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abstract

PURPOSE Allogenic hematopoietic stem-cell transplant (HCT) is a curative therapy for acutemyeloid leukemia (AML)
and myelodysplastic syndrome (MDS). Relapse post-HCT is the most common cause of treatment failure and is
associatedwith a poor prognosis. Pathologist-based visual assessment of aspirate images and themanualmyeloblast
counting have shown to be predictive of relapse post-HCT. However, this approach is time-intensive and subjective.
The premise of this study was to explore whether computer-extracted morphology and texture features from
myeloblasts’ chromatin patterns could help predict relapse and prognosticate relapse-free survival (RFS) after HCT.

MATERIALS AND METHODS In this study, Wright-Giemsa–stained post-HCT aspirate images were collected from
92 patients with AML/MDSwho were randomly assigned into a training set (St = 52) and a validation set (Sv = 40).
First, a deep learning–based model was developed to segment myeloblasts. A total of 214 texture and shape
descriptors were then extracted from the segmented myeloblasts on aspirate slide images. A risk score on the
basis of texture features of myeloblast chromatin patterns was generated by using the least absolute shrinkage
and selection operator with a Cox regression model.

RESULTS The risk score was associated with RFS in St (hazard ratio = 2.38; 95% CI, 1.4 to 3.95; P = .0008) and
Sv (hazard ratio = 1.57; 95% CI, 1.01 to 2.45; P = .044). We also demonstrate that this resulting signature was
predictive of AML relapse with an area under the receiver operating characteristic curve of 0.71 within Sv. All the
relevant code is available at GitHub.

CONCLUSION The texture features extracted from chromatin patterns of myeloblasts can predict post-HCT
relapse and prognosticate RFS of patients with AML/MDS.
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INTRODUCTION

Myelodysplastic syndromes (MDSs) and acute myeloid
leukemia (AML)1 are hematologic diseases that are
challenging to treat because of the associated high
morbidity and mortality along with high rates of relapse.
MDS constitutes a group of clonal hematopoietic disorders
characterized by ineffective hematopoiesis and peripheral
blood cytopenias. MDS can be either indolent or quickly
progressive with a high risk of transformation into AML.2,3

AML is defined by the infiltration of bone marrow or pe-
ripheral blood by. 20%myeloblasts, commonly referred
to as blasts, which do not undergo the typical lineage-
specific WBC differentiation.4 Consequently, these blasts
overtake healthy stem cells in the blood and bone
marrow.2,5 As a result, patients with AML experience in-
fection, anemia, and poor blood clotting.6 Thus, detecting
and quantifying myeloblasts plays an important role in
diagnosing andmonitoring response to treatment in AML.7

Nearly 40%-60% of patients with AML who achieve
complete remission eventually relapse unless given

consolidation therapy. Allogenic hematopoietic
stem-cell transplantation (HCT), a procedure where
a human leukocyte antigen matched or partially
matched donor’s hematopoietic system replaces the
recipient hematopoietic system after immunosup-
pressive therapy, is the best postremission consoli-
dation therapy. HCT is often the only curative option for
patients with high-risk AML; however, it is associated
with significant morbidity and mortality because of
graft-versus-host disease and immunosuppression.2-6

Although relapse rates can be reduced by intensifying
conditioning chemotherapy, there is a concomitant
increase in treatment-related mortality.6,8 When pa-
tients relapse, the prognosis is especially poor, more so
in the setting of early relapse where the patient cannot
endure further intensive chemotherapy.9,10 Moreover,
only a minority of relapsed patients improve with
salvage therapies such as donor lymphocyte infusions
or a second HCT in selected patients.9,10. The low re-
sponse rate, poor improvement under salvage therapy,
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and substantial side effects of these treatments make it vital
to direct them only to patients at high risk of AML relapse.

An increase in the bone marrow blast percentage heralds
the relapse of AML. The gold standard for diagnosis of
relapse post-transplant is review of aspirates from bone
marrow biopsy to evaluate blast percentage and mor-
phology. In this process, a pathologist counts approximately
200-300 cells from randomly chosen regions of a bone
marrow aspirate specimen, and if 5% or more of the cells
are blasts, the patient is considered to have relapsed.11 The
examination of only a small proportion of cells and the limits
of human perception contribute to limiting the accuracy
and reproducibility of this process.11-14 In this study, we are
interested in using an automated computational approach
to go beyond the pathologist-based visual assessment to
identify features associated with relapse post-HCT and
relapse-free survival (RFS). A reproducible and objective
image analysis approach could allow for the segmentation
of myeloblasts and subsequent extraction of subvisual
features potentially carrying prognostic and predictive in-
formation regarding relapse post-HCT.

There have been many studies on using computational
image analysis for disease prognosis from digitized histologic
images of solid tumors.15,16 However, there is limited liter-
ature in cytopathology, with most studies focusing on cell
segmentation, WBC classification, and automated cell
counting17-20 rather than outcome prediction and prognosis.

In this study, we aimed to construct a quantitative patho-
logical risk score (PRS) that uses features from myeloblasts
derived from routine Wright-Giemsa–stained bone marrow
aspirate images to (1) prognosticate RFS and (2) predict
relapse post-HCT for patients with AML/MDS (see Fig 1).
Our approach used a novel model for myeloblast seg-
mentation and used computational methods to analyze the
quantity, texture, and shape of myeloblasts. Using a cohort
of 92 patients treated after HCT, obtained from the Uni-
versity Hospitals Cleveland Medical Center (UH), we
extracted image features from myeloblasts and identified a

subset of features in post-HCT patients (1) associated with
RFS and (2) predictive of relapse.

MATERIALS AND METHODS

Patient Selection

Under an institutional review board–approved protocol, a
chart review was performed to identify patients with AML or
MDS who underwent HCT between January 1, 2009, and
January 1, 2020, at the University Hospitals Cleveland
Medical Center. Wright-Giemsa–stained bone marrow as-
pirate slides from 92 patients with AML/MDS (see Fig 2)
were collected 6-8 weeks after HCT. Of these patients, 48
had a relapse of AML within the first year. All slides were
digitized at 40× magnification. Six random nonoverlapping
512 × 512 micron (2048 × 2048 pixel) tiles were selected
from regions within each digitized aspirate slide image with
dense WBCs and no artifacts, or bubbles, for a total of 552
tiles. Patients were randomly divided into training (St, n = 40
with 20 relapsed) and validation sets (Sv, n = 52 with 28
relapsed). Patients who did not experience relapse were
censored at the date of the last follow-up.

RFS was defined as the time interval between the start of
treatment (date of HCT) and the date of relapse, or the date
of death whichever occurred earlier, in patients with AML.
For censored patients, the survival is defined between the
HCT date and the last follow-up date.

Image Analysis

Blast detection and segmentation. A blast segmentation
framework on the basis of u-net,22 a type of deep learning
architecture, was trained on 795 64 × 64 micron (256 ×
256 pixel) patches from 35 patients annotated for myelo-
blasts by a hematopathologist. Of these, 79 random
patches were held out for model testing. On the held-out
test set, the model yielded a per-pixel true-positive rate of
0.99, a true-negative rate of 0.96, and an F1 score of 0.76.
Segmentation was then performed on all 552 tiles from 92
aspirate slide images, and results were visually verified to
be suitable for feature extraction.

CONTEXT

Key Objective
Allogenic hematopoietic stem-cell transplant (HCT) is a last-resort therapy for acute myeloid leukemia (AML) that has a poor

prognosis. Predicting relapse post-HCT could help direct more aggressive treatment to those patients who need it. In this
study, we explore machine learning–extracted texture features from bone marrow aspirate slide images to predict relapse
and to prognosticate relapse-free survival post-HCT.

Knowledge Generated
The machine learning model helped to identify unique morphologic and texture differences within the myeloblasts of the bone

marrow aspirate images of patients with AML who were at a higher risk of relapse post-HCT.
Relevance
After prospective validation, the new machine classifier presented in this study could enable risk stratification of patients with

AML, helping to identify patients who would relapse from those who would not within 5 years of HCT.
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FIG 1. Overview of the approach used in this article. First, the data set was randomly divided into training (St, n = 52) and validation (Sv, n = 40) sets.
Six random 512 × 512 micron tiles were then selected from every Wright-Giemsa–stained aspirate slide image. Myeloblasts were segmented on all tiles,
and features associated with the myeloblast shape and chromatic pattern were extracted. A subset of two features (continued on following page)
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Feature extraction. Features designed to reflect chromatin
patterns, heterogeneity, shape complexity, and shape ir-
regularity were extracted from each segmented myeloblast
(see Table 1). The mean, median, standard deviation, and
skewness of each feature were calculated across all mye-
loblasts on every tile from a patient to arrive at a tile-level
feature value and again across all six tiles to produce a
patient-level value. This process yielded a 214-feature vector
(see the Data Supplement) for each patient, which encodes
their associated blast presentation characteristics.

Model Construction and Statistical Analysis

Feature selection. The least absolute shrinkage and se-
lection operator (LASSO) from the glmnet package in R26

was used in an internal cross-validation fashion on St to
tune the lambda (λ) parameter. This process selected two
texture features (ie, average of contrast variance and av-
erage of correlation skewness) from the 214 features as
most relevant for prognosticating RFS. Additional details
about LASSO are provided in the Data Supplement. For
convenience, we denote St̂ and Sv̂ as the subsets of the
feature spaces of St and Sv containing these two texture
features.

Prediction of relapse. A linear discriminant analysis (LDA)
classifier was trained on St̂ to predict which patients would
experience relapse post-HCT therapy. The ability to identify
relapse post-HCT was assessed by the area under the
receiver operating characteristic curve (AUC) in Sv̂ . Ac-
curacy, sensitivity, and specificity were also computed at
the optimal operating point of the receiver operating

characteristic curve (ROC), defined as the threshold that
maximized overall accuracy.

Prognostic model creation and evaluation. St̂ was subse-
quently used to construct a Cox proportional hazards model
to obtain the PRS for each patient. Model performance was
evaluated by the Kaplan-Meier method, the log-rank test,
the hazard ratio (HR; 95% CI), and Harrell’s concordance
index (C index [95% CI]). Mean PRS in St̂ was used as a
threshold in both St̂ and Sv̂ to dichotomize patients into
high-risk/low-risk categories.

Myeloblast baseline. To evaluate the effectiveness of
machine-based myeloblast percentage alone in predicting
relapse, segmented myeloblasts from all tiles for each patient
were counted and were normalized by the total number of
WBCs for each patient. This feature was used to train a LDA
classifier to predict relapse andwas also used to prognosticate
RFS. A comparison was then performed between machine-
based myeloblast counting and machine-detected texture
features in predicting relapse and prognosticating RFS.

Ethics Approval

This study (STUDY IRB NUMBER 20210380) was con-
ducted in full accordance with the Health Insurance Por-
tability and Accountability Act (HIPAA) regulations after
approval from the Institutional Review Board (IRB) at Case
Western Reserve University (Cleveland, OH). The IRB
waived the requirements for informed consent of all pa-
tients because of the retrospective, non-interventional, and
non-therapeutic nature of this study.

(Continued). (contrast variance and correlation skewness) most correlating with relapse in the training data set were identified. Using these features, a
LDA model for PRS was derived using St. This PRS was locked down and then validated on Sv. This figure has been designed using resources from
Freepik.com.21 AML, acute myeloid leukemia; HCT, hematopoietic stem-cell transplant; LDA, linear discriminant analysis; MDS, myelodysplastic
syndrome; PRS, pathological risk score; RFS, relapse-free survival.

Excluded (n = 8)

1)  Out-of-focus aspirate slides
2)  Aspirate slides with excessive bubbles
3)  Aspirate slides with excessive artifacts
4)  Aspirate slides with Spicules

Assessed for eligibility
(N = 100)

Randomly 
assigned
(n = 92)

Inclusion criteria
1)  Routine aspirate slides of 
     Patients with AML/MDS

post‐HCT

2)  Cases that pass quality
    control metrics

Allocated to the
training set (St)

(n = 52)

Site: UH Allocated to the
validation set (Sv)

(n = 40)

Enrollment Allocation

FIG 2. A CONSORT diagram outlining the eligibility criteria and distribution of patients in this study. AML, acute
myeloid leukemia; HCT, hematopoietic stem-cell transplant; MDS, myelodysplastic syndrome; UH, University
Hospitals Cleveland Medical Center.
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RESULTS

Patient Characteristics

The characteristics of the patients used in this study are
summarized in Table 2. Among the 48 relapse patients,
the median time to relapse was 269 (range: 47-1,574)
days, with 60% of these relapses occurring within 1 year of
HCT. Among the 12 patients who relapsed beyond
18 months, the median time to relapse was 2.3 (range:
1.7-4.3) years.

Experiment 1: Myeloblast Texture Features Are

Associated With AML Relapse Post-HCT

LASSO was used for feature selection in St, and the Haralick
texture features of contrast variance and correlation
skewness were selected from 214 features to form the PRS.
Both contrast variance and correlation skewness were
reflecting the differences in chromatin patterns of the
myeloblasts.27 The texture feature of image contrast indi-
cates the large differences between neighboring pixels,
whereas the image correlation mostly focuses on the
similarity of pixels and gives a low weight to elements with
dissimilar gray levels.28 These two features were subse-
quently used to build the LDA classifier for predicting re-
lapse post-HCT. In Sv̂ , this classifier was able to distinguish
relapse from no-relapse patients with an AUC of 0.71, an
accuracy of 0.68, a sensitivity of 0.8, and a precision
of 0.64.

Qualitatively, Figure 3 illustrates the discriminability of
the myeloblast’s contrast and correlation features for
representative no-relapse and relapse patients. There is
higher textural pattern disorder (ie, heterogeneity)
within myeloblasts of a relapse patient for Haralick
contrast feature. Lower values were observed within

TABLE 1. Features That Were Extracted From Myeloblasts Can Be Categorized Into Four Main Categories

No. Feature Category
No. of Features
in the Category Description Sample Feature

1 Blast statistics 2 Information extracted about myeloblast quantity. Myeloblast counts
have been normalized by the total number of WBCs.

Blast percentage

Area ratio

2 Haralick texture 52 Haralick measurements23 extracted from myeloblasts are based on
GLCM23 to measure the heterogeneity of the cell chromatin pattern.

Entropy

Energy

3 Fractal dimension 64 1D and 2D fractal features extracted from both atop the chromatin
and boundary of the myeloblasts. FD features can quantify
complexity and irregularity24 of microscopic anatomic structures
and show the fractal nature of chromatin in histologic sections.25

FD_1D_Cell Boundary

FD_2D_Cell Chromatin

4 Other shape features 96 Shape measurements extracted from the myeloblast boundaries to
capture the myeloblast shape irregularity, deformation, and distortion.

Smoothness

Perimeter ratio

NOTE. Descriptions of these categories and exemplar features are provided. The full list of 214 features is given in the Data Supplement.
Abbreviations: 1D, one-dimensional; 2D, two-dimensional; FD, fractal dimension; GLCM, gray level co-occurrence matrices.

TABLE 2. Summary of Clinical and Pathological Variables in St and Sv
Clinical Variable St, No. (%) Sv, No. (%)

AML 44 (84.6) 37 (92.5)

MDS 8 (15.4) 3 (7.5)

Age, years

≥ 50 33 (63.4) 28 (70)

, 50 18 (34.6) 12 (30)

Data not available 1 (2) 0 (0)

Sex

Female 19 (36.5) 21 (52.5)

Male 32 (61.5) 19 (47.5)

Data not available 1 (2) 0 (0)

Complete remission

In remission 45 (86.54) 39 (97.5)

Already relapsed 7 (13.46) 1 (2.5)

Blast %

≥ 5 8 (15.38) 1 (2.5)

, 5 44 (84.62) 39 (95)

Data not available 0 (0) 1 (2.5)

Conditioning regimen

RIC/NMA 32 (61.5) 31 (77.5)

MA 20 (38.5) 9 (22.5)

Relapse (within 5 years of HCT)

Relapsed 28 (53.8) 20 (50)

Did not relapse 24 (46.2) 20 (50)

Death 10 (21.7) 27 (58.7)

Abbreviations: AML, acute myeloid leukemia; HCT, hematopoietic
stem-cell transplant; MA, myeloablative conditioning; MDS,
myelodysplastic syndrome; NMA, nonmyeloablative conditioning; RIC,
reduced intensity conditioning.

Relapse Prediction Using Image Biomarkers in Leukemia

JCO Clinical Cancer Informatics 5



myeloblasts of a relapse patient for Haralick correlation
feature as compared with myeloblasts of a no-relapse
patient.

These results highlight that the contrast and correlation can
begin to predict HCT outcomes (relapse versus no-relapse)
when used within a LDA classifier.
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Experiment 2: Myeloblast Texture Features Are

Associated With RFS in AML/MDS

A univariate Cox regression analysis developed using the
contrast variance and correlation skewness features indi-
cated that PRS was significantly negatively associated with
RFS in both St̂ (HR = 2.38; 95% CI, 1.43 to 3.95; P =
.0008) and Sv̂ (HR = 1.58; 95% CI, 1.01 to 2.45; P = .04).
The corresponding Kaplan-Meier survival curves (see Fig 4)
show a significant difference in RFS between patients with
low and high PRS (St̂ : P = .0008, Sv̂ : P = .04).

A multivariable Cox regression model indicated that PRS was
the only biomarker associatedwith RFS in St (PRS: HR=3.09;
95%CI, 1.52 to 6.27; P = .002; sex: HR = 0.98; 95%CI, 0.33
to 2.87; P = .97; age: HR = 0.99, 95% CI, 0.96 to 1.03; P =
.85; pathologist blast percentage: HR = 0.80; 95% CI, 0.41 to
1.57; P = .51; conditioning regimen: HR= 0.99; 95%CI, 0.35
to 2.83; P = .98; comorbidity index: HR = 1.17; 95% CI, 0.89
to 1.53; P = .27; disease type: HR = 0.14; 95% CI, 0.01 to
1.51; P = .11; C-index = 0.76) and also with RFS in Sv (PRS:
HR = 1.83; 95% CI, 1.05 to 3.20; P = .03; sex: HR = 1.31;
95% CI, 0.48 to 3.55; P = .60; age: HR = 1.01; 95% CI, 0.98
to 1.05; P = .37; pathologist blast percentage: HR = 0.91;
95% CI, 0.34 to 2.46; P = .86; conditioning regimen: HR =
0.54; 95% CI, 0.11 to 2.66; P = .45; comorbidity index: HR =
1.44; 95% CI, 1.06 to 1.96; P = .03; disease type: HR = 1.85;
95% CI, 0.58 to 5.95; P = .30; C-index = 0.74).

Experiment 3: Comparison of Myeloblast Texture Features

Versus Machine-Derived Myeloblast Percentage

Finally, a comparison between our classifier and the clinical
standard of machine-derived blast percentage is shown in
Table 3. These metrics demonstrate that our image bio-
marker was better able to differentiate between relapse and
no-relapse patients post-HCT and were also more robust in
prognosticating RFS.

DISCUSSION

Timely prediction of AML relapse after allogenic HCT is
crucial to direct chemotherapy to high-risk patients only.
Traditionally, manual counting of the myeloblasts on as-
pirate smear slides by hematopathologists is used to dis-
cover which patients will relapse post-HCT.29 However, this

method is time-consuming and error-prone.11-14 We also
know that the myeloblast count may fail to distinguish re-
lapse patients and other approaches such as high-risk cy-
togenetics can better predict relapse.29 Aside from
prognostic factors, such as relevant molecular and cytoge-
netic aberrations,25 routine analysis of cytologic images re-
veals crucial information on cell physiology.13 Our approach
of computational image analysis of aspirate images goes
above and beyond myeloblast count, aiming to capture
myeloblast morphology and appearance. The significance of
cytologic interrogation of cells in different types of leukemias
has also been suggested in other studies.11,13,14,25,30,31

Textural and morphological differences that we measure
in myeloblasts using our method offer an approximate es-
timate of complexity in chromatin patterns,12,25 which may
be related to how patients respond to treatment.14 As an
example, Auer rods or cytoplasmic granules are reddish,
linear structures composed of fused primary granules that
may exist in leukemic myeloblasts. Their presence indicates
myeloid malignancy, which may lead to resistance to
treatments or ultimately relapse.32,33 In addition, computa-
tional analysis of myeloblasts across aspirate images to
capture information about post-HCT relapse is in conso-
nance with the current laboratory diagnosis of hematologic
disorders that are also generally based on evaluation of
characteristics of blood cell chromatin patterns in peripheral
blood smears and bone marrow.34,32 The rationale behind
this diagnosis is that the chromatin pattern especially in the
nucleus is related to cell function, and therefore, the ab-
normalities within the nucleus chromatin are associated with
the malignancy.35 Therefore, interrogation of myeloblast
shape and texture features using computational analysis
would allow the development of accurate decision support
tools for prognosticating relapse after transplantation.

Previous work11,36,37 on predicting probability of relapse in
patients with AML focused on traditional visual (or manual)
blast counts and clinical markers (eg, cytogenetic risk
stratification). Although other studies were focused on
automating and replicating a pathologist’s manual review,
this work aimed to explore prognostic and predictive fea-
tures derived from myeloblast presentation. We studied
features in the context of two AML use cases, predicting (1)
post-HCT relapse and (2) RFS, and used a hand-crafted
feature-engineering approach, with features designed to
quantify characteristics of myeloblast cells as described by
hematopathologists.38 These features, we hypothesize,
correspond to traits of appearance and chromatin texture
that are biologically known and interpretable. This contrasts
with more opaque deep learning approaches where the
features are extracted in an unsupervised manner and do
not necessarily have an informed biologic rationale. The
relative simplicity of our models stands is another advan-
tage over deep learning approaches, which often uses
models trained with millions of parameters that cannot be
biologically interpreted.39

TABLE 3. Summary of the Prognostic and Predictive Results on Sv Comparing the
Machine-Based Myeloblast Percentage Versus Our Image-Based Biomarker

Image Biomarker

Experiment 1.
Relapse
Prediction

Experiment 2.
Prognosticating RFS

AUC Accuracy HR (CI) P

Machine-based myeloblasts
percentage

0.49 0.37 0.99 (0.97 to 1.02) .75

Texture features of contrast and
correlation

0.71 0.68 1.57 (1.01 to 2.45) .04

Abbreviations: AUC, area under the receiver operating characteristic curve; HR,
hazard ratio; RFS, relapse-free survival.
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Results from our first experiment showed that textural
features of contrast variance and correlation skewness were
predictive of relapse post-HCT, with less skewed correlation
between myeloblasts and more contrast variance, that is,
higher texture heterogeneity28 being associated with in-
creased risk of relapse. This finding is concordant with
other studies, which have associated chromatin pattern
heterogeneity and complexity with cytoplasmic and
membranous protein expression.13,40 Therefore, greater
heterogeneity in chromatin pattern presentation may in-
dicate a lack of cell maturation, driving disease relapse.13,40

The notion that myeloblasts with higher contrast variance
values are associated with elevated relapse risk is also
consistent with previous studies.41-43 These studies found
that higher heterogeneity in leukemic cells (myeloblasts) is
a result of multiple mutations in the nucleus, which lead to
patient resistance to therapy and relapse.41,42,44,45 Taken
together, myeloblast chromatin patterns reflect the total
sum of various underlying biologic interactions and thus
may provide utility in prognostic prediction.

In addition, our results suggest these features were not only
predictive of relapse but were also associated with RFS of
patients with AML post-transplant. Our findings were con-
sistent with previous work in which cell chromatin pattern
heterogeneity and complexity reflected DNA methylation
patterns13,29 and are related to patient shorter overall
survival.13,31 Other studies found that increases in roughness
of cell surfaces in patients with leukemia were associated
with clinical response to therapy.14 These findings motivate
the appearance of cells in leukemia cases as possessing
information about a patient’s disease-free survival post-
therapy. In this study, patients with myeloblasts of
smoother chromatin (lower contrast variance) texture were
more likely to respond to treatment, whereas patients with
higher myeloblast chromatin contrast variance (higher het-
erogeneity) mostly experienced AML relapse post-HCT.

In relation to existing clinical AML grading relapse and in
agreement with the study by Yeung et al,29 we found that
myeloblast count was not a good predictive or prognostic
feature. This finding contributes to the growing body of
work, which suggests that textural features are much more
predictive of AML relapse than simple myeloblast counts.

Our study had some limitations worth noting. One was the
relatively small size of the validation cohort and the fact that
these came from a single institution. The study was ret-
rospective in nature and not prospective. In addition, we did
not compare the PRS against well-established clinical and
cytogenetic/molecularmarkers such asmutations in DNMT3A
and IDH,46 limitations we intend to address in future work. To
ensure the validity of PRS for clinical use, prospective clinical
trials will be needed to be performed. Patients with AML/MDS
who are categorized as high risk by the PRS may merit the
maintenance of treatment intensity by consistently using
concurrent chemotherapy or intensifying chemotherapy.
Taken together, this would represent a novel, viable precision
oncology approach to treating patients who undergo HCT in
the modern era.

In summary, we developed a quantitative PRS, on the basis
of two features related to the textural appearance of my-
eloblasts, automatically extracted from bone marrow cy-
tologic images of patients with AML. PRS was prognostic of
RFS after HCT in patients with AML/MDS. A machine
classifier in conjunction with the myeloblast texture pa-
rameters was able to predict relapse post-HCT. Further
multisite validation including retrospective validation of
archived samples from completed clinical trials followed by
large prospective clinical trial evaluation is necessary to
validate PRS as a prognostic and predictive biomarker to
risk stratify patients post-HCT.
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