 
spatial extent, each of which was related to distinctly evolving cognitive variables. These 
findings demonstrate that mechanisms exist that regulate the expression of distinct non-local 
possibilities in conjunction with cognitive needs. 
 
Results 
 
Rats make experience-guided decisions in the Spatial Bandit task 
 
We developed a dynamic foraging task where performance could benefit from representing 
alternative possibilities, both for deliberating among alternatives and for updating information 
about alternatives. This “spatial bandit” task combined features of spatial memory and decision-
making paradigms (Fig. 1A). First, as in classic spatial memory behaviors, rats (n=5) navigated 
a maze based on prior experience to reach reward locations. The track was made up of three Y 
shaped “foraging patches” radiating from the center of the maze, and each patch contained two 
reward ports at the ends of the linear segments (Fig. 1A, left). The multiple bifurcations and 
reward locations provided many opportunities for deliberation among alternative options and 
reward-based updating. Second, as in classic decision-making tasks, we introduced uncertainty 
by dispensing rewards probabilistically. Each port was assigned a nominal probability of reward, 
p(R), of 0.2, 0.5, or 0.8 (Fig. 1A), and one of the three patches had a greater average p(R) than 
the other two. On any visit to a port the rats either did or did not receive reward, determined by 
the p(R), and consecutive visits to the same port were never rewarded. Thus, animals could 
only accurately infer each port’s hidden reward probability state through experiences across 
multiple visits and multiple port locations.  
 
During run sessions, reward probabilities around the track covertly changed in blocks (as in Fig. 
1A,B) every 60 (n=4 animals) or 80 (n=1 animal) trials. Each day of task experience consisted of 
up to 8 run sessions, separated by rest sessions in a rest box, and each run session consisted 
of 180 (n=4 animals) or 160 (n=1 animal) trials. A trial was defined as the period between a 
departure from one port to a departure at another port, and animals individually completed 
5760, 8970, 10191, 7917, and 5220 trials, providing a large dataset compatible with behavioral 
and neural analyses. Importantly, the reward contingency block transitions were uncued and 
changed which patch was associated with the highest overall nominal probability of reward. 
These reward probability transitions thereby encouraged experience-based, adaptive decision 
making. 
 
Animals exhibited choice behavior akin to patch foraging52 (Fig. 1B). They began by serially 
exploring the ports in the three patches, often making repeated choices to alternate between 
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ports within a patch (Stay trials) and occasionally making flexible choices to navigate to an 
alternative patch (Switch trials) (Fig. 1B,C, Fig. S1A). Animals adapted their choices based on 
their dynamic reward experiences across reward ports, trials, and contingencies (as in Fig. 1B). 
As a result, animals generally learned and remained within the patch with the highest nominal 
reward probabilities by the end of each block (Fig. 1D). 
 
The patterns of these Stay and Switch choices indicated a decision strategy that used reward 
history information, including reward history related to both the current patch and to distant 
alternative patches. To understand how reward information related to animals’ choices at a 
single-trial level, we fit a behavioral learning model to each animal’s sequence of port choices 
and reward outcomes (see Methods). We estimated weights related to the expected values of 
the animal’s two potential options on each trial: Staying within the current patch or Switching 
between patches. Logistic regressions predicting Stay or Switch choices revealed significant 
effects of not only the Stay value (measured as the value of the upcoming port in the current 
patch) but also the Switch value (measured as the value of the more valuable unoccupied 
patch) in each animal (Fig. 1E). The coefficients were negative for Stay values, indicating that 
animals were less likely to make Switch choices as the value of Staying increased (Fig. 1E). In 
contrast, the coefficients were positive for Switch values, indicating that animals were more 
likely to choose to Switch as the value of Switching increased (Fig. 1E). Thus, animals’ behavior 
depended on previous reward experiences both from nearby Stay locations and more spatially 
distant Switch locations across the maze (Fig. 1E, Fig. S5A,B). 
 

 
Figure 1. Rats make experience-guided decisions in the Spatial Bandit task. 
(A) Track schematic with example reward Contingencies A-C from one behavioral epoch. The track 
contains three Y-shaped “patches,” each with 2 reward ports located at the ends of linear segments. 
Probability of reward at each of 6 identical reward ports is indicated as p(R1-6). Ports are colored by patch 
for figure visualization only. Uncued reward contingency changes occur every 60 trials. 
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(B) Example sequence of choices from one behavioral session. Vertical black lines indicate contingency 
changes shown in A. Circles indicate chosen port on each trial and are colored by patch. Filled circles 
represent rewarded trials, empty circles represent unrewarded trials. Red triangles indicate a patch 
Switch. 
(C) Schematic of example Stay (black) and Switch (red) trial trajectories. 
(D) Proportion of trials in which the animal chose a port in the patch with the highest average nominal 
reward probabilities, as a function of trial number within the contingency block. Black line and grey 
shading indicate average across rats and 95% CI on the mean. Distribution on 60th trial of blocks is 
significantly different from chance level of 1/3 in each animal (n=168, 87, 78, 131, 87 blocks for animals J, 
C, S, W, and P, respectively, p=2.7e-22, 8.7e-5, 6.4e-10, 2.5e-21, 6.1e-11, binomial test), and distribution 
on 60th trial is also significantly different from values on first trials of blocks (p=9.6e-20, 3.9e-4, 2.5e-9, 
3.2e-18, 1.5e-11, Z test for proportions) 
(E) Regression coefficients on model-estimated values of Stay locations and Switch locations for the 
prediction of Stay or Switch choice on each trial. All individual coefficients are significantly different than 
zero, indicating that rats rely on reward history from both current “Stay” patch and alternative “Switch” 
patches to make Stay or Switch choices (for each animal, pConstant=3.8e-25, 1.6e-111, 5. 6e-98, 1.5e-39, 
8.2e-40, pStay=5.6e-17, 7.3e-24, 3.8e-47, 1.5e-39, 8.2e-40, pSwitch=1.2e-23, 8.6e-9, 8.9e-30, 4.9e-25, 1.6e-
22, from n = 5416, 8572, 9608, 7450, 4732 Stay trials and n = 344, 398, 583, 467, 488 Switch trials). 
Grey bars indicate averages and coefficient points are colored by subject per legend in D. 
(F) Relative value of Switching versus Staying increases across trials leading up to patch Switch choices, 
peaks on Switch trials, and decreases following patch Switch trials. Switch trial values are distinct from 
Stay trial values in the 20 trials before (p=4.3e-61, 2.1e-44, 4.5e-134, 6.6e-126, 4.3e-113, Wilcoxon rank 
sum test) and after (p=8.4e-81, 5.3e-63, 8.5e-162, 4.0e-149, 1.4e-132) Switch trials in each animal. 
Individual animal data in Fig. S5C. 
 
 
Since Switch choices were value-guided and punctuated often longer, stable bouts of Stay 
choices (Fig. 1B,C, Fig. S1A), we anchored further analyses around these self-paced patch 
changes. Here, a central decision variable is the relative value between these two options on 
each trial: Switch value - Stay value (Fig. 1F). This relative value was low during trials far from a 
Switch and on average increased over the course of the Stay trials leading up to a Switch 
choice. On the Switch trial, relative value was highest, and then decreased again across trials 
after the Switch (Fig. 1F). Note that these relative values do not incorporate the bias to Stay (or 
cost to Switch) as illustrated by the negative constants in Fig. 1E. We also note the relative 
value fluctuations on alternating trials before a Switch, which are consistent with animals 
tending to Switch after visiting the higher value port within a patch (Fig. 1F). Importantly, the 
increasing and decreasing relative value pattern around Switches reflects a gradual updating of 
values over successive trial outcomes. This suggests that animals may similarly access internal 
estimates of values associated with Switch and Stay options when deciding whether to leave 
the current patch and, after Switching, whether to remain in the new patch or again navigate 
elsewhere. 
 
Taken together, these findings provide evidence that animals learn from their changing reward 
experiences across the maze, and leverage this experience to make value-guided decisions 
among alternative paths. Furthermore, they suggest that seemingly isolated and behaviorally 
overt Switch choices occur in the context of gradually changing covert reward expectancies that 
place evolving cognitive demands on the animal across successive trials. 
 
Representations of alternative paths ahead of the animal 
 
Given these behavioral results, we then asked whether the content of hippocampal 
representations of alternative paths was also modulated around Switch choices. As previous 
work has identified non-local representations consistent with possible future locations35,40–43, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.23.613567doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.23.613567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

began by examining non-local representations extending ahead of the animal’s actual position 
that occurred while the animal was in the first segment of each trial. In this period, the animal 
approached the first choice point, which is associated with the choice to Stay or Switch. We 
used an established state space decoding algorithm53,54 (2 cm spatial bins, 2 ms temporal bins, 
see Methods) to assess the instantaneous hippocampal representation of space55–57 during 
navigation (animal speed > 10 cm/s) across all five rats, each implanted with tetrode 
microdrives targeting the CA1 region of the hippocampus (Fig. S1). We limited our analyses of 
non-local representations to periods with high confidence that the decoded hippocampal 
representation was in a non-local track segment, defined as a segment distinct from the one 
corresponding to the rat’s actual location (Fig. 2A, see Methods). 
 
We observed non-local representations that reflected locations along either of the two paths 
ahead of the choice point (Fig. 2A). We also verified the expected organization of these non-
local representations of paths ahead based on the phase of the hippocampal theta 
rhythm28,29,37,58,59 (Fig. S2C). On each trial, we then classified non-local representations as 
reflecting paths that, if physically traversed, would either lead the animal to Stay in the patch or 
to Switch between patches (Fig. 2B). We began by examining the Stay trials leading up to and 
following Switch choices. Critically, this enabled us to assess the content of non-local 
representations as the relative value of Stay and Switch paths changed (Fig. 1F), while the 
behavioral choice to Stay remained constant. 
 
Strikingly, the relative representation of Switch and Stay paths mirrored their evolving relative 
value. Across trials preceding a patch Switch, non-local representations of Switch paths ahead 
became increasingly prevalent relative to Stay paths (Fig. 2C,D). All animals exhibited this 
pattern, showing an approximately 1.3-1.5 fold increase in the likelihood of non-local 
representations consistent with the unchosen Switch versus the chosen Stay paths over the 20 
trials before a Switch choice (Fig. 2C,D, Fig. S2A). This culminated in a ratio approaching equal 
(0.5) representation of each path ahead on the trial before a Switch trial (Fig. 2C, Fig. S2A). 
Additionally, on Stay trials after the animal arrived in a different patch following a Switch, non-
local representations were again enriched for the unchosen Switch path. Then, the longer the 
animal chose to Stay, the less the non-local representations reflected the Switch path (Fig. 
2C,D, Fig. S2A). These increases and decreases in the proportion of Switch path 
representations were driven largely by changes in the amount of time spent representing the 
Switch path, while the level of Stay path representation remained, on average, relatively stable 
across successive Stay trials (Fig. S3A). We also confirmed that the approximately symmetrical 
increasing and decreasing pattern around a Switch was not driven by periods when the animal 
and decoded non-local spatial representation were very close by, as is possible near choice 
points, by requiring representations to extend at least 10 cm from the animal (Fig. S3C). 
Additionally, this pattern was not driven only by short Stay bouts, but was also seen when 
analyses were restricted to long bouts (Fig. S3F). 
 
Notably, the modulation of non-local representations of paths ahead of the animal before and 
after Switch trials resembles the changes in relative value between the Switch and Stay options 
(Fig. 1F). That is, trials with a higher relative value of Switching were associated with greater 
relative representation of Switch paths. This same relationship could also explain differences in 
non-local representations across Stay and Switch trials. Stay trials were on average associated 
with approximately 20-30% non-local representation of paths consistent with Switching, 
whereas the complementary bias was seen on Switch trials, in which 70-80% of the alternative 
representations were of the Switch path (Fig. 2E). 
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These findings indicate that the hippocampus continually tunes the retrieval of spatial 
alternatives in a pattern related to their evolving relative value. In the context of experience-
guided decision making, our results are consistent with an across-trial process where internal 
sampling of alternatives is biased by relative expected value, such that as these estimated 
values become more similar—and the cognitive demand for distinguishing between them 
potentially greater—the options are sampled more equally. Recruiting representations of 
relevant paths based on their viability for making the best choice, in turn, could enable more 
accurate comparisons of the values60.  

 
Figure 2. Non-local representations of alternative paths Ahead are enriched across trials 
before and after patch Switching. 
(A) Examples of non-local representations of alternative paths ahead on Stay and Switch trials. As the 
animal approaches the choice point, the hippocampus can represent the Stay or Switch path ahead. Top: 
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Animal’s actual position (magenta) and decoded position from hippocampal spiking (blue, shaded by 
time) during the light blue-highlighted period (below) are plotted on the track. Dashed grey line with arrow 
indicates animal’s path and direction on the current trial. Highlighted non-local duration is labeled above 
blue time-shaded heatmap. Top-middle: multiunit spike rate from hippocampal tetrodes before, during, 
and after highlighted non-local representation. Bottom-middle: Distance from actual position to decoded 
position, with positive values corresponding to in front of the animal’s heading, and negative numbers 
corresponding to behind the animal’s heading. Note that blue non-local periods are required to have 
representations in a different track segment from the animal’s actual position. Bottom: Animal speed.  
(B) Schematic defining Stay and Switch non-local activity ahead, analyzed in C-F. Non-local activity was 
analyzed from times in which the animal was running >10 cm/s from the reward port to the first choice 
point in the trial (magenta) by assessing the per-trial proportion of time in which non-local activity 
extended along the path ahead consistent with Switching (red) out of all non-local activity times along 
both the Stay (black) and Switch (red) paths. 
(C) Proportion of all non-local activity that represents paths consistent with Switching during the approach 
of the first choice point across Stay trials preceding and following Switch trials in one rat. Left and right x 
axes separated to reflect patch change. Error bars are 95% CIs on the mean. Linear regressions show 
increasing and decreasing proportions across trials before and after patch Switch trials. 
(D) Left: Proportion of all non-local activity that represents paths consistent with Switching during the 
approach of the first choice point across all animals (n=5 rats), normalized per animal by subtracting off 
the average baseline proportion on Stay trials. Error bars are 95% CIs on the mean. Pre- and post-Switch 
linear regressions overlaid. Upper right: observed slope of pre-Switch regression (black) is significantly 
different from 0 (p<0.002) based on 1000 shuffles of the underlying data (grey). Lower right: observed 
slope of post-Switch regression (black) is significantly different from 0 (p<0.002) based on 1000 shuffles 
of the underlying data (grey). Both slopes were individually significant in all five animals (Fig. S2A). 
(E) Proportion of all non-local activity that represents paths consistent with Switching during the approach 
of the first choice point in each animal on Stay trials and Switch trials. Error bars are 95% CIs on the 
mean. The proportion on Switch trials is greater than on Stay trials for all animals (p=2.7e-192, 4.2e-108, 
1.0e-100, 2.1e-315, 1.6e-201, Wilcoxon rank sum test, for n=313, 335, 523, 422, 452 Switch trials, and 
n=3349, 3803, 5600, 5028, 3294 Stay trials). 
(F) Cross-validated accuracy of logistic regressions that predicted Stay or Switch choices based on the 
proportion of all non-local activity that represents paths consistent with Switching during the approach of 
the first choice point. Neural data from each of three trial types: previous trial (circle marker), current trial 
(square marker), or both (triangle marker). Error bars are 95% CIs on the proportion. Training data were 
balanced, so chance level was 0.5. Accuracy of model using previous trial neural data is significantly 
greater than chance level in all animals (p=3.2e-63, 1.1e-43, 4.0e-133, 9.7e-131, 3.3e-60, Z test for 
proportions), accuracy from model using current trial neural data is greater than accuracy from model 
using previous trial neural data (p=2.3e-39, 7.0e-27, 6.0e-33, 2.8e-46, 6.3e-43), and accuracy of model 
based on both trials is greater than accuracy of current trial model (p=1.1e-4, 1.2e-3, 4.3e-39, 4.9e-26, 
5.6e-3). 
 
 
The possibility that non-local representations are engaged across trials in an internal sampling 
process led us to ask whether the proportion of non-local representation of the Switch path was 
predictive of the future choice to Stay or Switch. We reasoned that proportionally more 
representation of the Switch option on the Stay trial an entire trial in advance of the Switch could 
provide samples of the relatively high value Switch option (Fig. 1F) that in turn could influence 
the decision on the next trial. To investigate this at the level of single trials, we used a cross-
validated logistic regression to predict whether an animal would choose to Stay or Switch on 
each trial based on the proportion of non-local representation corresponding to Switch paths as 
the animal approached the first choice point of each trial (using the same metric as in Figs. 2C-
E). Training data were balanced such that chance level was 0.5. 
 
We found evidence that non-local representations could be used in an across-trial decision 
process. Non-local representations occurring on the previous trial predicted the subsequent 
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trial’s Stay or Switch choice better than chance. This indicates that the increased alternative 
representation on the Stay trial before a Switch trial was predictive of a future Switch choice an 
entire trial in advance, even when the immediately upcoming choice on the current trial was still 
to Stay (Fig. 2F). This choice prediction was even more accurate when considering only the 
non-local representations that occurred during the approach of the choice point on the current 
trial (Fig. 2F), which is expected from Fig. 2E. Strikingly, including non-local representations on 
both the previous trial and the current trial led to an even better prediction of the choice the 
animal would make on the current trial (Fig. 2F). While Fig. 2C-E indicate a ramping process on 
average across bouts of Stay trials before patch Switches, this regression result extends the 
observation of an across-trial modulation to the level of individual choices within bouts. 
 
Representations of alternative paths behind the animal 
 
The idea that representations of alternatives may be flexibly generated to meet decision-making 
needs across trials, rather than only for the immediate future choice, led us to ask next whether 
non-local representations of alternatives could be expressed at times when there was no 
immediately upcoming choice point. Here we focused on periods when the animal was 
traversing the final track segment of a trial and approaching a reward port. During this period, 
we found that non-local representations not only corresponded to the path the animal recently 
traversed, but also the unchosen Stay or Switch path that the animal could have come from or 
gone to but did not. This is consistent with the representation of counterfactuals (Fig. 3A,B). 
 
These non-local representations of Stay or Switch paths behind the animal (Fig. 3C,D) showed 
a very similar pattern of modulation around Switch choices as did non-local representations of 
paths ahead of the animal (Fig. 2C,D). Even though the representations behind were expressed 
after the animal had behaviorally indicated a choice on the current trial (Fig. 3B), the relative 
representation of the counterfactual Switch path ramped up across Stay trials before a Switch 
and ramped down across the subsequent Stay trials after arriving in a different patch (Fig. 3B-D, 
Fig. S2B). Again, this increasing and decreasing pattern was roughly symmetric on average 
around the Switch trial. Furthermore, just as for representations ahead (Fig. 2E), 
representations behind the animal were biased on average to represent locations along the 
actual path taken on the current Stay or Switch trial (Fig. 3E). Thus, the non-local 
representations behind the animal were systematically modulated with the evolving relative 
values of the options (Fig. 1F). 
 
As with non-local representations extending ahead of the animal, the dynamic generation of 
representations of alternatives behind the animal was primarily driven by changing levels of 
Switch path representation (Fig. S3B). This is consistent with an increasing relative 
representation of the unchosen alternative path leading up to and following a choice to Switch. 
These results were also consistent when analyses were limited to representations extending at 
least 10 cm behind the animal (Fig. S3D), as well as in bouts within a patch lasting at least 10 
Stay trials (Fig. S3G). Further, these non-local representations behind were concentrated in 
early phases of the theta rhythm, as expected from previous work28,29,37,58 (Fig. S2D). 
 
Representations behind the animal could also predict future behavior, consistent with an across-
trial decision process. The relative representation of non-local paths behind the animal on the 
previous trial were predictive of whether the animal chose to Stay or Switch on the entirely 
subsequent trial (Fig. 3F). These predictions were, as expected (Fig. 3E), not as accurate as 
those from non-local representations occurring as the animal traversed the final segments of 
trials, after the animal had already behaviorally expressed a choice to Stay or Switch (Fig. 3F). 
Nonetheless, previous trial non-local representations predicted subsequent choice well above 
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chance. Thus, the proportion of non-local representation of the Switch path behind the animal 
on a given trial could predict what the animal would do several seconds later following traversal 
down the track segment to the reward port and back up the track segment to the choice point. 

 
Figure 3. Non-local representations of alternative paths Behind are also enriched across 
trials before and after patch Switching. 
(A) Examples of non-local representations of paths behind in Stay and Switch trials. Top: Animal’s actual 
position (magenta) and decoded position from hippocampal spiking (blue, shaded by time) during the 
blue-highlighted period (below) are plotted on the track. Dashed grey line with arrow indicates animal’s 
path and direction on the current trial. Highlighted non-local duration is labeled above blue time-shaded 
heatmap. Top-middle: multiunit spike rate from hippocampal tetrodes before, during, and after highlighted 
non-local representation. Bottom-middle: Distance from actual position to decoded position, with positive 
values corresponding to in front of the animal’s heading, and negative numbers corresponding to behind 
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the animal’s heading. Bottom: Animal speed. Note that periods outside the blue shaded region where the 
distance behind is large (e.g., second example) correspond to representations that are in the same track 
segment as the animal at that time rather than an alternative non-local segment. 
(B) Schematic defining Stay and Switch non-local activity behind, analyzed in C-F. 
(C) Proportion of all non-local activity that represents paths consistent with Switching during the approach 
of the reward port across Stay trials preceding and following Switch trials in one rat. Left and right x axes 
separated to reflect patch change. Error bars are 95% CIs on the mean. Linear regression lines show 
increasing and decreasing proportions before and after patch Switch trials occur. Individual data for all 
rats shown in Fig. S2B.  
(D) Left: Proportion of all non-local activity that represents paths consistent with Switching during the 
approach of the reward port across all animals (n=5 rats), normalized per animal by subtracting off the 
average baseline proportion on Stay trials. Error bars are 95% CIs on the mean. Pre- and post-Switch 
linear regressions overlaid. Upper right: observed slope of pre-Switch regression (black) is significantly 
different from 0 (p<0.002) based on 1000 shuffles of the underlying data (grey). Lower right: observed 
slope of post-Switch regression (black) is significantly different from 0 (p<0.002) based on 1000 shuffles 
of the underlying data (grey). Both slopes were individually significant in all five animals (Fig. S2B). 
(E) Proportion of all non-local activity that represents paths consistent with Switching during the approach 
of the reward port in each animal on Stay trials and Switch trials. Error bars are 95% CIs on the mean. 
Switch trial distributions are significantly greater than in Stay trials for all animals (p=5.6e-264, 1.1e-155, 
3.2e-300, 1.0e-100, 1.1e-277, Wilcoxon rank sum test, for n=292, 344, 525, 424, 443 Switch trials and 
n=3079, 3660, 6582, 4924, 3001 Stay trials). 
(F) Accuracy of logistic regressions predicting Stay or Switch choices based on proportion of all non-local 
activity that represents paths consistent with Switching during the approach of the reward port. Neural 
data from two trial types: previous trial (circle marker), or current trial (square marker). Error bars are 95% 
CIs on the proportion. Training data were balanced, so chance level was 0.5. Accuracy of model using 
previous trial neural data is significantly greater than chance in all animals (p=2.4e-58, 7.1e-32, 1.2e-56, 
1.3e-40, 3.1e-48, Z test for proportions), and current trial model accuracy is greater than previous trial 
model accuracy (p=2.4e-58, 7.1e-32, 1.2e-56, 1.3e-40, 3.1e-48 ). 
 
 
Together with the results from representations ahead of the animal (Fig. 2), these findings 
indicate that animals can progressively engage non-local representations associated with a 
progressively more valuable unchosen alternative (here Switching) both before and after the 
choice point leading to that option on each trial. These findings provide further support that the 
hippocampus dynamically samples alternative options, and can do so across successive trials 
with varying cognitive demands throughout flexible decision making. 
 
Representations of remote alternatives 
 
Beyond retrieving information from an internal model related to an ongoing decision-making 
process, non-local information could be useful for additional purposes, including relating 
experiences or making inferences across space. In this task, where reward ports are distributed 
far across the maze, representing distant locations38,43,61–63, including those in alternative 
patches, could support relating reward experiences across space or updating values of distant 
locations based on local reward experiences. We therefore asked whether there was evidence 
for representations of distant locations across the maze, and whether these representations 
were specifically generated in relation to patch Switching, as animals learned from dynamic 
reward experiences. 
 
In addition to non-local representations corresponding to track segments neighboring the 
animal’s actual location (Fig. 2A,3A; Fig. 4A left), we also observed non-local representations 
corresponding to alternative patches, closer to other reward ports (Fig. 4A). Alternative patches 
were represented on 10-20% of trials with any non-local representation (Fig. S4C). To quantify 
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the extent of non-local representations, we then measured the maximal distance in centimeters 
between the animal’s actual position and the most likely decoded position represented by the 
hippocampus on each trial, during running at least 10 cm/s (Fig. 4B). Given our previous 
observation of representations of paths both ahead (Fig. 2) and behind (Fig. 3), we investigated 
non-local distance both as animals approached the first choice point and after the animal 
passed the final choice point in each trial (Fig. 4B). 
 

 
Figure 4. Non-local representations extend further early in patch experience. 
(A) Examples of distant non-local representations of paths ahead or behind, in track segments distinct 
from the animal’s current segment. Top: Animal’s actual position (magenta) and decoded position from 
hippocampal spiking (blue, shaded by time) during the blue-highlighted period (below) plotted on the 
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track. Dashed grey line with arrow indicates animal’s path and direction on the current trial. Highlighted 
non-local duration is labeled above blue time-shaded heatmap. Top-middle: multiunit spike rate from 
hippocampal tetrodes before, during, and after highlighted non-local representation. Bottom-middle: 
Distance from actual position to decoded position, with positive values corresponding to in front of the 
animal’s heading, and negative numbers corresponding to behind the animal’s heading. Bottom: Animal 
speed. Representations can correspond to distant locations within the current patch (left example) as well 
as in alternative, unoccupied patches (right three examples). 
(B) Schematic showing non-local distance, defined as distance in centimeters of the path along the track 
(green) from the animal’s actual position (magenta) to the peak of the decoded posterior (blue). Example 
schematics correspond to representations of locations an example distance ahead of (left) or behind 
(right) the animal’s actual position. 
(C) Maximum non-local distances represented on trials leading up to and following patch Switches for one 
animal. Data taken from during the period of each trial in which the animal approached the first choice 
point (as in B, left). Left and right x axes separated to reflect patch change. Error bars are 95% CIs on the 
mean. Individual animals shown in Fig. S4A. Exponential regression intercepts a and rate constants b are 
significantly larger magnitude for post-patch-change than pre-patch-change data in all individual animals 
except one (pa = 1.3e-4, 4.6e-9, 1.1e-11, 3.1e-6, 0.8, pb = 2.3e-4, 1.1e-8, 3.2e-10, 3.3e-6, 0.9, Z test). 
(D) Maximum non-local distance ahead represented on trials leading up to and following patch Switches, 
across all animals. Data taken from first segment of trials and normalized per animal by subtracting off the 
average across trials. Error bars are 95% CIs on the mean. 
(E) Maximum non-local distance represented for each animal while traversing each of the four segments 
of a Switch trial (segments 1-4 schematized in lower left). Error bars are 95% CIs on the mean. Non-local 
distance is significantly greater when each animal is in the first segment than the second (p=4.7e-52, 
1.0e-55, 6.4e-59, 8.5e-24, 2.1e-42, Wilcoxon rank sum test), and is also significantly greater in the final 
segment than the third segment for each animal (p=2.3e-49, 2.4e-56, 3.3e-69, 1.5e-49, 3.0e-70). 
(F) Maximum non-local distance represented on trials leading up to and following patch Switches for one 
animal. Data taken from final segment of each trial, during approach of the reward port (as in B, right). 
Left and right x axes separated to reflect patch change. Error bars show 95% CIs on the mean. Individual 
animals shown in Fig. S4B. Exponential regression intercepts a and rate constants b are significantly 
larger magnitude for post-patch-change than pre-patch-change data in all five animals individually (pa 
=8.8e-9, 2.9e-9, 1.4e-7, 3.2e-7, 9.2e-4, pb =5.7e-6, 3.0e-7, 2.3e-5, 4.0e-5, 3.6e-2, Z test). 
(G) Maximum non-local distance behind represented on trials leading up to and following patch Switches, 
across all animals. Data taken from final segment of trials and normalized per animal by subtracting off 
the average across trials. Error bars are 95% CIs on the mean.  
 
 
We found that non-local distance ahead was strongly modulated (Fig. 4C,D) in a pattern 
surprisingly distinct from the modulation of non-local content (Fig. 2C,D). The maximum non-
local distance gradually ramped up across Stay trials and the first segment of Switch trials (Fig. 
4C,D). The extent was then greatly elevated once the animal arrived in a new patch, and then 
decreased rapidly across the subsequent few Stay trials (Fig. 4C,D). This is in marked contrast 
to the modulation of non-local content, which increased and decreased in a roughly symmetrical 
manner. The maximum non-local distances could reach an average of approximately 90 cm 
from the animal (Fig. 4C, Fig. S4A), and, across animals, increased by approximately 40 cm 
from baseline (Fig. 4D) on the Stay trial following a Switch. This asymmetric pattern of non-local 
extent around Switch trials suggests a second kind of modulation of the generation of non-local 
representations across successive trials by the hippocampus during experience-guided decision 
making. 
 
We then examined how these distances changed throughout the Switch trials themselves (Fig. 
4E). Here we considered maximally distant representations both ahead and behind the animal 
during traversal of each of the four track segments of Switch trials. We found that while on 
average non-local representations extended as far as 40-60 cm from the animal on the first 
segment, this distance dropped to approximately 20 cm on both the second and third segment. 
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Then, interestingly, the maximum distances rose again to approximately 40-80 cm as the animal 
traversed the final track segment of the trial and approached the reward port in the new patch. 
 
The extent of non-local representations behind the animal also showed an asymmetric pattern 
of across-trial modulation around Switches (Fig. 4F,G, Fig. S4B). That is, the maximum distance 
of non-local representations behind the animal on the final segment of trials was also elevated 
upon Switching patches, and then decreased back to baseline over subsequent Stay trials (Fig. 
4F,G). Thus, the extent both ahead and behind showed a modulation pattern around Switch 
trials that was distinct from the modulation of Switch versus Stay path content (Fig. 2,3). 
 
We next asked whether non-local representations that corresponded to alternative, unoccupied 
patches were predictive of past or future patch choices. We found no evidence for such a 
relationship. Representations of specific alternative patches were neither biased to represent 
the patch the animal just arrived from nor predictive of the patch the animal would visit next (Fig. 
S4D). And, while in some animals these alternative patch representations did tend to 
overrepresent the track segments containing reward ports, rather than the central three track 
segments, this effect was not consistently observed across animals (Fig. S4E). These results 
indicate that representations of specific distant spatial alternatives in other patches are not 
directly reflective of specific prior or upcoming Switch choices. 
 
Together, these patterns indicate that non-local extent is modulated above and beyond distance 
to a goal43 or choice point38. These findings also raise the possibility that more distant 
representations are involved in computations particularly required upon patch switching, 
including the initial approach of the first reward port in the new patch. This is a period in which 
the animal has the opportunity to learn about the reward values in the new patch, and potentially 
how they relate to values across the maze. Importantly, the reduced maximum distances 
observed in the third segment of Switch trials (Fig. 4E) indicates that the relative novelty or time 
since last visit for each track segment cannot be the main driver of the elevated distances 
observed after a patch Switch (Fig. 4D,G). This is because the third segment has a very similar 
level of relative novelty to the final segment, but the expression of non-local representations was 
very different. 
 
Non-local distance is enhanced during learning opportunities 
 
The observation that the extent of non-local representations was greatly elevated on the final 
segment of a Switch trial and for a few trials thereafter, after entering the new patch, suggested 
that representing distant locations might be particularly useful at those times. Specifically, we 
hypothesized that these representations might support computations that enable inference and 
updating related to alternative options across the environment. We then returned to our 
computational model of choice behavior, which suggested why this might be the case.  
 
This model is an abstract statistical learning model that captures what a rational observer would 
expect about the probability of reward at each port given the animal’s actual history of reward 
experiences, which themselves occurred across different ports. Additionally, we fit the 
parameters of a choice model, similar to logistic regression, to estimate how this value 
information was used in relation to choice behavior. These analyses provided the opportunity to 
ask when information about the values of distant ports around the maze are most likely to be 
updated in relation to behavior at the level of trials. 
 
Our model choice was guided by the blocked reward contingency structure in this task, in which 
high reward probabilities tend to be mutually exclusive across patches at any given time. For 
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example, the presence of a highly rewarding patch indicates that the other patches are less 
rewarding, and vice versa. An animal could account for this structure by estimating value jointly 
across ports rather than separately. Accordingly, the model estimates the expected value of 
each port on each trial by inferring the underlying contingency state across the entire maze. 
Specifically, the learning model is a hidden Markov model (HMM) whose hidden states are the 
sets of reward probabilities across all six ports (Fig. 5A, left and upper right, see Methods). This 
“global” model enables non-local value updating, where a reward outcome at one port can 
impact the expected values of other ports across the maze by providing evidence for specific 
contingency states. 
 
We first asked whether this non-local updating was important to model animal behavior in this 
task. If so, then a model that included this feature should fit the data better than an otherwise 
closely matched model that does not allow for non-local updating. We therefore implemented a 
second “local” model that inferred the value state of each port independently, as separate 
HMMs (Fig. 5A, lower right) that were otherwise identical to the initial “global” model (see 
Methods).  
 
The global model that allowed for non-local inference across ports significantly improved the fit 
to behavior in all animals (Fig. 5B). This suggests that animals did not learn port values 
independently, and instead adopted a non-local learning strategy in which outcomes at one port 
informed reward estimates at other ports, across the maze. 
 

 
Figure 5. Behavioral modeling captures enhanced learning opportunities in early patch 
experience.  
(A) Left: schematic of Hidden Markov Model with hidden state S and observation O on each trial t. Colors 
correspond to potential nominal reward probabilities. Upper right: schematic of Global Model, showing 
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example contingency states S with specific values for each port, and the two potential observations O of 
reward outcomes on each trial at the chosen port. Lower right: Example states S in Local Model, in which 
each port’s value is estimated independently. The Global and Local models had matched reward 
distributions, though here we visualize unique example states. 
(B) Leave-one-out cross-validated log-likelihood improvement (higher is better) of Global Model versus 
Local Model. Global Model better fit behavior in all animals (p=.0035, .0285, .0006, .0013, .0104, t-test on 
cross-validated log-likelihoods per day). 
(C) All animals’ normalized maximum hippocampal non-local distance represented on trials leading up to 
and following Switch trials, for non-local representations both ahead and behind (as in Fig. 4D,G). Trial-
level quantification, rather than sub-trial-level quantification, shown here to match trial-level resolution of 
behavioral model. Error bars are 95% CIs on the mean. 
(D) Global Model variables related to learning opportunities in new patch and associated value updating 
across the maze are enhanced upon patch Switching. Left: Entropy over reward states at upcoming 
reward port shows asymmetrical pattern around Switch trials, becoming elevated on and after Switch 
trials, and decreasing across trials thereafter. Patterns were consistent across animals, shown individually 
in Fig. S5D. Right: Absolute value update resulting from each trial’s reward outcome, summed across all 
ports in maze. Degree of value updating is elevated upon patch Switching, and decreases across trials 
the longer the animal Stays within a patch. Patterns are similar for updates both within the current patch 
and across unoccupied patches (shown individually in Fig. S5). Error bars are 95% CIs on the mean. 
Patterns were consistent across animals, shown individually in Fig. S5E. 
 
 
We then asked whether the dynamics of variables related to value updating in the model 
corresponded to the dynamics of non-local representation distance in the neural data (Fig. 5C, 
Fig. 4C-G). Importantly, in this model, the degree of updating is not required to be uniform for 
every trial’s experienced reward outcome. Instead, as is typical in Bayesian statistical learning, 
an outcome drives greater learning when its reward probability is more uncertain. We therefore 
quantified both outcome uncertainty as well as global value updating using the model (Fig. 5D). 
We first assessed outcome uncertainty, defined as the entropy over the value state of the 
upcoming port. 
 
As with non-local extent, this outcome uncertainty was, on average, relatively stable in trials 
before animals Switched, increased substantially on Switch trials, and then decayed rapidly 
back to baseline (Fig. 5D left, Fig. S5D). Higher values upon Switching patches reflect the lack 
of recent information about likely outcomes at the locations in the new patch, which, in turn, 
could drive stronger value updating. The asymmetric pattern of outcome uncertainty around 
Switch trials is similar to that of the hippocampal extent results (Fig. 5C), potentially reflecting 
preferential updating or propagation of value information to internally represented distant non-
local places during these uncertain periods. 

We next aimed to specifically capture this global value updating process using the model. To do 
so, we quantified the total change in the estimated values across all ports, including both the 
local (occupied) and non-local (unoccupied) patches in the maze from trial to trial (Fig. 5D right, 
Fig. S5E). This revealed that value updating at locations across the maze was also asymmetric 
around patch Switch trials, with higher degrees of updating on and after the Switch, and a rapid 
decay thereafter (Fig. 5D, right), again akin to the pattern of hippocampal extent (Fig. 5C). 
Taken together, these results are consistent with the idea that the hippocampus preferentially 
samples more distant locations across the environment when expected values are uncertain, 
and new reward outcome information must be integrated into the animal’s internal model across 
the environment.  
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Discussion 
 
Our findings demonstrate the distinct modulation of the content and spatial extent of non-local 
representations of alternatives in the hippocampus, in patterns that are well-matched to the 
animals’ evolving cognitive needs throughout flexible decision making. The task structure 
encouraged animals to continually update their estimates of the values of different options 
based on experience and to use those values to decide whether to Stay in the current patch or 
Switch to a different patch. Moment-by-moment decoding of hippocampal spatial 
representations during navigation, in combination with behavioral modeling, revealed two 
distinct patterns of modulation: (1) non-local representations of alternatives were expressed in 
relation to their relative expected values, with the higher value alternative making up the greater 
fraction, and (2) non-local representations extended further from the animal at times where our 
model suggested that non-local learning was most prevalent. These patterns of modulation 
spanned successive trials and engaged non-local representations of locations not only ahead 
of, but also behind the animal. Further, the representations included locations that were not only 
close to, but also very distant from the animal. These findings reveal the broad representational 
capacity of the hippocampus during locomotion and indicate that this representational capacity 
is specifically engaged in patterns appropriate to subserve cognitive demands for both making 
decisions among and updating internal representations of alternatives. 
 
Our behavioral model provided a framework for understanding these contrasting patterns 
between non-local content corresponding to alternatives (Fig. 2,3, which are approximately 
symmetric around Switch trials) and non-local extent (Fig. 4, which is asymmetric). In the trials 
leading up to a patch Switch, the hippocampus tended to reflect locations at distances within the 
neighboring track segments (Fig. 4), along either the Stay or Switch path (Fig. 2,3), rather than 
at the remote port locations where reward was previously obtained. This is consistent with a key 
idea of many reinforcement learning models—that choices are guided by a learned 
representation of the long-term reward consequences of some local action. In this framework, 
an animal would evaluate Stay or Switch options leading up to a Switch choice by retrieving the 
up-to-date values associated with the neighboring paths nearby rather than their ultimate 
remote destinations. The observation that non-local representations extend further during 
greater non-local value updating, particularly after Switching, is further consistent with the idea 
that non-local updating of locations across the maze could help to propagate value information 
from those distal reward port targets to proximal choice points. Thus, whereas the elevated 
extent of non-local representations after Switches may reflect a non-local updating process (Fig. 
5D), the representation of alternative Stay and Switch paths may reflect judicious retrieval of 
nearby segments when they are relevant to an ongoing choice between alternatives (Fig. 1F).  
 
Modulation of non-local representations with relative choice value 
 
Previous work on non-local representations and cognitive functions during locomotion has often 
focused on representations ahead of the animal and identified a variety of relationships between 
the alternatives represented and current trial behavior. These results included an association 
between alternative representation content and head-scanning behavior44, although non-local 
representations are also observed in the absence of this behavioral signature35,64. These results 
also included reports that representations of specific alternatives either did41,43,45 or did not35,40,42 
predictably relate to the upcoming choice on the current trial. 
 
Our results provide a potentially unifying framework to explain these previous observations. We 
identified a modulation of non-local representational content with relative value across 
successive trials. Specifically, when the difference between the values of the Stay and Switch 
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options was large, the higher value alternative dominated non-local representations. When the 
differences were smaller, the relative proportion of non-local representation of each was more 
similar. These findings suggest that the expected values of options or related decision variables 
influence the extent to which those options are expressed in the context of non-local activity. 
This provides a potential prioritization of options to be considered, as the hippocampus would 
be most likely to represent the best, most viable options. Similar prioritization, in which the most 
promising options are internally sampled most extensively, also arises in rational computational 
analyses of choice under uncertainty60. 
 
Thus, when the preferred choice is clear, the hippocampus primarily represents that path, but 
nevertheless samples occasionally from the alternative, potentially to retrieve information about 
the path not taken. In conditions where the preferred choice becomes less clear, the 
hippocampus generates progressively more balanced representations of the two options. 
Critically, therefore, hippocampal non-local representations are neither constantly predicting the 
planned choice, nor strictly providing a menu that evenly represents all potential options—
rather, representations can be more or less predictive of behavior depending on the current 
decision-making demands. 
 
At the same time, relative value-related modulation of non-local representations suggests that 
the mechanisms selecting non-local representations already have an estimated value of the 
alternatives. If so, then why would it be useful to generate a non-local representation? We 
suggest that non-local representations activate place and associated value representations on 
the actual path toward possible goals. This sampling of place and value could progressively 
refine and provide a more accurate estimate of the value, and thus serve to better inform 
decision processes10,46. This is consistent with our observation that the proportion of 
representation of the Switch path ahead was predictive of choice on even the next trial, and that 
similar patterns of non-local content extending behind the animal also related to upcoming 
choice, well in advance of physically approaching the next choice point. 
 
Modulation of non-local extent during periods of updating 
 
Our results also suggest that non-local representations of distant locations may particularly be 
recruited to support updating an internal model. Behavior in the Spatial Bandit task was better fit 
by a model that included non-local value updates wherein experiences at one reward port could 
alter the values at other ports. The pattern of model-estimated updates around Switch trials was 
similar to the measured extent of non-local representations on these trials, with the largest 
updates and the most distant representations preferentially expressed after the Switch decision 
was made and on subsequent trials in the new patch.  
 
One way to understand why value updating is associated with the representation of more distant 
locations is that it may enable more proximal value retrieval at the time of later choices. In the 
context of a choice to Switch patches, we found that animal behavior was driven in part by the 
reward value experienced at remote destination ports. Yet, the non-local representations in trials 
immediately preceding a patch Switch largely sampled paths along the neighboring track 
segments, rather than sampling distal reward port locations. This is consistent with the 
widespread idea that the brain learns a value function, mapping locations near each choice 
point to the rewards to which the paths ultimately lead6. Thus, when outcomes are experienced 
at reward ports, the hippocampus may support non-locally updating information at distant 
locations across the maze in part to simplify later retrieval when that up-to-date information is 
needed for evaluating nearby choices. 
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While the potential mechanisms by which non-local representations during navigation could 
support updating merit further investigation, some initial points can be made. First, the extent of 
non-local representations was low as animals traversed the central segments on a Switch trial 
but increased substantially in the final segment; that is, non-local extent increased immediately 
before rather than only after the first outcome in the new patch was revealed. This suggests that 
the role of these remote representations is not dependent on having just experienced an 
outcome at a reward port. Instead, the hippocampus may facilitate post-outcome updating by 
activating representations of distant alternatives that should be subsequently updated after new 
outcomes are observed in the chosen patch. One possibility is that activation during running 
could promote reactivation during subsequent replay events at the reward port65, and thus link 
the outcome of the current trial to representations of distant places. Second, prior work has 
demonstrated that non-local representations during navigation are strongly associated with the 
theta rhythm, and sequences along the theta rhythm are thought to support learning by binding 
together elements of experience at a compressed timescale through plasticity 
mechanisms38,48,58,66,67. Thus, this system could be used to learn relationships between current 
experience and unchosen alternatives within theta cycles (or other organizing codes68), in 
support of updating knowledge of remote alternatives during active navigation. 
 
These possibilities are consistent with prior work showing that animals make internal model-
based choices that rely on structural knowledge6,7,69–73 rather than just stimulus-response 
associations. Internal model maintenance and updating is particularly beneficial for flexible 
decision making to keep up with changing environments. However, previous neurophysiological 
and computational work on how non-local representations in the hippocampus may support 
value updating has primarily focused on replay during “offline” rest8,74–83, rather than active 
locomotion84,85. Thus, our findings suggest that “online” movement-associated non-local 
representations in the hippocampus also have the potential to contribute to this learning. 
 
A broad range of alternatives are flexibly engaged 
 
Our results also establish that a diverse range of alternatives are expressed by hippocampal 
non-local representations during active navigation. In the context of a specific decision among 
options, previous work has often focused on representations that corresponded to possible 
future locations on the current trial40,42,43. Our findings show that representations of alternative 
paths not only ahead of the animal but also behind the animal—even when moving away from 
the associated choice point—are flexibly engaged across trials associated with decision-making 
and learning processes. We also found that this engagement included non-local representations 
of very remote locations, including representations that occasionally jump far across the maze 
rather than sweep ahead at a constant rate.  
 
The dynamic engagement of a broad range of alternative possibilities by the hippocampus35 
during locomotion is consistent with the idea that non-local population representations can 
support a range of cognitive functions that involve computations about alternatives86–89. In 
particular, the dynamic engagement of representations behind the animal38 during navigation 
raises the possibility that the hippocampus supports computations about actual and 
counterfactual90 past paths during navigation, not only during rest. Moreover, the relative 
prevalence of representations behind the animal predicted behavior on the subsequent trial, 
indicating that representations of alternatives behind the animal need not be strictly 
retrospective, but could also support future decision making. 
 
Additional observations from prior studies exemplify that hippocampal activity during locomotion 
can correspond to various correlates, including representations of opposite directions35, forward 
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and reverse sequences91, distant locations43,61, alternative environmental contexts62, and 
different spatial reference frames63; our results are consistent with the idea that any of these 
representations of alternatives may be differentially engaged and specifically curated across 
trials depending on the cognitive computations needed for the task at hand. 
 
Non-local computations in immediate and long-term adaptive behavior 
 
Retrieving information about alternative options related to making a specific upcoming decision 
and retrieving information about alternatives in service of updating an internal model are both 
computations that inform inference across space (“non-local inference”). In the former case, 
representations of alternatives may support non-local inference of which alternative has the 
greater expected value based on prior experience. And, in the latter, representations of 
alternatives may support non-local inference about how the expected value of remote 
alternatives should be altered based on outcomes observed elsewhere. This possibility is 
consistent with prior work indicating that the hippocampus is important for inference7,75,92–99, and 
relational thinking more broadly26,100–104. 
 
The prolonged relationship across trials of non-local representations to Switching behavior 
serves as a reminder that the behavioral benefit of non-local inference need not be immediate. 
While we observed that non-local representations can predict immediate future and past Stay or 
Switch choices, we also found that representations of alternatives ramped across many trials 
before and after Switch choices, that they predicted choices an entire trial in advance, and that 
remote representations in alternative patches did not predict prior or subsequent patch choices. 
Thus, while non-local representations can have immediate behavioral benefit by supporting the 
immediately upcoming choice, they may also support decision making over the longer term, 
perhaps by integrating and accumulating105,106 retrieved information across trials. This is 
consistent with the idea that inferring structure in an environment and relations between 
experiences may occur in the background of behavior107, particularly as new information needs 
to be incorporated into an internal model, even if an animal does not yet know if or when it will 
later need to draw on that knowledge to support adaptive choices. This is thought to be 
especially important in complex and dynamic environments to enable flexible decision making 
when confronted with new or unexpected circumstances. 
 
While the circuit-level mechanisms that determine the flexible generation of representations of 
alternatives remain largely unstudied, our observations of modulation with respect to relative 
values and the need to learn them implicates brain regions like the prefrontal cortex as possible 
drivers108–116. Consistent with this possibility, activity in the medial prefrontal cortex (mPFC) and 
the hippocampus can be precisely coordinated42,117–119 and mPFC spiking can predict the future 
engagement of non-local hippocampal spiking61. Further, observations of coordination of 
hippocampal representations and peripheral sensory-motor processes120 suggest broad 
engagement of many brain areas at times when hippocampal non-local activity may be 
important for ongoing behavioral computations. The specific generation of non-local 
hippocampal activity patterns and associated representations of alternative possibilities could 
engage widely distributed computations to enable learning and adaptive decision making in a 
complex and dynamic world. 
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Methods 
 
Subjects 
All animal procedures were approved by the Institutional Animal Care and use Committee at 
University of California, San Francisco. Five adult male Long-Evans rats (Charles River 
Laboratories, 450-650g) were each pair housed in a temperature-and humidity-controlled 
environment on a 12-hour light-dark cycle with lights on 6 AM - 6 PM. Rats had ad libitum 
access to standard rat chow and water. Prior to behavioral training, rats were transitioned to 
single housing and food restricted to 85% of their baseline weight. 
 
Behavioral pre-training 
All behavioral tasks were controlled via custom code written in Python and Statescript in 
combination with an Environmental Control Unit (Spikegadgets). Animals were pre-trained to 
run back and forth on a linear track with walls for liquid food reward (Carnation evaporated milk 
sweetened with 5% sucrose) from reward ports fixed at each end of the track. Upon entry of a 
reward port, 100 µL reward was delivered by syringe pump immediately and automatically, 
gated by an infrared beam. Animals learned to alternate between and obtain rewards from the 
two ports across two 40-minute and one 25-minute sessions. To familiarize animals with 
navigating an elevated maze, animals then performed the same task on an elevated linear track 
(1.1 m long, 84 cm high) until they performed at least 30 rewards in a 15-minute session. 
Pretraining took place in an environment with distal spatial cues on the walls. The pretraining 
environments were fully separate from the Spatial Bandit Task environment. Animals were 
subsequently returned to ad libitum food access prior to surgical implantation. 
 
Neural implant 
Custom hybrid microdrives contained 24 independently movable 12.5 µm diameter nichrome 
tetrodes (California Fine Wire and Kanthal). The drive body was 3D printed (PolyJet HD, 
Stratasys) and funneled tetrodes into two cannulae to target 12 tetrodes to each hemisphere. 
Tetrodes were gold plated to reduce impedance to ~250 kOhms. Implants also contained a 
custom headstage (Spikegadgets) that coupled with a stacking set of up to four custom 128-
channel polymer probes121 (Lawrence Livermore National Labs) per animal. Implant was housed 
in a custom 3D-printed enclosure with removable cap. Drive was sterilized before surgical 
implantation. 
 
Custom hybrid microdrives were implanted stereotaxically under sterile conditions. In 
anesthetized animals, cannulae were implanted above dHC (+/-2.6-2.8 ML, -3.7-3.8 AP relative 
to skull Bregma) and polymer probes were implanted in mPFC and OFC. A stainless-steel 
ground screw was implanted over the cerebellum to serve as a global reference. Titanium 
screws were placed in the skull to help anchor the implant, which was secured with Metabond 
(Parkell, Inc) and dental cement (Henry Schein). 
 
After surgery, tetrodes were advanced deeper into the brain daily over ~3-4 weeks. One tetrode 
per hemisphere was advanced to corpus callosum as a local reference and all other tetrodes 
were advanced to dorsal hippocampus CA1 stratum pyramidale, guided by physiological 
signatures of spiking activity and the local field potential. 
 
After full recovery from surgery, animals were food deprived to 85% of their baseline weight and 
reintroduced to the elevated linear track, as described above. Animals reached criterion again 
over several days to refamiliarize them with obtaining reward on a track and to familiarize them 
with running with their implant. Two rats had additional experience on a fork maze122. Re-
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training animals to run after surgery recovery ensured that the animals were motivated enough 
to begin the main experiment. 
 
Data collection: Spatial Bandit task 
The Spatial Bandit task took place on a maze with three radially arranged Y-shaped foraging 
“patches” each containing a central hallway that bifurcated into two hallways that each 
terminated in a photogated reward port, resulting in two ports per patch and six total reward 
ports. Each port had a separate automated pump, as described above. Hallways were 6.5 cm 
wide and linear track segments were each 53 cm long. All hallways intersected at 120 degrees, 
such that the track had three-fold symmetry. The track was made of black acrylic (TAP Plastics) 
with walls that were 3 cm high, enabling animals to see distal spatial cues. 
 
The behavior took place in a dimly lit room (2.4 m by 2.9 m) with black distal spatial cues on the 
white walls and a plastic black curtain separating the maze from the experimenter, rig, and 
computer. A ceiling-mounted camera (Allied Vision) centered over the maze recorded animal 
behavior at 30 frames/second and was synchronized with all other data via Precision Time 
Protocol. Before behavior began each day, a ring of red and green LEDs was mounted atop the 
implant to enable online head position and direction tracking via SpikeGadgets Trodes software. 
 
Animals began the task only once tetrodes had reached stratum pyramidale. Neural data was 
recorded from the animals’ first experience of the Spatial Bandit maze and environment. The 
general structure of each day of recording began by moving rats from their home cage into a 
rest box in the same room as the Spatial Bandit maze. Run sessions were interleaved with rest 
sessions throughout the day; rats typically completed 7 or 8 ~20-minute run sessions per day, 
interleaved with rest sessions of at least 30 minutes each. Rest sessions helped to maintain 
stable motivation by providing breaks throughout each day. Each day also started and ended 
with a rest session. These behavioral data were collected over 8-17 days per animal. 
 
During each run session, an animal was first placed in the center of the track facing the same 
wall each time, and then navigated freely in the environment, which was otherwise fully 
automated by Trodes (SpikeGadgets) software and custom behavioral control scripts written in 
Statescript (SpikeGadgets) and Python. At a high level, each individual run session contained 
multiple reward contingency blocks. Each contingency defined the reward probability p(R) 
assigned to each of the six reward ports. Contingency blocks covertly changed when an animal 
completed a certain number of trials, or hit a 20-minute time limit per contingency, whichever 
came first. Contingency changes almost always occurred based on the trial limit, very rarely 
changed based on the time limit, and did not depend on any other performance metric. A trial 
was defined as the period from exiting one photogated reward port to exiting a different port. 
Therefore, each trial contained both the run between two ports and an outcome (100 µL reward 
or omission) at the chosen port. Reward was only available probabilistically if an animal poked 
into a distinct port; consecutive pokes at the same port were never rewarded. 
 
Each animal’s first run session began with reward probability p(R) of 1 at all reward ports for 
100 trials, followed by an uncued contingency change to p(R) of 0.5 at all ports for the next 100 
trials. This first session exposed the animal to the environment, encouraged the animal to visit 
all reward ports, and introduced probabilistic rewards. After this session, run sessions were 
each 180 trials long and contained three reward contingencies that each lasted 60 trials for four 
animals. One animal had 160 trial sessions each containing two contingencies of 80 trials. 
 
From the second run session onward, each reward contingency defined a p(R) of 0.2, 0.5, and 
0.8 per port, such that each contingency had a best patch on average. Both ports within a patch 
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could have the same or different reward probabilities, but the best patch combination was 0.5 
and 0.8 (not 0.8 and 0.8) across the two ports in a patch. By having ports of two different values 
within a patch, animals were encouraged to spend some trials not only at high-value but also at 
nearby lower-value locations, enabling us to sample neural data as animals visited ports of a full 
range of values. Contingencies were pseudorandomized to counterbalance which patch was 
best, whether the left or right port within each patch was best, and whether the best, medium, 
and worst patch followed a clockwise or counterclockwise order around the track. Contingency 
changes and reward port values were never cued, so that animals had to make navigational 
choices based on memory of their prior experiences across the maze. 
 
Continuous neural data, as well as digital inputs and outputs associated with beam breaks and 
reward pumps, were recorded during each rest and run session at 30 kHz in four animals and 
20 kHz in one animal using Trodes version 1.8.2 (SpikeGadgets). 
 
Histology 
At the conclusion of behavioral experiments, animals were anesthetized with isoflurane, and 
small electrolytic lesions were made. One day later, animals were anesthetized and 
transcardially perfused with 4% paraformaldehyde. Brains were fixed in situ overnight, after 
which tetrodes were retracted from the tissue and brains were extracted from the skull. Brain 
fixation continued for two days. After cryoprotection by 30% sucrose for 5-7 days, brains were 
blocked and sectioned with a cryostat into 50-100 µm sections. Nissl labeling enabled 
identification of tetrode tracks and localization of tetrode tips at the sites of electrolytic lesions 
(Fig. S1B). 
 
Data processing and analyses 
All data processing and analyses were carried out using Python and Julia using Spyglass123. 
 
Behavioral analysis 
Trials were parsed based on behavioral Statescript log files (SpikeGadgets). A trial was defined 
as the final exit from one port to the final exit from another port, and therefore included both the 
run from one port to the next as well as the entry into and outcome at the chosen port. Stay 
trials were defined as starting and ending within the same track patch, while Switch trials were 
defined by starting and ending in distinct track patches. The nominal reward probabilities 
assigned to each port and reward delivery times were also tracked by parsing log files. The 
nominal best patch on each trial was defined as the patch with the highest average of the 
nominal reward probabilities of the two ports within the patch (Fig. 1D). These reward 
probabilities are referred to as nominal because they are assigned by the reward contingency. 
Importantly, an animal’s experienced reward values at each port at any time in behavior are 
related to but not necessarily identical to the location’s nominal reward probability, given the 
self-paced nature of the task and stochasticity of the rewards in the environment. 
 
Behavioral Hidden Markov Model  
To estimate the rats’ expected belief about the value of each of the six ports, we used a Hidden 
Markov Model (HMM), which tracks belief across a discrete set of states of the world via a 
forward model of expected reward outcomes. The rationale for this modeling approach is to 
abstract away many under-constrained implementational decisions in a more mechanistic 
model, and instead take as a starting point the question of what inferences would be drawn by 
an ideal statistical observer experienced with the task environment’s structure. More specifically, 
the HMM is capable of modeling the true dynamics of how rewards change during the 
experiment by having states of the HMM directly map onto the joint reward probabilities across 
the six reward ports, allowing it, for example, to capture the intuition that a change of reward 
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probability at one patch should indicate to the animal that rewards have likewise changed at the 
other two patches, an inference that is not feasible with traditional Q-learning models. That said, 
we expect that a more mechanistic implementation would approximate the HMM computations 
by augmenting a Q-learning style model with non-local activations and updates74,124. 
 
Here, state is an assignment of expected reward probability to each of the six ports, and whose 
dynamics directly capture the ideal estimation strategy of an agent aware of the true underlying 
task structure, but without explicit knowledge of the precise timing of state changes. Notably, 
unlike traditional Q-learning models, the HMM captures the high-level idea that state 
configurations jointly change across each session, and that each trial can be viewed as 
evidence of which among these possible state configurations the rat is currently experiencing. 
 
The HMM tracks value of reward ports by assigning a probability, or belief, to each possible 
state configuration of the six reward ports, alongside dynamics to update these beliefs via per-
trial outcomes. Here, we considered a state to be a particular assignment of reward probabilities 
to each of the 6 reward ports, such as: 
 

𝜙! = [𝑝" = 0.2, 𝑝# = 0.2, 𝑝$ = 0.5, 𝑝% = 0.2, 𝑝& = 0.8, 𝑝' = 0.5] 
 
Each trial can be viewed as evidence of which among these possible state configurations the rat 
is currently experiencing, allowing trial-by-trial state inference and thus value estimations of 
each of the reward ports. 
 
Reward port value estimation 
In the HMM, we are modeling belief about which of 𝑛 discrete states the rat is currently in. 
These states correspond to the contingencies that define reward probabilities for the rats. For 
computational convenience, and motivated by the informed ideal observer perspective, our set 
of contingencies, 𝜙, was the subset of the 𝑛 = 72 most frequently occurring of these possible 
contingencies in the actual experimental design, though we found our results to be relatively 
insensitive to the exact choice of contingencies.  
 
Our belief state, 𝛼, is a probability distribution over these 72 contingencies such that ∑𝛼! = 1. 
On any given trial, we can combine our belief state 𝛼 with the set of contingencies 𝜙 to find an 
estimate of reward 𝑄 at each of the six ports that minimizes the MSE: 
 

𝑸 = [𝑄", 𝑄#, 𝑄$, 𝑄%, 𝑄&, 𝑄'] = 	4𝛼!𝜙!

(

!)"

 

Patch value estimation 
Patch values were derived from the reward port estimates as follows: As the rat approaches a 
bifurcation and must choose between the upcoming port within a patch or the ports within the 
other patches, 𝑄*+,-. for the current patch was defined as the Q-value of the upcoming reward 
port as estimated by the HMM. For the other two patches, it was assumed that their value was 
an average of their two reward ports as estimated by the HMM, or 𝑄*+,-. = (𝑄+ + 𝑄/)/2, where 
𝑎 and 𝑏 were the two reward ports of the respective patch. 
  
Behavioral model state updates 
We assumed that any contingency could transition to any other contingency with a fixed 
probability, or hazard rate ℎ, which is the probability of transitioning to any new contingency, and 
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1 − ℎ is the probability of remaining in the current contingency. This hazard rate was assumed 
to be identical among all state transitions, and was a free parameter inferred via fitting. 
 
At each timestep, beliefs were updated via 𝝓 ← 𝑻𝝓, where 𝑻 was an 𝑛 × 𝑛 matrix whose 
diagonal entries were 1 − ℎ and all other entries were ℎ/(𝑛 − 1). This essentially results in a 
small diffusion of all reward port values around the maze towards baseline. 
 
To incorporate observations (here, whether a port was rewarded), at the end of each trial we 
updated each entry of 𝛼 based on the probability of the observed outcome for each respective 
contingency. If the outcome was positive, the probability given by a contingency was the value 
of 𝜙 for that contingency and port, and so 𝛼! ← 𝛼! 	𝜙!0 for contingency 𝑖 and port 𝑗. If the 
outcome was negative, this became 𝛼! ← 𝛼!(1	 − 𝜙!0). This update was performed for all 
contingencies. 
 
Behavioral choice model 
To connect this learning model to choices and assess our ability to capture animal behavior, we 
computed the likelihood of choice of patch on every trial as the softmax of the three patch 
values, given by: 

𝑝!"#$%! =
𝑒&"#$%&!

𝑒&"#$%&''&"#$%&('&"#$%&)
 

 
The value at the current patch was given by: 

𝑉!"#$%! = 𝛽(#")𝑄!"#$%! + 𝑏(#") 
 
For the patch clockwise from the current patch, value was given by: 

𝑉!"#$%* = 𝛽+,𝑄!"#$%! + 𝑏#-./ 
 
The value of the remaining patch was given by: 

𝑉!"#$%! = 𝛽+,𝑄!"#$%! 
where 𝑄*+,-.! was either an individual port estimate or average of ports as described above. 
 
The inverse temperature parameters, 𝛽12 and 𝛽3,+4, determined how sensitive choice behavior 
was to differences in expected reward – high temperatures indicate high sensitivity to reward, 
while low temperatures indicate insensitivity. To allow for differential sensitivity to reward 
estimates at the current patch versus alternate patches, we fit two independent softmax 
temperatures, 𝛽3,+4 for the current patch, and 𝛽12 for the two alternative patches. 
 
The term 𝑏3,+4 reflected a fixed cost to changing patches due to the time and distance to reach 
a new patch (as opposed to the reward sensitivity fit by 𝛽3,+4), and was added to the valuation 
of the current patch. 
 
To incorporate tendencies of the animals to prefer to turn in certain directions when changing 
patches, we included a turn bias 𝑏,56(, an offset which was consistently applied to the patch to 
the left of the animal’s current position. If the rat was in patch 1, this was added to patch 2. If the 
rat was in patch 2, this was added to patch 3, and if the rat was in patch 3, this was added to 
patch 1. 
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On trials where the animal switched patches, likelihood of port choice was modeled as a 
subsequent softmax between the two ports, with a separate softmax temperature 𝛽*26, applied 
to the per-port reward estimates: 

𝑝*26,"/$ =
𝑒7%&'("/$

𝑒7%&'("87%&'($
 

 
The value of the left port was given by: 

𝑉*26,"	)	𝛽*26,𝑄*26," + 𝑏*26,/!+3! 
where 𝑏*26,/!+3! was fit independently for each of the three patches, reflecting biases in which 
reward port each rat tended to enter when switching to each of the three patches. 
 
The value of the right port was given by: 

𝑉*26,$	)	𝛽*26,𝑄*26,$ 
 
Local behavioral model 
To test whether animal behavior reflected a belief that the outcomes at the six reward ports 
were linked, a core assumption of our Global behavioral model, or whether the animals instead 
estimated the value of the six reward ports independently from one another, we considered an 
alternate model in which we estimated animal behavior via a set of six independent HMMs, one 
for each of the six reward ports (Fig. 5A,B). Each HMM individually contained the same 
distribution of rewards as in the distribution in our joint HMM model, as well as a belief 
distribution over those rewards. However, the belief distributions at the six reward ports were 
independent – while volatility would be modeled for all six reward ports after each trial, only the 
belief distribution of the visited reward port would be updated from observation via the forward 
model on each trial – the other five belief distributions would not incorporate this reward 
information. Importantly, the comparison between these two models (rather than, for instance, 
between the HMM and a local Q learning model) most directly isolates the question of local 
versus non-local updating, since the models are identical in all other features. 
 
To compare the independent Local model with the original joint Global model, we computed a 
cross-validated approximation to the negative log marginal likelihood for each day. Specifically, 
we used leave-one-session-out cross validation for the population-level prior parameters and a 
Laplace approximation for the per-day parameters: for each day, we refit the population-level 
model omitting that day, then conditional on that prior, we computed a Laplace approximation to 
that day’s log marginal likelihood. We aggregated these per-day scores to obtain a total score 
for each rat and model. Finally, we use paired tests on these scores across rats, between both 
models, to formally test whether either model fit consistently better over the population of rats 
(Fig. 5B).  
 
Global model reward sensitivity 
To confirm that the HMM’s behavioral predictions were driven by its reward estimates, and that 
incorporating these estimates improved its performance, we compared our Global behavioral 
model against two nested models, one model where 𝛽12 was fixed to 0 (such that choice 
predictions ignored the estimate of the current patch value) and one model where 𝛽3,+4 was 
fixed to zero (such that choice predictions ignored the estimate of alternative patch values). 
These two alternative models were compared against the full model (Fig. S5A,B) with an 
identical procedure to the Local model comparison (see above). 
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Behavioral model fitting procedure 
For our HMM, we optimized the free parameters of the model by embedding each of them within 
a hierarchical model to allow parameters to vary from day-to-day. Day-level parameters were 
themselves modeled as arising from a population-level Gaussian distribution over days, 
separately for each rat. We estimated the model for each rat to obtain best fitting day- and rat-
level parameters to minimize the negative log likelihood of the data using an expectation-
maximization algorithm with a Laplace approximation to the day-level marginal likelihoods in the 
M step125. 
 
Behavioral model variables 
In subsequent analyses, we characterized value-guided Stay and Switch choices at the level of 
trials using variables estimated through the HMM, including the values associated with each 
port on each trial. We built a binomial family generalized linear model (Logit link function) for 
each animal to predict Stay or Switch choices from estimated expected values associated with 
the choice to Stay or to Switch (Fig. 1E). The value of Staying was defined as the model-
estimated value of the upcoming port within the patch on the current trial, and the value of 
Switching was defined as the greater of the average port values in the two alternative 
unoccupied patches into which the animal had the option to Switch on the current trial. The 
difference between the Switch and Stay values on each trial, without accounting for the cost of 
Switching or other biases, defined the relative value of Switching and Staying on each trial (Fig. 
1F). The entropy over the reward belief state of the upcoming port (Fig. 5D) was calculated on 
each trial as follows. Given a belief state a, and reward probabilities 𝜙, each port 𝑗 had a 
marginal reward distribution [𝑝",𝑝#,𝑝$] where 𝑝" = 𝑝(𝑟 = 0.2), 𝑝# = 𝑝(𝑟 = 0.5), 	𝑝$ = 𝑝(𝑟 = 0.8). 
For each port 𝑗, 𝑟𝑒𝑤𝑎𝑟𝑑	𝑒𝑛𝑡𝑟𝑜𝑝𝑦0 =	−∑ 𝑝! log(𝑝!)! . The value update at each port on each trial 
was calculated as the difference between the port value before and after the outcome was 
observed on each trial, and absolute value updates across a patch, set of patches, or the entire 
maze, were summed across ports to determine the total update magnitude on each trial (Fig. 
5D, Fig. S5). 
 
Position 
LEDs mounted on the front and back of the implant were tracked via overhead camera at 30 
frames/second using Trodes software (SpikeGadgets). Positions were converted from pixels to 
centimeters, smoothed, interpolated and upsampled to 500 Hz to match neural decoding 
resolution. The front and back LEDs were used to calculate head orientation and angular 
velocity. The head position and head speed were calculated from the centroid of the font and 
back LEDs. To enable faster decoding, head position was linearized into one dimension by 
projecting the two-dimensional head position onto a graph representation of the track with 
nodes at the reward ports and track segment intersections, connected by edges. In between the 
track edges, which corresponded to the nine physical track segments, we introduced 15 cm 
gaps in 1D space to avoid inappropriate smoothing across adjacent linear positions that were 
not adjacent in physical space (Fig. S1). 
 
Spatial decoding 
To decode spatial position from hippocampal spiking at high spatial and temporal resolution, we 
used a previously established clusterless state space algorithm53,54,126,127,82,128,120 from Denovellis 
et al., 202153. Briefly, for each session, we built an encoding model to relate spike waveform 
features to the animal’s linearized head position in 2 ms bins using data from the beginning of 
the first trial to the end of the final trial of the session. The peak amplitude of each spike on each 
dCA1 tetrode channel served as spike waveform features. Spikes were detected by a 100 µV 
threshold on the recorded neural signal filtered 600-6000 Hz. To remove potential artifacts, a 1 
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ms window around times in which at least 75% of channels had an amplitude of 2000 µV or 
greater was excluded. 
 
For each session, we then decoded spatial position from this hippocampal population spiking in 
2 cm linear position bins and 2 ms temporal bins (Fig. S1). The state space decoding model53 
had two states, spatially continuous and spatially fragmented, to capture smooth and 
discontinuous movement dynamics, respectively, of the hippocampal representation through the 
maze. The fragmented state was modelled by a uniform transition matrix and the continuous 
state was modelled by a random-walk transition matrix with a 6 cm movement variance. The 
probability of staying in the current state in the discrete transition matrix was 0.98. The initial 
conditions were set to be uniform across states and uniform across positions, as we did not 
have prior information about the most likely initial conditions. The model used kernel density 
estimators with a 24 µV bandwidth for waveform features and a 6 cm bandwidth for position to 
estimate the likelihood of a spike waveform feature predicting a position. 
 
The model output the posterior probability of position across the two movement dynamic states. 
We marginalized the joint probability over the two states, and then determined the most likely 
decoded position in each 2 ms bin as the peak of the posterior probability distribution. 
 
We assessed decoding quality based on the concentration of the posterior probability, and only 
included times that were decoded with high confidence in subsequent analyses, by requiring the 
highest 50% of the posterior probability values to be concentrated within 50 cm of the track, as 
has been done previously120. We further note that this decoding approach was conservative in 
the sense that we decoded using the same data used to build the encoding model. In contrast, a 
cross-validated approach would instead decode periods distinct from those used to encode, and 
thereby exclude the place cell spikes predominantly associated with the animal’s actual current 
position during the decoded moments. 
 
We measured the distance between the animal’s actual position to the most likely decoded 
position as the shortest path distance in linear space along the track in each 2 ms bin based on 
Dijkstra’s129 algorithm, with the rat and most likely decoded position as nodes on the track 
graph. We also classified the animal position and most likely decoded position into one of nine 
track graph segments in each 2 ms bin. For visualization, we projected linearized position back 
to the 2D track graph (Figs. 2A, 3A, 4A). 
 
Non-local representation of Stay and Switch paths 
Non-local representation times were identified as times in which the most likely decoded 
position (hereafter “decoded position”) was in a track segment distinct to the animal’s actual 
position. We analyzed valid times of high speed (>10 cm/s) in order to limit our analyses to 
locomotor periods in which theta power is high and associated theta sequences are known to 
occur 29,36,59,130, and thereby excluded stationary rest periods in which sharp wave ripple replay 
events occur1,8,34. 
 
To analyze the content of non-local representations occurring as the animal approached the first 
choice point on each trial (Fig. 2), we first identified which track segment the animal began in on 
each trial and used data from the time at which the animal exited the reward port to the first time 
at which the animal’s position exited that initial track segment. During this period, the animal 
approached the first choice point in the trial (Fig. 2B). Out of this period, we limited analysis to 
only the times that satisfied the decoding confidence and speed thresholds described above. 
For these valid times, we then quantified the total duration of non-local representation. We also 
quantified the duration of representation of the single segment ahead consistent with a 
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subsequent Stay path and the duration of representation of any of the other segments ahead 
consistent with a subsequent Switch path, as in Fig. 2B. This enabled us to then calculate the 
proportion of the total valid non-local representation duration that was consistent with a non-
local Switch path representation. The per-trial proportion was therefore calculated as: valid non-
local Switch representation duration, divided by the sum of the valid non-local Switch 
representation duration and the valid non-local Stay representation duration. 
 
A very similar approach was used to analyze the content of non-local representations occurring 
as the animal traversed the final track segment of each trial (Fig. 3). Here, we identified which 
track segment the animal ended in on each trial and used data from the final time at which the 
animal crossed from another segment into this final segment to the time at which the animal 
entered the chosen reward port. During this period, the animal approached the reward port, 
rather than a bifurcation (Fig. 3B). Again, we limited analysis to only the times that satisfied the 
decoding confidence and speed thresholds described above. For these valid times, we then 
quantified the total duration of non-local representation, and what proportion of that total non-
local duration corresponded to a non-local representation consistent with a Switch path behind 
the animal (rather than the neighboring Stay path within the patch), as in Fig. 3B. 
 
Peri-Switch linear regressions and shuffles 
Ordinary least squares linear regressions were fit to Stay trial data for trials before or after 
Switch trials (Fig. 2C,D, Fig. 3C,D, Fig. S2A,B). Shuffled distributions were obtained within 
animal by randomly shifting trial labels 1000 times, where the label is the number of trials from 
either the prior or next Switch trial. 
 
Predicting Stay and Switch choices from non-local representations 
Generalized linear models with a logit link function (Fig. 2F, Fig. 3F) were used to predict Stay 
or Switch choices from the proportion of valid non-local representation corresponding to Switch 
paths. Models were fit separately per animal. Each model had one predictor, corresponding to 
the proportion of Switch path representation occurring while the animal occupied either the first 
or final segment of a trial t, the trial before t-1, or the average across the two trials t and t-1. 
Models were five-fold cross validated, and training data were balanced by resampling Switch 
trials. Predictions were binarized with a threshold of 0.5 and total accuracy was calculated 
across folds. 
 
Theta phase 
Neural data from a reference electrode in corpus callosum was filtered 0-400 Hz and 
downsampled to 1 kHz. This local field potential signal was then further filtered in the theta band 
from 5-11 Hz. The analytic signal was calculated with a Hilbert transform. The instantaneous 
phases for all valid local and non-local decoded run times were assessed separately for periods 
in which the animal was approaching the first choice point in each Stay or Switch trial, or after 
crossing the final choice point in each Stay or Switch trial (Fig. S2C,D). Phase convention refers 
to descending phases of corpus callosum theta as early phases, 0 to p, and ascending phases 
as late phases, p to 2p. Data were binned for visualization only. Full theta phase distributions for 
local and non-local times were compared with Kuiper’s non-parametric test for continuous 
circular data for each animal. 
 
Non-local distance 
Non-local distance was calculated as the distance between the animal’s actual position and the 
most likely decoded position in each 2 ms bin (see spatial decoding methods). Using only high-
quality valid running times, as described above, we identified the maximum absolute actual-to-
decoded distance that occurred during the animal’s approach to the first choice point on a trial 
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(Fig. 4C,D) or during the animal’s traversal of the final segment of a trial (Fig. 4F,G). Data in Fig. 
4C,D,F,G were calculated based only on representations that occurred in non-local, 
unoccupied, track segments to limit representations to those either ahead of (Fig. 4C,D) or 
behind (Fig. 4F,G) the animal’s trajectory. To compare the non-local distance dynamics before 
and after Switches for each animal, we log-transformed the model 𝑦 = 𝑎𝑒/; into linear form and 
applied ordinary least squares regression to estimate log(𝑎) and 𝑏, for both pre- and post-
Switch data. Z tests were used to statistically compare the pre- and post-Switch parameters 
(Fig. 4C,D,F,G). Fig. 4E maximum distances were not required to be in a distinct non-local track 
segment to the animal’s actual position. Data occurring while the animal occupied the middle 
two segments of Switch trials (Fig. 4E) were calculated based on Switch trials in which exactly 
four segments were occupied. Wilcoxon rank sum tests were used for each animal to 
statistically compare distances observed between different segments. 
 
Confidence intervals and statistics 
Error bars, unless otherwise stated, correspond to 95% confidence intervals on the mean. To 
take a nonparametric approach to determining the statistic, we randomly resampled with 
replacement from the underlying data distribution 1000 times and calculated the statistic’s 
bootstrap distribution. Statistical tests are stated throughout the figure legends and text with 
sample sizes and p values. 
 
Data and code availability 
Data and code will be shared publicly via the Distributed Archives for Neurophysiology Data 
Integration (DANDI) Archive and a repository at https://github.com/LorenFrankLab. Further 
information necessary for analysis of this dataset is available upon request from the Lead 
Contact. 
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Supplemental Information: Figures S1-S5 
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Figure S1. Decoding animal position from Hippocampal spiking during patch foraging. 
(A) Violin plots showing distribution of number of trials spent in a patch before Switching, with horizontal 
dashed line at median, and upper and lower dashed lines indicating quartiles. Mean trial bout durations 
are labeled per animal. 
(B) Nissl-labeled coronal brain tissue section representative example showing targeting of tetrodes to 
dCA1 of the hippocampus. Black arrows point to a tetrode track in dorsal cortex above and a lesion from 
the tetrode tip in the pyramidal cell layer below. 
(C) Animal head position over the course of one example session, with position data colored by the 
currently-occupied track segment. Black line highlights the animal’s trajectory throughout the same ~25s 
period shown in D. Colored track segments correspond to the colored track segments in D. 
(D) Decoded position from hippocampal population spiking tracks the animal’s actual position at a 
behavioral timescale and can sweep ahead or behind the animal to represent non-local positions at a 
sub-second timescale. Dashed lines highlight a small period that is enlarged at right. This period shows 
an example non-local representation (blue vertical bars) where the decoded position is in a segment 
distinct from the animal’s actual position. Top: Actual head position in 1D (linearized) is shown in pink and 
decoded position posterior is shown in greyscale. Track segments are aligned on the right y-axis, and 
segment colors correspond to segments in C. Circles at the end of colored segment lines represent 
reward port locations. Note that actual and decoded position are stationary at reward port positions, as 
animal pokes into reward port. Horizontal grey lines correspond to 15 cm gaps introduced between track 
segments in linear position space. Top-middle: Multiunit spike rate across hippocampal tetrodes. Note 
fluctuations at roughly 8 Hz theta frequency, as expected during running. Bottom-middle: Distance of 
decoded position from animal’s actual position, which can be either ahead (positive values), at (zero cm), 
or behind (negative values) the actual position. Bottom: Animal head speed. 
(E) Confusion matrix showing actual position and decoded position for one rat. Decoded position largely 
tracks animal’s actual position across all track segments. Small amounts of off-diagonal density tend to 
occur at intersections of track segments, corresponding to adjacent positions in 2D space, as expected. 
(F) Boxplots of distribution of distance between decoded and actual position across valid decoded run 
times for each animal. Boxes show quartiles, whiskers correspond to the data range, and horizontal lines 
indicate medians, which are also labeled above. 
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Figure S2. Non-local representations of alternative paths Ahead and Behind are enriched 
across trials before and after patch Switching. 
(A) Proportion of all non-local activity that represents paths consistent with Switching on Stay trials before 
and after Switch trial for each animal. Data correspond to Stay trials when animals were located in the 
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first track segment and approaching the choice point, as in Fig. 2B-D. Error bars are 95% CIs on the 
mean. Pre- and post-Switch linear regressions overlaid in black. All slopes are significantly different than 
0 (ppre=0.002, 0.002, .0.014, 0.002, 0.004, ppost=0.002, 0.002, 0.008, 0.006, 0.004). Upper right plot: slope 
of pre-switch linear regression (black) is greater than the 97.5% CI on the slopes from 1000 shuffles of 
the underlying data (grey). Lower right plot: slope of post-switch linear regression (black) is less than the 
2.5% CI on the slopes from 1000 shuffles of the underlying data (grey). 
(B) Same as A, but for non-local activity that represents paths consistent with Switching as the animal 
traverses the final segment of each trial and approaches the reward port, as in Fig. 3B-D. All slopes are 
significantly different than 0 (ppre=0.002, 0.002, 0.004, 0.01, 0.008, ppost=0.002, 0.032, 0.004, 0.002, 
0.002). 
(C) Non-local representations of paths ahead (solid lines) are concentrated in late phases of the theta 
rhythm, compared to local representations corresponding to the current track segment (dashed lines), on 
both Stay trials (left) and Switch trials (right). All animal data in black with 95% CI on the mean in grey 
band, and individual animal data colored per A. Early and late phases are separated with a vertical dotted 
grey line, and labeled in grey text above. Local and non-local distributions are significantly different in 
each animal for Stay trials (p = 4.4e-64, 1.0e-16, 2.5e-175,8.2e-129, 2.9e-18, Kuiper test) and Switch 
trials (p = 1.2e-7, 1.4e-11, 3.3e-12, 3.8-19, 9.3e-14). 
(D) Same as C, but for non-local representations of paths behind (solid lines) and local representations 
corresponding to the current track segment (dashed lines). Non-local paths behind are concentrated in 
early phases of theta. Local and non-local distributions are significantly different in each animal for Stay 
trials (p = 2.2e-7, 1.3e-52, 2.9e-202, 3.5e-23, 1.0e-14, Kuiper test) and Switch trials (p = 8.7e-4, 0.040, 
1.3e-16, 0.015, 0.016). 
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Figure S3. Non-local representations Ahead and Behind are flexibly engaged around 
Switch trials. 
(A) Baseline-subtracted Stay path duration (left) and Switch path duration (right) across all animals. 
Durations are in 2 ms bins and quantify the number of bins where non-local representations were present 
during the approach of the first choice point across trials before and after Switch trials. Error bars are 95% 
CIs on the mean. Switch path durations were modulated more than were Stay path durations leading up 
to and following Switch trials. Related to Fig. 2D. Baseline durations per animal ranged 21.12-25.68 bins 
for Stay path representations and 14.61-28.03 bins for Switch path representations. 
(B) Same as A, but for non-local representations occurring during traversal of the final track segment and 
approach of the reward port across trials before and after Switch trials. Related to Fig. 3D. Baseline 
durations per animal ranged 13.99 – 26.65 bins for Stay path representations and 5.7-14.17 bins for 
Switch path representations. 
(C) Baseline-subtracted proportion of non-local representations along Switch paths, across all animals. 
These representations were expressed during the approach of the first choice point across trials before 
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and after Switch trials. Only non-local representations at least 10 cm from the animal are included. Error 
bars are 95% CIs on the mean. Proportion increases before Switch trials and decreases following Switch 
trials. Pre- and post-switch linear regression slopes are significantly different than 0 compared to shuffles, 
as in Fig. S2A (slopepre=0.0073, p=0.002; slopepost=-0.0094, p=0.002). The similarity to Fig. 2D 
demonstrates that our results are not driven by representations very close to the animal. 
(D) Same as C, but for non-local representations occurring during traversal of the final track segment and 
approach of the reward port. Proportion increases before Switch trials and decreases following Switch 
trials. Pre- and post-switch linear regression slopes are significantly different than 0 compared to shuffles, 
as in Fig. S2B (slopepre=0.0099, p=0.002; slopepost=-0.011, p=0.002). The similarity to Fig. 3D 
demonstrates that our results are not driven by representations very close to the animal. 
(E) Baseline-subtracted maximum non-local distance occurring during approach of the first choice point 
(left) and traversal of the final track segment and approach of the reward port (right), across all animals. 
Only non-local representations at least 10 cm from the animal are included. Error bars are 95% CIs on 
the mean. Distances are especially elevated upon Switching patches and for a couple trials thereafter, 
and then decrease toward baseline levels. The similarity to Figs. 4D and G demonstrates that our results 
are not driven by representations very close to the animal. 
(F) Baseline-subtracted proportion of non-local representations along Switch paths, across all animals. 
Data correspond to the approach of the first choice point across trials before and after Switch trials. Here, 
non-local representations are only included from trials in bouts within a patch lasting at least 10 Stay 
trials. Error bars are 95% CIs on the mean. Proportion increases before Switch trials and decreases 
following Switch trials. Pre- and post-switch linear regression slopes are significantly different than 0 
compared to shuffles, as in Fig. S2A (slopepre=0.0033, p=0.002; slopepost=-0.0047, p=0.002). The 
approximately symmetrical pattern around the Switch is similar to that seen in Fig. 2D, indicating that the 
results are not only driven by periods where animals Stayed in a patch for a small number of trials. 
(G) Same as F, but for non-local representations occurring during traversal of the final track segment and 
approach of the reward port across trials before and after Switch trials. Error bars are 95% CIs on the 
mean. Pre- and post-switch linear regression slopes are significantly different than 0 compared to 
shuffles, as in Fig. S2B (slopepre=0.0034, p=0.002; slopepost=-0.0036, p=0.002). The approximately 
symmetrical pattern around the Switch is similar to that seen in Fig. 3D, indicating that the results are not 
only driven by periods where animals Stayed in a patch for a small number of trials. 
(H) Baseline-subtracted maximum non-local distance during the approach of the first choice point (left) 
and traversal of the final track segment and approach of the reward port (right) across all animals. Here, 
non-local representations are only included from trials in bouts within a patch lasting at least 10 Stay 
trials. Distances are asymmetric around Switch trials, and are especially enhanced upon Switching 
patches, and then decrease across trials after the Switch. Related to Figs. 4D and G, respectively. 
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Figure S4. Non-local representations of distant locations. 
(A) Maximum non-local distance represented on trials leading up to and following patch Switches for each 
animal. Data are from the period of each trial in which the animal approached the first choice point. Error 
bars are 95% CIs on the mean. Related to Fig. 4D. 
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(B) Maximum non-local distance represented on trials leading up to and following patch Switches, during 
the period of each trial in which the animal traversed the final track segment towards the reward port, for 
each animal. Error bars are 95% CIs on the mean. Related to Fig. 4G. 
(C) Proportion of trials with non-local representations corresponding to remote, unoccupied patches, out 
of all trials with any non-local representations, for each animal. Left: calculated for non-local 
representations occurring as animals approached first choice point. Right: calculated for non-local 
representations occurring as animals traversed final track segment and approached reward port. In both 
cases, ~10-20% of trials contain representations corresponding to locations in remote patches. 
(D) Non-local representations corresponding to locations in remote patches are not biased to represent 
subsequently chosen or immediately previous patches. Top row: proportion of remote patch 
representations occurring during approach of first choice point on Switch trials (left) and Stay trials (right) 
that correspond to subsequently chosen (next) patch. Bottom row: proportion of remote patch 
representations occurring during traversal of final track segment and approach of reward port on Switch 
trials (left) and Stay trials (right) that correspond to most recently chosen (prior) patch. Error bars are 95% 
CIs on the mean. Grey dashed lines correspond to an equal (50%) representation of the chosen and non-
chosen patches. 
(E) Non-local representations in remote patches are approximately equally distributed across track 
segments. Top row: proportion of remote patch representations occurring during approach of first choice 
point on Switch trials (left) and Stay trials (right) that correspond to track segments containing reward 
ports. Bottom row: proportion of remote patch representations occurring during traversal of final track 
segment and approach of reward port on Switch trials (left) and Stay trials (right) that correspond to track 
segments containing reward ports. Error bars are 95% CIs on the mean. Grey dashed lines correspond to 
a chance (66.67%) representation of the 4 segments containing reward ports out of 6 total track 
segments in remote patches. 
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Figure S5. Behavioral model reward sensitivity and variables for individual animals. 
(A) Leave-one-out cross-validated log-likelihood improvement (higher is better) of Full Model versus a 
model where 𝛽*+ was fixed to 0 (such that choice predictions ignored the estimate of the current patch 
value). Full Model significantly better fit behavior in all animals but one (p=1e-4, 0.113, 0.002, 0.016, 
0.001, t-test on cross-validated log-likelihoods per day). 
(B) Leave-one-out cross-validated log-likelihood improvement (higher is better) of Full Model versus a 
model where 𝛽,-./ was fixed to 0 (such that choice predictions ignored the estimate of the alternative 
patch values). Full Model significantly better fit behavior in all animals (p=0.002, 0.002, 0.002, 0.0002, 
0.003, t-test on cross-validated log-likelihoods per day). 
(C) Relative value of Switching and Staying increases leading up to Switch trials and decreases 
afterwards. The value of Staying is the behavioral model-estimated value of the upcoming port within the 
current patch. The value of Switching is the behavioral model-estimated value of the greater value patch, 
where patch value is the average of the two ports within. Across-trial dynamics are roughly symmetric 
around the Switch. Error bars are 95% CIs on the mean. Related to Fig. 1F. 
(D) Entropy over behavioral model-estimated value states in the upcoming (chosen) port on each trial, 
increasing on and after patch Switches. Across-trial dynamics are asymmetric around the Switch. Error 
bars are 95% CIs on the mean. Related to Fig. 5D. 
(E) Value updates on each trial increase leading up to and especially on and after Switch trials, then 
decay across trials back to baseline. This pattern is observed across ports in the maze, not only at the 
currently visited port, indicating a period of enhanced learning by value updating upon patch Switching. 
Value updates are calculated as the absolute magnitude of the change in value across all ports or a 
subset of ports as follows. Top: Global value updates across all ports in the environment, as in Fig. 5D. 
Top-middle: Value updates at the current port. Bottom-middle: Value updates at ports in the current 
patch. Bottom: Value updates at ports in unoccupied, alternative patches. Error bars are 95% CIs on the 
mean. Related to Fig. 5D. 
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