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An exactly solvable, spatial model 
of mutation accumulation in cancer
Chay Paterson1, Martin A. Nowak2,3,4 & Bartlomiej Waclaw1,5

One of the hallmarks of cancer is the accumulation of driver mutations which increase the net 
reproductive rate of cancer cells and allow them to spread. This process has been studied in 
mathematical models of well mixed populations, and in computer simulations of three-dimensional 
spatial models. But the computational complexity of these more realistic, spatial models makes it 
difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an 
exactly solvable mathematical model of a tumour featuring replication, mutation and local migration 
of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different 
fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model 
reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, 
death, and migration rates. We also show that the expected number of accumulated driver mutations 
increases exponentially in time if the average fitness gain per driver is constant, and that it reaches 
a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and 
possible extensions of the model.

Every cancerous tumour is initiated by a single rogue cell which has accumulated genetic or epigenetic alterations 
which enable it to proliferate faster than cells from normal tissue. This process is stochastic and occurs with a 
surprisingly small probability given the frequency of cell division in the human body1. However, once initiated, 
the progeny of the first neoplastic cell will likely eventually acquire further alterations. Some of these alterations 
are benign and constitute what are called “passengers”; others, called “driver mutations”, may further increase 
proliferation, usually by decreasing the responsiveness of cells to signals which normally halt division. Cancer is 
thus governed by the rules of biological evolution: driver mutations endow cells with selective advantage, whereas 
passenger mutations behave as neutral mutations “hitchhiking” on clonal expansions fuelled by the drivers. It is 
believed that 3–15 drivers are present in a majority of cells in a clinically detectable tumour2–6.

The possibility the accumulation of new drivers during cancer progression raises a number of interesting 
questions: How is the growth of a three-dimensional mass of cells affected by drivers? How are drivers distributed 
in the tumour? How many drivers are expected in a tumour of a given size or age? Answering these questions 
is important in order to understand the observed cancer incidence rates1,6,7, predict how many oncogenes and 
tumour suppressor genes are yet to be found8, and to explain the observed levels of genetic heterogeneity in 
tumours9–12.

Both initiation and progression have been modelled mathematically13–17, and many theoretical and compu-
tational models have already addressed the above questions. “Well-mixed” models8,18–21 which omit all spatial 
structure show that new mutations accumulate faster over time8,21. This process has been also studied in spatial 
models22 in which the tumour is a single ball of cells whose radius grows linearly in time, and in more idealized, 
lattice models23–27.

Recently, computational models have been proposed12,28,29 in which cancerous tumours are conglomerates of 
one large primary tumour with many surrounding microlesions, presumed to form when cancer cells detach from 
the primary lesion and resume growth at an adjacent site. This is similar to metastasis – the ability to invade and 
form new microlesions elsewhere in the body – which is arguably the defining characteristic of cancer: however, 
these models12,28,29 are also applicable to short-range invasiveness, perhaps as short as a few micrometers. In fact, 
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the presence of cancer cells in regions surrounding the primary lesion have long been used as a predictor of can-
cer recurrence30,31 following surgical excision of solid tumours.

The movement of cells in such models is understood as caused by cells undergoing epithelial-to-mesenchymal 
transition and local invasion32, or possibly “sprouting” due to mechanical instability33,34, though the models tend 
to be neutral as to the underlying mechanism. Having left the primary lesion, cells enjoy a better access to nutri-
ents and oxygen and can proliferate faster. The tumour has a complex structure which enables faster expansion 
than if it were made of a homogenous and simple cluster of cells. This is distinct from models of metastasis35,36 
which assume spatially separated, distant lesions.

In this work we study a simplified, mathematical counterpart of the models12,28,29 that can be solved exactly. 
This enables us to study tumours of any size, including clinically relevant sizes. Our model belongs to the class of 
age-structured population models, which were first used in population ecology and epidemiology37,38, but have 
more recently been applied to modelling metastasis in cancer35,39.

Here, we substantially extend these earlier models by including many cell types, each corresponding to a 
genotype with a new driver and hence a different growth rate. Surprisingly, our extended model can still be ana-
lytically solved in several important cases, allowing us to formulate hypotheses as to how rapidly driver mutations 
accumulate in cancer.

The Model
We model the tumour as a collection of microlesions made of cancer cells (Fig. 1A). Microlesions do not interact 
with one another; this is crucial for the analytic solubility of the model. This rather strong assumption could 
be justified by interpreting microlesions as spatially-separated metastases: however, even if microlesions are 
fragments of the same primary tumour, numerical simulations (ref. 12, Extended Data) indicate that as long as 
microlesions are separated by normal tissue, their growth rate is only minimally affected.

Each microlesion is fully characterized by two numbers: its age a and its type n which describes the genetic 
makeup of the lesion. For simplicity, we take n to be the number of driver mutations in the cell which initiated the 
lesion. This convention does not need all microlesions to be genetically the same, but only for their evolution to 
be completely determined by the two variables {n, a}. In what follows we shall assume that lesion {n, a} contains at 
most two different genotypes, n and n +​ 1, with relative abundances rn(a) and 1 −​ rn(a), respectively. Note that we 
do not model individual cells explicitly: rather, we model only the behaviour of microscopic lesions which contain 
thousands or even millions of cells.

The dynamics of the model is governed by three processes: growth, the emergence of new drivers caused by 
mutations, and the creation of new microlesions by migration.

Growth.  A microlesion {n, a} grows deterministically and its volume at age a is given by Vn(a). The proportion 
of the n +​ 1-th genotype also grows deterministically and equals 1 −​ rn(a). The functions Vn(a) and rn(a) depend 
on the growth model of a single, isolated lesion and we shall specify them later (Results, “Multiple driver muta-
tions”, equation (29) onwards). The spatial character of the model manifests itself in our choice of these functions; 
for example, Vn(a) is very different for three-dimensional growth in which replication occurs only on the surface, 
and “well-mixed” growth in which growth occurs in the whole volume and all cells replicate with identical rates.

Driver accumulation.  Cells in microlesion {n, a} can gain a new driver n +​ 1 with some small but non-zero 
probability. This represents the occurrence of genetic mutations and is accounted for in the form of rn(a), the 

Figure 1.  (A) The model assumes that the tumour is made of discrete microlesions. Cells migrate from 
microlesions (arrows) and establish new microscopic lesions. All lesions increase in size over time. (B,C) Two 
different growth models of individual microlesions. In the surface growth model (B), cells replicate only in a 
narrow layer of constant thickness near the surface, and the radius of the lesion increases with velocity vn. In the 
volumetric growth model (C), replication occurs everywhere and the microlesion grows exponentially which 
causes the whole lesion to “inflate”. Arrows show the expansion velocity which is small close to the centre and 
increases towards the surface. Purple areas correspond to new mutations.
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fraction of cells that do not contain the new n +​ 1-th driver. Therefore, a lesion changes its genetic composition in 
a deterministic way in this model.

Migration.  A lesion {n, a} seeds new microlesions with rate φn(a). A new lesion has age a =​ 0 and, with prob-
ability rn(a), it inherits the same type n as the parent lesion, or with probability 1 −​ rn(a) it is assigned type n +​ 1. 
This accounts for what would have happened if we modelled individual cells within the lesion, and cells of differ-
ent types migrated from the lesion with probabilities proportional to their abundances. For example, the proba-
bility that a cell of type n +​ 1 migrated and established a new lesion of type n +​ 1 would be equal to the fraction 
1 −​ rn(a) of cells of type n +​ 1 in the lesion. This is the only other component of the model affected by spatial 
arrangement of cells.

The model defined by the above postulates is stochastic: while growth and mutation are deterministic, migra-
tion (creation of new lesions) is a random process. In what follows we shall focus on the analysis of the mean 
behaviour of the model, averaged over many realisations of the stochastic process, and we shall therefore ignore 
fluctuations: the role of fluctuations will be discussed in Section Comparison to simulations. Let fn(a, t) be the 
expected number of microlesions of age a at time t. The time evolution of fn(a, t) is governed by the following two 
equations,

∂ + ∂ =f a t f a t( , ) ( , ) 0, (1)t n a n

∫ φ φ= + −
∞

− − −f t r a a f a t r a a f a t da(0, ) [ ( ) ( ) ( , ) (1 ( )) ( ) ( , )] , (2)n n n n n n n0
1 1 1

with the initial condition fn(a, 0) =​ δn,1δ(a) in which δn,1 is the Kronecker delta and δ(a) the Dirac delta func-
tion. Equation (1) describes the shift of the distribution in time - the “ageing” of the microlesions. Equation (2) 
describes the birth of new lesions (through migration) and can be thought of as a boundary condition for Eq. (1). 
The function Vn(a) which defines the growth of a single lesion does not appear in these equations, but it appears 
in the equation for the total volume of the tumour,

∫∑=
=

∞ ∞
V t f a t V a da( ) ( , ) ( ) ,

(3)n
n ntot

1 0

and the average number of drivers per cell,

∫∑= .
=

∞ ∞
n t

V t
n f a t V a da( ) 1

( )
( , ) ( )

(4)n
n n

tot 1 0

Although equations (1 and 2) are quite general, their hierarchical structure allows an exact formal solution 
(Methods, “General solution with multiple types of microlesions”, equation (52) onwards). To model cancer in 
this framework, we must define the functions rn(a), Vn(a), φn(a) such that they describe the growth of individual 
microlesions.

Results
Only one driver.  We first consider three special cases of the model with only one type of microlesions. This 
will form a set of “null models” against which we will compare the multiple-driver models from the next section.

General solution of Eqs (1 and 2).  In the case of one type of cells (no new driver mutations), r1(a) =​ 1 and 
rn(a) =​ 0 for n >​ 1, and Eqs (1 and 2) reduce to the McKendrick-von Foerster equation without removal38:

∂ + ∂ =f a t f a t( , ) ( , ) 0, (5)t a

with the boundary condition

∫ φ=
∞

f t a f a t da(0, ) ( ) ( , ) , (6)0

and the initial condition f(a, 0) =​ δ(a). Note we have dropped the index “1” in f1(a, t) and φ1(a) for brevity. 
Equation (5) has a solution of the form f(a, t) =​ F(t −​ a)Θ​(t −​ a) +​ δ(t −​ a), where F(z) is some non-negative con-
tinuous function, Θ​(z) is the Heaviside step function, and the Dirac-delta term δ(t −​ a) accounts for the initial 
condition. The boundary condition (6) implies that

∫ φ δ= − + − .F t a F t a t a da( ) ( )( ( ) ( )) (7)
t

0

Laplace-transforming the above equation gives

φ
φ φ

=
−

+ =
−



 

F s s
s s

( ) ( )
1 ( )

1 1
1 ( )

,
(8)

where the constant term 1 is due to the singular initial condition, and the functions marked with tildes are Laplace 
transforms: ∫φ φ=

∞ −
 s e a da( ) ( )as

0
 and ∫=

∞ −
F s e F z dz( ) ( )zs

0
.
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Equation (8) enables us to calculate the distribution f(a, t), provided we can invert the Laplace transform. We 
shall see that this is possible in some important special cases (Results, “Multiple driver mutations”). However, 
even if the full distribution cannot be obtained, Eq. (8) provides us means to infer large-t behaviour of f(a, t). We 
note that F s( ) from Eq. (8) becomes singular when φ = s( ) 1 and behaves as ∼ −F s s G( ) 1/( ) near any of the roots 
G of the equation

∫ φ = .
∞ −a e da( ) 1 (9)

Ga

0

The inverse transform F(z) of F s( ) will thus contain terms ~exp(Gz). One of these terms corresponding to the 
largest G dominates the long-time behaviour, and the distribution in this limit reads

≅ Θ − −f a t A t a Gt Ga( , ) ( ) exp( ), (10)

where A is some positive constant. Equation (9) is called the Euler-Lotka equation37,38 and its largest root G gives 
the (exponential) growth rate of the number of microlesions N(t) in our model as follows from

∫= ∝ .
∞

N t f a t da e( ) ( , ) (11)
Gt

0

Similarly, the total volume (3) also increases exponentially,

∫= ∝ .
∞

V t f a t V a da e( ) ( , ) ( ) (12)
Gt

tot
0

These results are well known in the literature of mathematical ecology. Here they were re-derived using a 
different approach which can be adapted to more complicated cases with many cell types (new driver mutations). 
We shall now use these general results to investigate three special cases of cancer growth.

Surface growth.  We assume that microlesions are spherically symmetric, cells replicate only on the surface, and 
that the centre of the lesion is static. Let the volume (number of cells) of the lesion increase with its age a as

π=V a va( ) (4 /3)( ) , (13)3

where v is the speed (in cells/day) with which the radius of the ball of cells expands in time. We further assume 
that cells can migrate only from the surface, thus

φ π=a Mv a( ) 4 , (14)3 2

where M is the dimensionless migration probability representing the fraction of cells on the surface which escape 
and go on to eventually seed new microlesions. Taking the largest root of Eq. (9) we find the asymptotic growth 
rate G to be

π= .G M v(8 ) (15)1/3 1/3

In fact, for this simple model we can find the exact expression for the number of microlesions N(t) and the 
total volume Vtot(t). The Laplace transform of φ(a) reads 8πMv3/s3 and from Eq. (8) we obtain

π
=

−
F s s

s Mv
( )

8
,

(16)

3

3 3

which can be inverted:

δ= +




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−








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−









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



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Θ .−F z z Ge e Gz Gz z( ) ( ) 1

3
3 sin 3

2
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2
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(17)

Gz Gz
2

3
2

Here G is the growth rate from Eq. (15) and Θ​(z) the Heaviside step. We thus obtain that the total number of 
microlesions increases in time as

∫= − =





+









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

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3
2 cos 3

2 (18)

t Gt Gt

0
2

As expected, N(0) =​ 1 and ≅ −N t e( ) (1/3) Gt for t →​ ∞​. The total volume (number of cells) is

= +









−

−
V t

M
e

M
e Gt

M
( ) 1

3
2

3
cos 3

2
1 ,

(19)
tot

Gt Gt
2

which also increases exponentially with time. Figure 2A shows how the total volume increases in time for a fixed 
M and a range of v, whereas Fig. 2B shows the same quantity for fixed v and different M. It is evident that in order 
for the tumour to grow to 1011–1012 cells (10–100 cm3) over the period of 15 years which is thought to be typical 
for solid cancer, both M and v must be sufficiently large, otherwise there is not enough migration from the surface 
and the tumour grows sub-exponentially. On the other hand, M, v do not have to be very big: if M =​ 10−6 (only 
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one cell per million migrates) and v =​ 0.1 (microlesion radius grows by 0.1 cell per day), a tumour can grow to a 
macroscopic size in a realistic time frame.

Surface growth with decreasing replication rate.  In reality, a lesion cannot be expected to grow continuously. 
Growth eventually slows down due to spatial constrains and limited nutrient supply which is why many tumours 
never reach detectable sizes40,41. Let us consider a simple case of an exponential slow-down:

φ π= λ−a Mv a e( ) 4 , (20)a3 2

where λ >​ 0 is the characteristic time scale of growth decrease. As before, we assume that proliferation occurs only 
on the surface, and therefore

∫ φ π
λ

λ λ
= ′ ′ =





−





+ +










.λ−V a

M
a da v e a a( ) 1 ( ) 8 1 1 ( )

2 (21)

a a

0

3

3

2

This function has a sigmoid shape and saturates at V(∞​) =​ 8πv3/λ3. The formulas for φ(a), V(a) reduce to 
Eqs (13 and 14) when λ =​ 0 i.e. when there is no slow-down. We can now calculate F s( ):

λ
λ π

=
+

+ −
F s s

s Mv
( ) ( )

( ) 8
,

(22)

3

3 3

and, upon inverting the Laplace transform, we have

δ λ λ

λ

= + +






−



 +




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−

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


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
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
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Θ
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G z z

( ) ( ) 1
3

( 3 ) 3 sin 3
2
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cos 3
2

( ) ( ),
(23)

G z G z2
3( )

2

where

π λ= −G M v2( ) (24)1/3

is the exponential growth rate of the tumour. We note that G >​ 0 only for sufficiently large M, thus the tumour 
made of microlesions whose growth slows down can grow exponentially as a whole only if sufficient migration is 
present. We can also calculate N(t) and the total volume exactly but since both expressions are rather lengthy and 
not particularly illuminating (SI Mathematica notebook), we quote here only the leading terms:

λ
≅

+
+N t G e

G
( ) ( )

3
const, (25)

Gt

π
λ

≅
+

+ .V t v e
G G

( ) 8
3 ( )

const
(26)

Gt

tot

3

2

Figure 2C shows that the volume increases exponentially only if λ is small enough, otherwise growth becomes 
arrested after some time.

Volumetric growth.  Finally, we shall consider the case in which all cells from the lesion are able to replicate and 
migrate. If cells replicate with rate b and migrate with rate M, we obtain

Figure 2.  (A) Total tumour volume Vtot(t) versus time for different single-lesion expansion velocities v =​ 0.01 
(blue), v =​ 0.02 (yellow), v =​ 0.05 (green) and v =​ 0.1 (red), and the same migration probability M =​ 10−6.  
(B) Vtot(t) for v =​ 0.1 and four different M =​ 10−8, 10−7, 10−6, 10−5 (blue, yellow, green and red, respectively).  
(C) Vtot(t) for the slow-down model, M =​ 10−6, v =​ 0.1 and four different λ =​ 0.1, 0.01, 10−3, 10−4 (blue, yellow, 
green and red).
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= −V a b M a( ) exp[( ) ], (27)

φ =a MV a( ) ( ), (28)

thus individual lesions grow exponentially in time. As expected, Eq. (9) predicts that the whole tumour grows 
exponentially with rate G =​ b i.e. the same rate as the birth rate of individual cells.

Multiple driver mutations.  We shall now extend these results to the case in which new drivers can emerge 
during tumour growth. Each new driver mutation speeds up growth as a result of increased proliferation/
decreased death of cells.

Surface growth.  We assume that each new driver mutation increases the expansion speed of microlesions. This 
can be motivated as follows: replication and death balance exactly for normal cells to ensure homoeostasis. A 
driver mutation increases the birth rate or decreases the death rate and hence the net growth rate becomes pos-
itive42. In the case of surface growth of a solid lesion considered here this net growth rate is assumed to translate 
into a radial expansion of the lesion with speed vn.

We first take the case vn =​ nv1, i.e., each new driver contributes equally to vn. We have

π=V a nv a( ) (4 /3)( ) , (29)n 1
3

φ π= .a M nv a( ) 4 ( ) (30)n 1
3 2

So far we have not specified rn(a), the fraction of cells with n drivers in the lesion of type n. To simplify calcu-
lations, we shall take

µ= −r a a( ) exp( ), (31)n

with some positive constant μ. The above equation can be rationalized if we assume that cells on the surface of the 
lesion mutate from n to n +​ 1 drivers with a very small rate μ and that their selective advantage can be neglected. 
The dynamics of type n +​ 1 in a lesion of type n is thus effectively neutral. A mutant sector that arose at time a0 
will then have approx. (a/a0)2 cells on the surface. The fraction 1 −​ rn(a) of mutant cells obeys then the following 
equation:

∫ π µ

π
= −

a r a a a da

a
r a

4 ( )( / )

4
1 ( ),

(32)

a
n

n
0 0

2
0 0

2
0

2

which can be solved yielding Eq. (31). However, for the assumed vn =​ vn1 the selective advantage of type n +​ 1 
over type n is (n +​ 1)/n =​ 1/n >​ 0 and therefore our assumption about the population dynamics being neutral does 
not hold for small n. The dynamics of non-neutral mutant sectors is quite complex22,43 and leads to formulas for 
φn(a)rn(a) which cannot be Laplace-transformed analytically. We therefore stick to a much simpler but perhaps 
less realistic Eq. (31). In Section “More realistic surface fractions rn(a)” we shall discuss a different form for rn(a) 
that is more biologically plausible whilst still resulting in analytically tractable models.

In Methods (“Surface growth with many drivers”), it is shown that the exponential growth rate of the number 
of microlesions of type n is

π µ µ= − = + + −G M nv G G n(8 ) ( )( 1), (33)n
1/3

1 1 1

where G1 =​ (8πM)1/3v1 −​ μ. The growth rate can thus become negative for sufficiently large mutation rates μ. 
This effect is similar to what was found in the preceding subsection (“Surface growth with decreasing replication 
rate”). However, in contrast to this earlier result in which replication slowed down over time, resulting in fewer 
cells able to migrate and establish new microlesions, here the cells only change their type while their replication 
and migration is not affected. The total number of cells thus increases over time; we shall show this explicitly later 
in this section. A negative Gn only means that a subpopulation of type n cannot grow exponentially at long times: 
once a strain with Gn >​ 0 emerges, it rapidly dominates the population.

The volumes of cells of type n, Vtot,n(t), as well as the total volume Vtot(t) can be obtained analytically (Methods, 
“Surface growth with many drivers” and Supplemental Material). Figure 3A shows example curves Vtot,n(t). The 
asymptotic behaviour of each subpopulation Vtot,n ~ exp(Gnt) is clearly visible. Since Gn increases with n, microle-
sions containing more driver mutations grow faster and their population eventually overtakes that of microlesions 
with fewer drivers. For this reason, the total volume Vtot(t) obtained by summing up all Vtot,n (Eq. (3)) increases 
faster than exponentially, as is plainly visible in the plots (Fig. 3A). In the large-t limit, we can show (Methods) 
that the volume behaves asymptotically as

µ
∝






+






.

− −π

V t G t e
G

( ) exp
3 (34)

G t

tot 1

1

1

1 2 3

We can also calculate the average number of drivers (SI Mathematica notebook). Figure 3G shows that 〈​n(t)〉​ 
is small until late times when it rapidly increases. In fact, in the limit t →​ ∞​ it can be shown (Methods) that
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Figure 3.  Plots of different quantities (rows of panels) characterizing the tumour as a function of time 
(days), for different growth scenarios (columns of panels). (A–C) The total volume (number of cells) 
of microlesions with n driver mutations (coloured curves) and the total volume Vtot of the whole tumour 
(black dashed curve). (D–F) The fraction of cells with n =​ 1, 2, 3, …​ driver mutations in the whole tumour 
(colours as in A–C). (G–I) The average number of drivers 〈​n(t)〉​: exact calculation (black) and asymptotic 
formula (dashed blue). The columns are as follows. Panels A,D,G: from the section on the “Surface growth” 
model with parameters v1 =​ 0.0475, M =​ 10−6, μ =​ 2 · 10−5 (all rates in units day−1). The parameters v1, M 
have been chosen such that the tumour reaches about 1011 cells in 15 years (~5500 days) and accumulates 3–4 
drivers, μ was assumed to be the same as in ref. 8. Black dashed curve in A is the total volume Vtot derived 
from Eqs (3) and (57) with Fn(z) given by (61). Solid black curve in G is the exact analytical calculation from 
Eqs (4) and (61), blue curve the asymptotic approximation (35). Panels B,E,H: corresponding to the section on 
the “Surface growth with decreasing replication rate” model for v1 =​ 0.053, M =​ 10−6, μ =​ 2 ×​ 10−5, λ =​ 10−3. 
Blue curve in panel H is the asymptotic approximation (37). Panels C,F,I: volumetric growth for b =​ 0.0026, 
M =​ 10−5, μ =​ 2 · 10−5. Solid black curve is the exact analytical calculation derived from Eqs (3) and (57) with 
Fn(z) given by (77). Blue curve is the asymptotic approximation derived from (41).
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so the number of drivers accumulates exponentially over time. Note that the asymptotic formulas derived here are 
quite accurate, even for finite times relevant to tumour growth.

Slow-down surface growth.  If growth of individual lesions slows down over time (as in “Surface growth with 
decreasing replication rate”), it can be easily obtained that

π µ λ π µ λ= − − = − − .G M v M nv(8 ) (8 ) (36)n n
1/3 1/3

1

Note that the differences Gn+1 −​ Gn do not depend on λ and are the same as in the case without slow down 
(Results, “Surface growth”). We shall see that this causes driver mutations to accumulate at the same rate as before. 
The average number of drivers reads (Methods)

µ
λ

≅ +
+

λ
− −

+
π

n t e
G

e( ) 1
3 ( )

,
(37)

G t
1

1

( )2 3
1

which turns out to be identical to Eq. (35) when we observe that G1 from Eqs (33) and (36) differ only by λ. This 
means that the average number of drivers increases approximately exponentially over time with a rate that is not 
affected by growth of individual microlesions slowing down with age, and is the same for all λ. Example growth 
curves Vtot,n(t) and the average number of drivers are presented in Fig. 3B,E,H.

Volumetric growth.  In the case of volumetric growth i.e. cells replicating in the whole volume of the lesion, we 
have

= −V a b M a( ) exp[( ) ], (38)n n

φ =a MV a( ) ( ), (39)n n

where bn =​ nb is the net replication rate of cells with n drivers. We assume that rn(a) =​ exp(−​μa) exactly as for the 
surface growth models (31). This formula correctly describes the proportion of cells of type n only if type n +​ 1 
does not have a selective advantage. In the case of selective advantage we are dealing with here, the formula is only 
approximately correct, as detailed in Section “More realistic surface fractions rn(a)”.

In the limit of long time we obtain (Methods) that the total volume and the average number of drivers behave 
asymptotically as

µ
∝

µ
+V t b

M
e( ) ,

(40)

e M
b

bt
tot

2 3
4

bt
2

µ
≅ +n t

M
b

e( ) 1 , (41)
bt/2

so that the total volume increases faster than exponentially, and drivers accumulate exponentially, similar to 
the surface growth models from previous sections. We can also compute exact expressions for Vtot(t) and 〈​n(t)〉​ 
(Methods). Figure 3C,F,I shows the volume and the number of driver mutations as a function of time. Note that to 
reach both the same size as in the surface growth model (of 1011 cells) and a reasonable number of drivers (more 
than two), the net increment b of the growth rate per driver has to be very small.

Driver mutations with decreasing selective advantage.  In all previous cases, virtually all drivers 
accumulated at a late stage during the growth of the tumour. In this section we shall study the case when the 
selective advantage of the first three drivers is much bigger than that of all subsequent drivers. Statistical analysis 
of cancer incidence rates suggests that this is indeed the case for some lung and colorectal cancers6. We take the 
surface growth model with the following vn:

=v v2 , (42)2 1

=v v3 , (43)3 1

= + −v v n3 (1 ( 3) ), (44)n 1

with some v1 and a small  1 . The expansion speed increases fast for n =​ 2, 3 and slow for n ≥​ 4 drivers. Figure 4 
shows that now most drivers accumulate earlier, before the tumour reaches a detectable size (Vtot <​ 109). This 
causes the final tumour to become much less heterogeneous because almost all cells have the same driver muta-
tions. Moreover, the total volume grows approximately exponentially for long times, rather than 
super-exponentially as in the previous models. These results are in agreement with recent experimental evidence 
on intra-tumour heterogeneity in colorectal cancer44.
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More realistic surface fractions rn(a).  So far we have assumed the fraction of cells with n drivers to be 
rn(a) =​ exp(−​μa) (see Eq. (31)). This simplifies calculations, but as already mentioned is not very realistic. In 
particular, as it is independent of n, Eq. (31) cannot take into account the expansion of the subpopulation of cells 
with n +​ 1 drivers due to their faster growth. We will now derive a more realistic form of rn(a) which is still simple 
enough to lead to analytic results for the total volume and the average number of drivers.

Recall that rn(a) is interpreted as the fraction of cells of genotype n in a type-n lesion that are able to migrate 
and establish new lesions. In the volumetric growth model, this would correspond to all cells in the lesion that do 
not have the n +​ 1 driver, while in the surface growth model only cells present on the surface contribute to rn(a).

Let us first consider the volumetric model. If bn is the growth rate of type-n, the fraction 1 −​ rn(a) of new 
mutant cells obeys the following equation:

µ
−

= − − + .+
d r a

dt
b b r a r a(1 ( )) [( )(1 ( )) ] ( ) (45)

n
n n n n1

The first term (bn+1 −​ bn) (1 −​ rn(a))rn(a) corresponds to the rate with which the population with n +​ 1 drivers 
increase due to selective advantage, and the second term μrn(a) accounts for new mutations. Equation (45) is of 
logistic type and can be solved yielding

µ

µ
µ µ µ=

− +

− +
≅ − − − − + .
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+

+
− + +

+
r a

b b
b b e

a b b a O a( ) 1 1
2

( ) ( )
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n n
a b b n n

1

1
( ) 1

2 3
n n1

We can see that for small a the above expansion agrees with that of Eq. (31) which is the approximation we 
used before: the two formulae for rn(a) can therefore be expected to agree for a <​ μ−1. Although the exact form 
of rn(a) from the above formula leads to a Laplace transform of Fn(t) (Methods) that cannot be inverted analyti-
cally, the Taylor expansion can be used instead; in the Supplementary Mathematica notebook we show example 
formulas for Vtot(t) for this case.

We will now consider the surface growth model. Note that we have an additional complication here: only cells 
that are on the surface are able to replicate and migrate, and if these processes are stochastic, it is possible that a 
random fluctuation causes a population of mutant cells to disappear from the surface. For example, if the surface 
is rough and fluctuating, a mutant strain can be “swallowed” by fluctuations in the growing surface if it does not 
“surf ” on the expanding frontier of the lesion and fails to establish a macroscopic sector fast enough45,46. We 
therefore need to consider the “surfing probability” Psurf that if a mutant was generated at time (lesion age) a0, it 
is still on the surface at time a.

Let us focus on a specific example of surface growth: Eden-like growth from ref. 12. It has been shown43 that 
the probability Psurf that a mutant strain remains on the surface is approximately Psurf ≈​ c/a0, i.e., inversely propor-
tional to the age at which the first mutant cell has been created. This inverse proportionality law is likely to be true 
for more general models that fall into the KPZ universality class47. The proportionality constant c can be thought 
of as a “surfing time”, and while we are not aware of an ab initio estimate, our simulations indicate that it is on the 
order of 1/vn days for the model considered in ref. 12. Since this constant depends on the microscopic details of 
the model, for the sake of generality we shall not ascribe a specific value in the formulas below.

Figure 4.  The model with three strong drivers as in Eqs (42–44). (A) The total volume of the whole tumour 
(black curve). (B) The fraction of drivers with n mutations. (C) The average number of drivers (black curve). In 
all cases v1 =​ 0.015, M =​ 10−4, μ =​ 2 · 10−5,  = .0 01. Data points with error bars in all panels come from 
stochastic simulations of the original model (Section Computer simulations, 500 replicates). In panel C, two sets 
of data points are presented. Purple points have been obtained by calculating the average number of drivers for 
each simulated tumour and then taking the average over many tumours. Black points represent averaging the 
fractions of cells with n drivers over many tumours (as in panel B), and using this to calculate the average n.
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New mutants emerge in this model with a rate equal to the mutation probability pμ times the rate of expansion 
of the surface, which for sufficiently large (and old) lesions of age a will scale as a2. Following ref. 22, we calculate 
the probability rn that a randomly selected surface cell is non-mutant at radius ρ as

∫ρ π θ θ ρ ρ θ ρ ρ θ=





−





µ

π
r p d P( ) exp 2

3
sin( ) ( , ) ( ( , )) ,

(47)n n n0

3
surf

where ρ ρ θ ρ= θ β−e( , )n
/ n and β = −+v v( / ) 1n n n1

2  (c.f. equations (19), (23), and (25) in ref. 22). The formula 
(47) gives the fraction of type-n cells, but as a function of the radius rather than the age a. Equation (47) also 
accounts for mutant cells that remained on the surface through the factor Psurf. By inserting ρ =​ vna and Psurf =​ c/a 
we easily obtain that

η= −r a a( ) exp( ), (48)n n
2

for

η π β
β

=
+

+ .π β
µ

−e v c p2
3 9

(1 )
(49)n

n

n
n

2

2
3 / 3n

Note that if vn+1 =​ vn and there is no selective advantage for additional mutations, then ηn vanishes, despite 
the fact that neutral mutants should have a non-zero chance of fixing: this model therefore does not apply to the 
stochastic fixation of neutral mutations.

For sufficiently low mutation rates and short times (namely, η a 1n
2 ) we can approximate Eq. (48) as

η≅ − .r a a( ) 1 (50)n n
2

Equation (50) is quadratic in a and leads to an analytically solvable model, see the Supplementary Mathematica 
notebook. Notice that the fraction rn(a) can become negative for η>a 1/ n  which limits the applicability of (50) 
to times shorter than η1/ n . This problem can be partially alleviated by including higher order terms in the Taylor 
expansion of Eq. (48) at the expense of increasing calculation time.

Comparison to simulations.  We compared the results obtained in previous sections with numerical sim-
ulations of two models: our model as defined in section 1 in which growth and mutations are deterministic 
but migration of cells is a stochastic process, and the Eden-like lattice model12 in which all these processes are 
stochastic.

Computer simulations of the original model.  We performed numerical simulations of the surface growth model. 
We treated individual lesions as balls of volume π v a(4 /3)( )n

3, where a was the age of the lesion. New lesions were 
established with rate φ π=a Mv a( ) 4n n

3 2. A new lesion was assigned type n with probability rn(a) =​ exp(−​μa), and 
type n +​ 1 with probability 1 −​ rn(a). We assumed that mutations had the same effects on growth as in Driver 
mutations with decreasing selective advantage: three strong drivers and a small fitness advantage  for each addi-
tional driver after the first three. The expansion speeds vn were thus given by Eqs (42–44).

In each simulation we measured the total volume, the average number of drivers per cell 〈​n〉​, and the propor-
tion of cells with a specific number of mutations n, and then averaged those quantities over 500 such simulations. 
Figure 4 shows an excellent agreement between simulations and the analytic formulae at early times; a small 
deviation can be seen for longer times. This deviation is caused by the analytic calculations neglecting stochastic 
effects and reproducing only “mean” behaviour.

The impact of stochastic fluctuations can be best seen in Fig. 4C which shows the average number of drivers  
〈​n〉​ as a function of time t. If we first calculate the average number of drivers in each replicate simulation, and then 
average over simulations (“Method 1”), the obtained 〈​n〉​ deviates significantly from the analytical curve (purple 
points in Fig. 4C). However, if we calculate volumes of cells of type Vn for each simulation, average this over rep-
licates, and then calculate = ∑n n V V/n n tot  (“Method 2”), we obtain a much better agreement (black points 
in Fig. 4C). The second method corresponds to what we do in the analytic calculations - we average out random-
ness already in Eqs (1 and 2) and use the average volumes to find 〈​n〉​. The discrepancy between Method 1 and the 
analytical calculations is caused by a broad and highly skewed distribution of the times by which lesions with new 
drivers arise in the stochastic simulation. Tumours of different sizes are weighted equally in Method 1, and hence 
the contribution to 〈​n〉​ from tumours in which drivers arose late is significant, even though such tumours are 
much smaller. These tumours will however decrease 〈​n〉​ which is exactly what we see in Fig. 4C.

Comparison to the Eden lattice model.  In the lattice model12, each site is either unoccupied (which may be inter-
preted as being occupied by a normal cell) or occupied by a cancer cell. Each cell carries some number of driver 
mutations n ≥​ 1. The simulation begins with a single cell with one driver mutation situated at the origin. Each 
time step, cells attempt to divide and produce one additional cell at a random lattice site which neighbours their 
own with rate bn, but the attempt is only successful if the random lattice site is empty. During replication cells can 
gain additional drivers with probability pμ per daughter cell. Cells also migrate and create new microlesions with 
rate M. Distinct microlesions are approximately spherical, and do not interact with one another.

In that the resulting cloud of microlesions are asymptotically linearly expanding spheres and migration 
and mutation are both stochastic, the model is qualitatively similar to our mathematical model, but has much 
more complicated microscopic dynamics. Moreover, in contrast to the original model considered in this work, 
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replication and mutation are also stochastic processes. It is thus not obvious a priori that the analytical model 
should be a good approximation to the lattice model.

We first tested whether the fraction of mutated cells 1 −​ rn(a) agrees with Eq. (50) from Section More realistic 
surface fractions rn(a). Figure 5 shows that the average 1 −​ r1(a) obtained from computer simulations is very close 
to η1a2, with η1 fitted to data from simulations of a single ball of cells. The distribution of 1 −​ r1(a) for a given a is 
however very broad. We thus conclude that our analytic model should be able to reproduce the average Vn(t) from 
computer simulations, although stochastic effects may be visible in 〈​n〉​.

We then compared the computer model with the analytical model. We assumed (similarly to Eqs (42–44)) 
only three drivers:

ε
ε

= .
= +
= +
=

…

−b
b b
b b
b b

0 0182day
(1 )
(1 )

(51)

1
1

2 1

3 2

4 3

in the computer Eden-like model and, accordingly, equations (42–44) with v1 ≈​ 0.53b1 [sites/day] in the mathe-
matical model. The proportionality constant 0.53 was obtained by fitting Vtot (Eq. (19) in the analytical model) to 
the simulation data for pμ =​ 0, using G1 as the single fitting parameter (see supplementary Mathematica notebook 
for further details).

We finally simulated the model with pμ >​ 0, see Fig. 6. Since we did not know the exact relationship between 
the mutation rate and the selective advantage in the Eden model, and the corresponding parameters pμ,  in the 
analytical model, we fixed ηn in Eq. (50) by fitting the product cpμ from Eq. (49) to the numerical simulation data 
for the total volume Vtot(t) (Fig. 6A). We then used the fitted parameters to calculate the average number of driv-
ers. Figure 6B shows that the agreement between the two models is quite good even though the analytical model 
has vastly simpler dynamics than the Eden model. The analytical model slightly underestimates the number of 
driver mutations, and we attribute this to a broad distribution of times at which drivers first appear, as in Sec. 
Computer simulations of the original model.

Discussion
In this paper we study a model of cancer based on the following three processes: replication of cancer cells, 
mutations endowing cells with fitness advantage, and migration that causes cells to disperse. The latter process 
causes the tumour to become a conglomerate of microlesions. Cellular dispersal has been recently recognized 
as a method by which tumours28,48 or, more generally, populations of motile cells49 can speed up their growth. 
Our model applies both to local migration as well as long-range invasion involved in metastasis and is one of 
hallmarks of cancer50. In fact, the aforementioned conglomerate of lesions can also include metastatic lesions.

The strength of the model presented in this work lies in the relative ease with which its average behaviour 
can be obtained analytically. Perhaps surprisingly, including dispersal of cells in the model makes it easier to 
solve than most other spatial (non-well mixed) models, because migration effectively “smears out” spatial struc-
ture, bringing the model’s qualitative behaviour closer to well-mixed models. Analytical solubility means that the 
model works for tumours of any size, including large masses that need to be surgically removed, and it can be thus 

Figure 5.  The fraction of mutants 1 − r1 on the surface of a single ball of cells in the Eden lattice model 
(blue points), compared to the quadratic approximation 1 − r1 = η1a2 (solid black line) and 1 − r1 = Caγ 
(dashed black line), with η1, C, γ fitted to the data points. The parameter values for this simulation are 
b1 =​ 0.0182 day−1, M =​ 0, pμ =​ 10−4, and  = .0 2.
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used to model cancer progression in humans. Below we discuss the most important implications of the model. 
These predictions deal with two aspects of cancer: growth laws, and genetic heterogeneity of tumours.

Tumour growth.  In the absence of new driver mutations and assuming sufficient migration, our model pre-
dicts that long-time growth is exponential. This is also true when individual microlesions grow sub-exponentially, 
and even if their growth slows down over time. Given that most tumours contain avascular areas where the lack 
of oxygen and glucose inhibits proliferation51,52, our model provides a plausible explanation how the growth of 
an entire tumour can still be exponential, as often observed experimentally for intermediate-size tumours. This 
phenomenon does not require postulating any previously unknown mechanisms, but it relies on short-range 
migration of cancer cells, a process that certainly occurs in nature and has been actively researched recently53.

Figure 7A shows a region in the space of parameters M, v1 (v1 ≡​ v in this case) for which the model predicts 
the total size to fall between 1010 and 1012 cells after 10 to 20 years - typical sizes of cancerous tumours after that 
time as explained earlier. Generally, the slower individual microlesions grow, the larger the migration probabil-
ity needs to be to achieve the typical size, and the region of “good” parameters is approximately a straight line 
on the log-log plot of M versus v: M ~ v−3. This follows from how these parameters determine the growth rate 
G ~ (Mv3)1/3 and is related to the assumed surface growth of tumour microlesions in 3d space. If growth slows 
down over time (as studied in detail in “Surface growth with decreasing replication rate”), the “good” region 
moves up to higher M and v1 but it also becomes thinner. Assuming that growth occurs in a layer that is about 
10 cell thick51, and that cells replicate with rate b =​ 1 day−1, we can estimate that a selective advantage of the initial 
driver (b −​ d)/b =​ 0.001, …​, 0.018 correspond to v1 ≈​ 10(b −​ d) =​ 0.01, …​, 0.1. From Fig. 7A we can then deduce 
that the required migration rate M ≈​ 10−6–10−3 - a rather modest number given that neoplastic cells can be highly 
motile54,55. Note that the model would not be appropriate for very large selective advantages (~50% has been 
claimed for the first driver in colorectal cancer56) because M would have to be less than 10−10 in which case migra-
tion would be negligible even for macroscopic lesions. Our model is thus applicable to clonal expansions occur-
ring after the initial driver has been acquired, because subsequent driver mutations are likely to be less potent.

If new driver mutations, each with a non-zero fitness advantage, steadily accumulate during tumour 
growth, our model predicts faster-than-exponential growth. While this speed-up does not have to be large and 
may arise only in tumours that are too big to be clinically significant, we are not aware of any evidence that 
super-exponential growth has been observed in human cancer. On the other hand, if only a few drivers can occur, 
growth will be exponential even at large times, which is consistent with the experimental evidence. We shall come 
back to this problem when discussing tumour heterogeneity.

Exponential or faster growth is obviously unrealistic for very large tumours for which spatial constraints 
become important. Many models of tumour growth have been proposed in the past57 that account for the exper-
imentally observed sigmoidal growth curve of many tumours. Many of these models are however phenomeno-
logical and are not based on the microscopic dynamics of tumour cells, in contrast to the model studied here. It 
would be interesting to learn what minimal changes our model would require to reproduce sigmoidal growth.

Genetic heterogeneity of tumours.  Experimental evidence gathered over the last 6 years10,58,59 strongly 
suggest that cancerous masses are genetically heterogeneous, although the exact level of heterogeneity and its 
importance are still under debate. In this work we explored this heterogeneity by calculating the size of clonal sub-
populations of cells with different numbers of driver mutations. We showed that these subpopulations increase 
exponentially in size and that only one driver is initially dominant, until finally becoming replaced by a mixture 
of clones with two, three, and more drivers. The coexistence of multiple clones means that the time to n drivers 
cannot be simply calculated as the sum of the times between consecutive driver mutations.

Figure 6.  Comparison between the mathematical model and the Eden lattice model. Continuous lines are 
analytic solutions of the model, points correspond to computer simulations. (A) Total volume as a function of 
time. (B) The number of drivers versus time. Parameters for the simulations are b1 =​ 0.0182 day−1 and nmax =​ 3: 
for the analytics, rn is given by Eq. (50) with c fitted to the data, vn ≈​ 0.53bn =​ 0.00964 day−1. Both simulations 
and analytic calculations assume M =​ 10−4,  = .0 5, and pμ =​ 10−4.
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We have also shown that if each new driver increases the selective advantage of cancer cells in comparison to 
normal cells, the average number of driver mutations predicted by our model increases exponentially in time for 
all considered scenarios. This means that most drivers would accumulate late during cancer progression. There 
is limited evidence44,59 that this is not true. On the other hand, if only a few first drivers have significant fitness 
advantage, these drivers will accumulate early during growth and the tumour will become much more homoge-
neous. An interesting application of our model would be to predict how strong the selective advantage of new 
drivers can be that would still be consistent with recently postulated neutral evolution in tumours59.

We can also use the model to infer the relationship between the number of drivers and the parameters of the 
model for “typical” tumours. Figure 7B, shows a “good” region in (M, v1) which produce “typical” tumour sizes. 
Points in the region have been colour-coded depending on how many drivers the tumour has for a given pair (M, v1).  
The plot shows that, unless individual microlesions grow slowly enough (small v1), the number of new drivers 
is close to zero (only one, initial driver present). Since v1 is related to the selective advantage of a driver, this is 
consistent with previous research8 showing that significant accumulation of new drivers occurs only for small 
selective advantages.

Our model can be extended in several ways. For example, we have not analysed spatial distribution of drivers. 
While it may not be possible to do this analytically, the model proposed here can easily be simulated on a com-
puter (as demonstrated in Section “Comparison to simulations”) and perhaps extended to include spatial loca-
tions of microlesions. Another possible extension would be to consider that only a fraction of cells in the tumour 
(“cancer stem cells”) can replicate forever, whereas the majority of cells can undergo only a few rounds of replica-
tion, as e.g. in ref. 60. This assumption would affect the growth rate and the rate at which mutations accumulate 
in a single lesion. Finally, since separability of the coupled systems of structured population equations (1 and 2) 
only depends on the validity of the infinite genome approximation, it is likely that our approach is extensible 
to evolution in more complex landscapes than the linear chain of mutations we have studied. In particular, the 
model could be extended to epistatic interactions between drivers and passangers61 or non-equal, random fitness 
increments62.

Methods
General solution with multiple types of microlesions.  We first consider the general case (1, 2). Given 
the initial condition fn(a, 0) =​ δn,1δ(a) i.e. that there is only one lesion of type n =​ 1 and age zero at time t =​ 0, 
Eq. (1) implies that fn(a, t) takes the form

δ= − Θ − + −f a t F t a t a t a( , ) ( ) ( ) ( ), (52)1 1

= − .f a t F t a( , ) ( ) (53)n n

The boundary condition (2) can be rewritten as
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Figure 7.  Regions in the space of parameters M and v1 which give Vtot between 1010 and 1012 when the 
tumour is 10…20 years old. To obtain these plots, 105 points in the space (v1, M) were sampled and the volume 
of the tumour was calculated using the exact formulas. (A) Single-type model (here v1 ≡​ v) with surface growth 
(blue) and slow-down growth (orange). (B,C) Multiple-types surface growth model with additional restriction 
that the average number of drivers is below 6 (including the initial driver n =​ 1). Colours correspond to 
different number of drivers. μ =​ 10−5 in panel B and μ =​ 10−6 in panel C. The region in which multiple drivers 
accumulate in the tumour shifts towards smaller v1/larger M as μ decreases.
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where … s[ ]( )  denotes the Laplace transform of the function in the square brackets. We can now write a formal 
solution of our coupled system of equations for n >​ 1:
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This clearly has simple poles at every Gm where
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which is the Euler-Lotka equation for each lesion type m. In the large-t limit, the number of microlesions of type 
n will thus grow exponentially, and the rate of this exponential growth will be the largest of all dominant roots 
Gj for 1 ≤​ j ≤​ n. In particular, if each new driver increases the product rm(a)φm(a) (as if increasing the replication 
rate of cells in the lesion), the number of microlesions of type n will increase exponentially with rate Gn, where Gn 
is the largest root of Eq. (58).

Surface growth with many drivers.  The required Laplace transforms read

φ
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From Eqs (58) and (59) we then find the exponential growth rate of the number of microlesions of type n 
(Eq. (33)).

Number of lesions of type n.  Upon inserting Eqs (59 and 60) into Eq. (57) we obtain an expression for the Laplace 
transform F s( )n . This expression can be analytically inverted to find Fn(z) for n =​ 1, 2, 3, …​, although the formulas 
for even the lowest n are quite complicated (SI Mathematica notebook). Nevertheless, all Fn(z) take the form
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−
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where Gn,i is the i-th root of Eq. (58) for a given n, and ai, bi depend on v1, M, μ. The number of microlesions of 
type n is thus
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Similarly, the total volume (number of cells) of type n is


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Asymptotic number of drivers.  Let us consider the behaviour of F s( )n  around s =​ Gn. From Eq. (57) we obtain 
that ≅ −F s A s G( ) /( )n n n  where
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from which we obtain that ≅F z A G z( ) exp( )n n n . Let us now introduce the generating function

∫∑= −
∞
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(65)n
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from which the average number of drivers can be calculated as:
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In the biologically-relevant limit, the mutation rate μ is considerably less than the net growth rate G1. Taking 
the limit μ/G1 →​ 0 we obtain
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This enables us to write

∫∑

∑

∑

π

µ

≅

≅ ⋅

≅ ⋅










−

∏ −
.

=

∞ ∞ −

=

∞
+

=

∞
+

=
−

Z t q e A e v n a da

e A
n

e
G

e n
n n m

( , ) 4
3

const

const 3 ( 1)!
3 [ ] (68)

n

qn
n

G t a

n

qn G nt n

G t

n

q G t
n

n
m
n

1 0

( )
0
3 3 3

1

1 1

3

1
1 3 3

n

1

1 1

In the limit of large n we can approximate the complicated numerical factor in the above equation by
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From Eq. (68) we then obtain that
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and finally, using Eq. (66), we obtain Eq. (35). We can also use Eq. (70) to calculate the asymptotic volume of the 
tumour,
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which shows the volume increases faster than exponentially over time due to the accumulation of driver 
mutations.

Slow-down surface growth.  The Laplace-transformed distribution F s( )n  now reads
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so that the exponential growth rate of the population of microlesions of type n is given by Eq. (36).
The coefficients An, equivalent of Eq. (64), are
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Following the same procedure as in the earlier section “Surface growth”, we can approximate An in the limit 
μ/G1 →​ 0 as
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This gives
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from which we can deduce, using Eq. (66), that the average number of drivers is given by Eq. (37).

Volumetric growth.  Equation (57) implies that
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F s( )n  has poles at every s =​ kb for 1 ≤​ k ≤​ n and s =​ kb −​ M −​ μ for every 1 ≤​ k ≤​ n −​ 1. Consequently, Fn(z) can 
be expressed exactly as
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which leads to the following expression for the total volume of cells of type n:
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The above formulas are exact but quite complex. To obtain simpler expressions for the total volume and the 
number of drivers we notice that in real tumours b M, i.e., the replication rate is much larger than the migra-
tion rate, otherwise cells would only move around without replicating. The rate μ at which drivers occur is also 
much smaller8 than b. Consequently, Fn(z) is dominated by the term proportional to An,n at sufficiently long times 
( bt 1). We can also approximate An,n as
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and the function Z(t, q) may be written as
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where I0(x) is a modified Bessel function of the first kind. This allows us to write immediately that
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which is Eq. (41).

Numerical integration of equations (1 and 2).  As a check-up of our analytic calculations, the system 
of equations (1) with boundary conditions (2) were numerically integrated as follows. Time was discretized in 
steps of length Δ​t days. We usually set Δ​t to 1 day, and checked that making Δ​t smaller did not visibly affect 
our results. The age distribution fn(a, t) was discretized as fn,i,t, where i =​ a/Δ​t. The array of fn,i,t was truncated 
at i =​ tmax/Δ​t, where tmax was set to 15 years. We also fixed the maximal possible number of drivers to nmax =​ 32.

We then discretized Eqs (1 and 2) as

= >+∆ −f f ifor 0, (86)n i t t n i t, , , 1,
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where the first equation corresponds to Eq. (1) shifting the distribution forward in time, and the remaining two 
equations account for the boundary condition (2). The volume of all microlesions of a given type does not enter 
into the dynamics explicitly, as is apparent from the form of (2), but it appears in the formulas for total tumour 
volume and mean number of drivers 〈​n(t)〉​:
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The computer program outputted Vtot(t) and 〈​n(t)〉​ every 10Δ​t =​ 10 days.
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