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The term adjuvant is predominantly used when discussing vaccines, but only mimics how nor-
mally infections activate the immune system to secure that an innate immune reaction induces 
dendritic cells (DCs) to become optimally stimulatory for T  cells. The interaction with the 
pathogen determines the different signals that are needed for a DC to become fully operated and 
give the proper polarizing factors to the differentiating T cell. Optimal co-stimulation requires 
a signal that is provided by upregulated receptors (CD80 and CD86) on DCs, and the T cell 
polarizing signal is mediated by various soluble or membrane-bound factors, like IL-12 for 
Th1 cell polarization. These signals are provided by ligation of pattern recognition receptors 
(PRRs), such as toll-like receptors (TLRs) and C-type lectins that can sense infection through 
recognition of pathogen-associated molecular patterns (PAMPs) or various inflammatory tissue 
factors (1).

Resting macrophages have low major histocompatibility complex class II and co-stimulatory 
molecules expressed on their surface. Macrophages can take up microorganisms via receptors such 
as scavenger receptors, complement receptors, and C-type lectins for degradation in phagosomes 
resulting in peptides for presentation. Macrophages also continuously scavenge dead or dying 
cells. These are a rich source of self-antigens, so it is very important that they do not activate naïve 
T cells when there is no ongoing microbial infection.

In Crohn’s disease (CD), a chronic inflammatory bowel disease (IBD), multiple factors have 
been described that contribute to disease pathogenesis (2). The exact etiology of IBDs still remains 
unknown, although it is thought that the diseases result from an excessive immune response directed 
against microbial or environmentally derived antigens that can be triggered by the disruption of 
the intestinal epithelial barrier integrity. The resulting inflammation is a very general reaction;  
a specific antigen mediating the inflammation has never been identified. The response is induced 
by the luminal microbiota, where microbial antigens as adjuvants stimulate the immune reaction. 
This results in activated innate (macrophages and neutrophils) and adaptive (Th1/Th17 and B 
lymphocytes) responses (3). In this respect, CD includes many characteristics of an immunologic 
adjuvant reaction.

Most proteins are poor immunogens when injected alone. Various substances that induce 
co-stimulatory, adjuvant, activity have been added in vaccines for a long time to induce appropri-
ate antibody responses. Vaccines containing bacterial products, necessary for T cell responses,  
are very potent and therefore use in humans is limited. In recent years, the development of adju-
vants that induce a strong cellular response has shifted from an empirical to a rational process 
based on knowledge of molecular mechanisms. A major breakthrough was the identification 
of the C-type lectin Mincle (macrophage-inducible C-type lectin) as one of the main receptors 
involved (4–6).

In this opinion article, I provide clues that the cellular adjuvant reaction that characterizes the 
pathophysiology of CD might be mediated by signaling via Mincle.
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MinCLE

Mincle (also called clec4e or clecsf9) was first described as a 
downstream target of NF-IL6 (also named C/EBP-β), a transcrip-
tion factor, in macrophages (7). They demonstrate that Mincle 
mRNA was strongly induced in response to several inflamma-
tory stimuli, such as LPS, TNF-α, IL-6, and IFN-γ in murine 
macrophages. A few years later, Mincle was grouped together 
with macrophage C-type lectin (MCL), DC immunoreceptor, 
and Dectin-2 (DC-associated lectin-2) as type II-related C-type 
lectins (8). These genes were mapped in an arthritis susceptibil-
ity locus in a rat model and the first indication for an immune 
activating function of Mincle was proposed (9). Mincle serves as 
a receptor for various bacteria, fungi, and other molecules (listed 
in Figure 1A). Mincle signals via association with the FcRγ chain 
that contains an activating receptor coupled with an immuno-
receptor tyrosine-based activation motif, ultimately resulting in 
activation of NF-κB (10).

The first suggestion that Mincle is a receptor for a cell wall 
component of Mycobacterium tuberculosis, the glycolipid 
trehalose-6,6′-dimycolate (TDM, also named cord factor), was 
made when it appeared to be involved in a characteristic process 
of mycobacterial infection: the formation of granulomas (4). 
Mycobacteria can persist in normal tissues (39); recruitment 
of Mincle by TDM coupled to immunoglobulin G-opsonized 
beads interferes with phagosome maturation (40). The activity of 
Mincle is mediated by a ligand binding site that is conserved in a 
wide range of mammalian species (41). The Th1/Th17 adjuvan-
ticity of TDM and its synthetic analog trehalose-6,6′-dibehenate 
(TDB) including its molecular mechanism via Syk and Card9 was 
confirmed in several studies (5, 6, 42).

Mincle protein is barely detectable on resting cells (4, 42). In 
experiments in various tissues in rhesus macaques, the frequen-
cies of CD14+ gated cells that express Mincle in colon and ileum 
were low compared with bone marrow, liver, spleen, and lymph 
nodes (43). Induction of Mincle expression was shown to be 
induced by several pathogenic and non-pathogenic stimuli. 
Mincle was shown to be induced by TDM in the absence of 
Mincle protein expression via MCL (also called dectin-3) that 
was constitutively expressed in myeloid cells (44–46) through 
protein–protein interaction via its stalk region (47). C/EBP-β is 
the central hub in Mincle expression and connects TLR4 signals 
to TDB/TDM responsiveness through MyD88-dependent 
upregulation of Mincle (32, 48).

MinCLE AnD CD

In literature, there is no direct link that connects Mincle to CD. 
There is, however, already a lot of information that links Mincle 
to other diseases. Most of these are also inflammatory-mediated 
diseases, such as rheumatoid arthritis (49, 50), allergic skin 
inflammation (28) and post-ischemic inflammation (51, 52), and 
other experimental inflammatory models (53–58).

Mincle has been shown to regulate numerous cellular responses 
including phagocytosis, endocytosis, respiratory burst, Nlrp3 
inflammasome activation, NET formation, pro-inflammatory 
cytokine, and chemokine production and promotes Th1/Th17 

responses [recently reviewed in Ref. (59, 60)]. These are all 
inflammatory reactions that have been described to play a role 
in CD. In Figure  1A, the different factors that are involved in 
Mincle signaling and also associated with CD are highlighted and 
discussed beneath.

As indicated, Mincle can act as a receptor for several dif-
ferent pathogens. The question is if these microorganisms 
have also been associated with CD. For Mycobacterium avium 
subspecies paratuberculosis, this is well known, it can be isolated 
from intestinal tissues and blood samples from CD patients at 
higher frequency than healthy persons (61). Treatment with 
antimycobacterial regimens in clinical trials achieved reversal 
of CD symptoms (62, 63). Also other bacteria linked to Mincle 
have been associated with CD: Listeria monocytogenes, Klebsiella 
pneumonia, Streptococcus pneumonia, Pneumocystis pneumonia, 
and Escherichia coli (64–70). A dysfunction in both a specialized 
form of autophagy, xenophagy, and HIF-1α was demonstrated 
to be involved in adherent invasive E. coli infections in CD (71). 
HIF-1α-induced inducible nitric oxide synthase produces nitric 
oxide (NO) that was shown to be upregulated in the inflamed 
mucosa in response to pro-inflammatory cytokines (72, 73).

In around 50% of CD patients’ granulomas can be detected 
(74). Granulomas are linked to mycobacterium, and Mincle has 
been shown to be important (75). Several cytokines, including 
IL-1 and TNF-α, have been shown to promote the formation of 
granulomas (76). These cytokines can be secreted upon stimula-
tion via Mincle after stimulation with TDM-mediated granuloma 
formation (4).

Toward fungal glycans, it has been demonstrated that human 
peripheral blood mononuclear cells (PBMCs) from CD patients 
show a hyperresponsiveness with a central role for Syk and Src 
signaling (77). PBMCs from patients with CD produce more 
IFN-γ and IL-17 upon exposure to Candida (78).

A well-known complication of CD is intestinal fibrosis. 
Recently, it was demonstrated that this was mediated via a PKCδ-
mediated redox-dependent signaling process by accumulated 
advanced oxidation protein products (79).

CARD9 has been an autoimmune disease-associated gene, and 
differential expression of this gene might be a functional mecha-
nism underlying observed GWAS signals (80). It coordinates 
Th17- and IL-22-producing cells in intestinal immune responses 
after epithelial injury in mice (81). Aberrant regulation of CARD9, 
either through genetic mutation (e.g., polymorphism) or activa-
tion by environmental triggers via Mincle, could contribute to 
pathological immune activation.

Crohn’s disease patients treated with TNF blockers dem-
onstrated an increased risk of opportunistic infections such as 
mycosis, aspergillosis, pneumocystosis, or cryptococcosis (82) 
and also Pityrosporum (Malassezia) folliculitis (83), and cutane-
ous lesions of Leishmaniasis (84).

About 50% of the world’s population carry the Helicobacter 
pylori bacterium. In a meta-analysis, a negative association was 
found between H. pylori infection and CD. They conclude that 
H. pylori could exert an immunomodulatory effect in IBD (85) 
maybe by Mincle-mediated anti-inflammatory signaling (18).

Finally, danger/damage-associated molecular pattern 
(DAMP)-derived triggers from dead cells may contribute via 
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FiGURE 1 | (A) Overview of the ligands of Mincle (top panel) and the signaling pathways described in the current literature. Factors that were also documented in 
literature related to Crohn’s disease are depicted in bold. References of the different ligands not mentioned in the text are for bacterial pathogen species (11–13), 
Leishmania (14), mycobacteria, and corynebacteria (15, 16), Streptococcus pneumonia (17), Helicobacter pylori (18), Malassezia (19, 20), Aspergillus fumigatus (21), 
Candida albicans (22, 23), SAP130 (10, 24, 25), β-glucosylceramide (26), cholesterol crystals (27), and cholesterol sulfate (28). References for the various signaling 
molecules not mentioned in the text are for TLR4/MyD88 (29), PKC (30), vav proteins (31), HIF1α (32) and Nlrp3 (33, 34). (B) Resting dendritic cells (DCs) and 
macrophages also do not express Mincle, but they do express macrophage C-type lectin (MCL). Different activating signals induce Mincle expression. Two different 
pathways induce repair or chronic inflammation as indicated. References for activation and chronic inflammation are given in the text, for the resolution: Th2 skewing 
via IL-4 (35, 36), IL-10 (37), and NO (38).

3

te Velde Mincle in Crohn’s Disease Adjuvant Reaction

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1304

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

te Velde Mincle in Crohn’s Disease Adjuvant Reaction

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1304

Mincle to excessive and sustained inflammation in CD patients 
with active disease (86).

Taken together, numerous Mincle-related ligands and signal-
ing molecules can be linked to CD.

HOW COULD MinCLE MEDiATE  
CD inFLAMMATiOn?

The efficacy by which Mincle handles microbes, microbial 
products, and damaged cells directs whether the outcome 
will be with suppression or with excess inflammation (see 
Figure 1B). These pathways can be polarized, but since CD is 
a chronic relapsing disease the activating signals and wound 
healing processes might also be present more or less in parallel. 
Mincle functions as a receptor for different bacteria and fungi, 
leading to proper immune responses that functions to eradicate 
pathogens (38, 82). Early response mediated via TLRs and MCL 
expressed on macrophages by a primary infectious stimulus 
(PAMP) results in the upregulation of Mincle expression. This 
leads to a sustained signaling process via the activating motif 
of the FcRγ chain and the production of pro-inflammatory 
cytokines and finally a non-specific activation of Th1/Th17 
response. In an appropriate immune response, the end product 
is the eradication of the infectious agent and resolution of the 
inflammation. Mincle stimulation can help by inducing anti-
inflammatory genes and genes involved in wound healing. In 
case of a sustained infection when pathogenic ligands are still 
present or because of tissue damage resulting in the presence of 
DAMPs or self-associated molecular patterns (SAMPs) continu-
ous Mincle signaling remains. TLR- and Mincle co-dependent 
genes are enriched among genes required to handle persisting 
D/M/SAMP signals (38).

There are several pathways that counter-regulate Mincle on 
macrophages and DCs. Among them is the observed effect of 
IL-4 on Mincle expression of monocyte-derived DCs (87). This 
is, however, an artificial system, because these cells co-express 
surface markers (CD83 and DC-SIGN) that are not found to on 
the same cells in the in vivo situation (88).

In CD, there is evidence that a dysregulated macrophage func-
tion and a consecutive defective acute inflammatory response 
result in the impaired clearance of commensal bacteria. The 
persistence of the bacteria leads to a chronic granulomatous 
inflammation. Pathogenic infections may act as triggers or 

contributing factors for the chronic inflammation (2, 89) that is 
mediated by other stimuli of various nature, involving microbial-
associated molecular patterns, DAMPs, or SAMPs, all described 
to be ligands of Mincle.

It will be of potential interest to study the direct role of 
Mincle as a predominant activating C-type lectin receptor via 
a Syk/Card9-dependent signaling mechanism in CD. Genetic 
susceptibility, barrier defects, or bacterial handling, dysbiosis or 
infection, sustained innate immunity, and defective regulation 
are all layers of a multi-hit model of intestinal inflammation 
(2). They are combined with different homeostatic modules 
such as autophagy, ER stress, antimicrobial proteins, the micro-
biota, PRRs, cytokine modules, and regulatory T cells. Defective 
modules may predispose people to the development of chronic 
intestinal inflammation. Determination of the role of Mincle in 
these layers and modules will reveal if Mincle is an important 
receptor of mediator of the chronic nature of CD, which could 
be relevant for therapeutic intervention. Targeting Syk has been 
suggested as a treatment for allergic and autoimmune disorders 
(90). In rheumatoid arthritis, inhibition of Syk has been studied 
as a treatment option (91). Although there is no direct evidence 
on the role of Mincle in CD, the data on the expression and role 
of Mincle in health and disease reveal numerous potential start-
ing points. The synergy and antagonisms of the various PRRs, 
whether these are C-type lectins or TLRs, and their differential 
regulation on cells of the innate immune system, macrophages, 
and DCs is an important topic to understand the endogenous 
adjuvant reaction that they might induce. There are probably 
multiple mechanisms and interactions that result in the observed 
pathogenic immune reaction that is the fundament of CD. Here, 
the surprising overlap between features of CD and the roles that 
Mincle plays in a (chronic) immune reaction might indicate that 
CD could be an adjuvant reaction induced by Mincle triggering.
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