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ABSTRACT: Previous research showed that resveratrol (trans-3,4’,5-trihydroxystilbene) and pinostilbene (trans-3-meth-

oxy-4’,5-dihydroxystilbene) were able to inhibit tyrosinase directly; however, anti-melanogenic effects of pterostilbene 

(trans-3,5-dimethoxy-4’-hydroxystilbene) and resveratrol trimethyl ether (RTE) have not been compared. To investigate 

the hypopigmentation effects of pterostilbene and RTE, melanin contents and intracellular tyrosinase activity were de-

termined by western blot analysis. Firstly, pterostilbene showed the inhibitory effects on α-melanocyte stimulating hor-

mone (MSH)-induced melanin synthesis stronger than RTE, resveratrol, and arbutin. Pterostilbene inhibited melanin bio-

synthesis in a dose-dependent manner in α-MSH-stimulated B16/F10 murine melanoma cells. Specifically, melanin con-

tent and intracellular tyrosinase activity were inhibited by 63% and 58%, respectively, in response to treatment with 10 

μM of pterostilbene. The results of western blot analysis indicated that pterostilbene induced downregulation of tyrosi-

nase protein expression and suppression of α-MSH-stimulated melan-A protein expression stronger than RTE or resvera-

trol. Based on these results, our study suggests that pterostilbene can induce hypopigmentation effects more effectively 

than resveratrol and RTE, and it functions via downregulation of protein expression associated with hyperpigmentation 

in α-MSH-triggered B16/F10 murine melanoma cells.
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INTRODUCTION

Acquired hyperpigmentation disorder is caused by exter-

nal stimuli, including ultraviolet ray (UVR)-induced pig-

mentation, postinflammatory pigmentation, chemical/ 

drug-induced pigmentation, and foreign material deposi-

tion (1). The anti-melanogenic process against hyperpig-

mentation can be accomplished by suppressing the tran-

scription and activity of tyrosinase, tyrosinase related pro-

tein (TRP)-1, TRP-2, and/or sustained extracellular sig-

nal-regulated kinase (ERK) 1/2 by inhibiting related sig-

naling pathways. Tyrosinase and TRP-1 are indispensa-

ble enzymes involved in eumelanogenesis. Hypopigmen-

tation is caused by inhibition of the uptake and distrib-

ution of melanosomes in keratinocytes, which takes place 

through induction of melanin and melanosome degrada-

tion or expeditious turnover of pigmented keratinocytes. 

Most hypopigmentation agents act specifically to impede 

the function of tyrosinase via several mechanisms. For in-

stance, hydroquinone and arbutin work as competitive 

inhibitors, C2-ceramide and tretionin inhibit through 

blocking transcription, and linoleic acid and α-linolenic 

acid act by degrading tyrosinase (2). Additionally, the ex-

tracts of several plants and algae have been reported to 

suppress α-melanocyte stimulating hormone (MSH)-stim-

ulated melanogenesis through sustained ERK 1/2 activa-

tion (3-6). There have been several investigations on an-

ti-melanogenesis of methylated compounds, such as dio-

sgenin, α-tocopheryl ferulic acid, and 2,5-dimethyl-4-hy-

droxy-3(2H)-furanone (7-9). Moreover, other reports 

show that melanogenesis is stimulated by methoxylated 

compounds, such as nobiletin, tangeretin, sinensetin, fer-

ulic acid, and scoparone (10-15).

Resveratrol (trans-3,4’,5-trihydroxystilbene), a non-fla-

vonoid polyphenol in the stilbene group, has been re-

ported in various food sources, such as grapes, berries, 

red wine, chocolate, and peanuts (16-18). The di- and tri-

methylated anaolgues of resveratol, pterostilbene (trans- 
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3,5-dimethoxy-4’-hydroxystilbene) and resveratrol tri-

methyl ether (RTE; trans-3,4',5-trimethoxystilbene) are 

stilbenoids shown to have higher bioavailability than res-

veratrol which are found in grapes, blueberries and heart-

wood (Pterocarpus marsupium) (19). Pterostilbene has been 

shown to exert anti-inflammatory, anti-proliferative, and 

anti-aging effects (20-23) and RTE showed anti-prolif-

erative and/or apoptosis-inductive effects in various can-

cer cells with potency relatively higher than resveratrol 

(24-30). Our study shows that the differential hypopig-

mentation effects of resveratrol and its two methyl ana-

logues can be associated with expression of melan-A and 

tyrosinase protein in α-MSH-triggered B16/F10 melano-

ma cells. 

MATERIALS AND METHODS

Materials

All solvents were of analytical grade and used without 

further purification. α-MSH, arbutin, pterostilbene, res-

veratrol, RTE, and 3,4-dihydroxy-L-phenylalanine (L- 

DOPA) were purchased from Sigma-Aldrich Co. (St. Lou-

is, MO, USA). Arbutin was dissolved in 50% ethanol at 

a concentration of 360 mM and pterostilbene, resvera-

trol, and RTE were dissolved in dimethyl sulfoxide at a 

concentration of 10 mM. These compounds were used 

for an in vitro assay. 

Antibodies

Antibodies against tyrosinase (M-19, sc-7834-R), melan- 

A (A103, sc-20032) were purchased from Santa Cruz Bio-

tech. (Santa Cruz, CA, USA). Antibody against β-actin 

(A2228-0.1) was obtained from Sigma-Aldrich Co..

Cell culture

B16/F10 murine melanoma cells were maintained in 

Dulbecco’s modified Eagle’s medium (Gibco BRL, Grand 

Island, NY, USA) supplemented with 10% fetal bovine 

serum (Gibco BRL), 1% penicillin-streptomycin (10,000 

U/mL and 10,000 μg/mL, Gibco BRL). Cells were main-

tained in a humid atmosphere of 5% CO2 at 37
oC. 

Assessment of cytotoxicity 

Cytotoxicity was determined by a lactate dehydrogenase 

(LDH) release assay. The cytotoxic effects of RTE or ar-

butin in the presence of α-MSH were estimated by the 

measurement of LDH in culture media. Leakage of LDH 

is a well-known marker of damage to the cellular mem-

brane. The cytotoxicity was expressed as the percentage 

of LDH released (LDH release in media of RTE or arbu-

tin treatment in the presence of α-MSH/maximal LDH 

release×100). Maximal LDH release was measured after 

lysis of cells with 0.5% Triton X-100. 

Determination of intracellular melanin contents and tyro-

sinase activity

The cells were seeded into 6 well plates at a density of 

1×105 cells/well. The cells were then treated with or with-

out α-MSH and test compounds at 37oC for 2 days. The 

cells were then washed with 1× phosphate buffered sal-

ine and then collected in 1× trypsin-ethylenediaminetet-

raacetic acid (EDTA), after which they were lysed with 

0.2 mM phenylmethylsulfonyl fluoride (PMSF) and 1% 

Triton X-100 in 67 mM sodium phosphate buffer (pH 

6.8). The samples were sonicated and centrifuged at 

12,000 rpm for 15 min at 4oC and the supernatants were 

transfered into new eppendorf tube to measure intracel-

lular tyrosinase activity, and the remaining pellets were 

used to determine melanin. To extract the melanin from 

the pellets, 1 N sodium hydroxide (NaOH) was added to 

the pellets, which was subsequently incubated at 70oC 

for 30 min. The absorbance was then measured at 405 

nm and the corresponding total protein was determined 

and used to normalize the absorbance. The tyrosinase 

activity was determined based on the amount of DOPA 

chrome produced in response to the use of various sub-

strates, including L-tyrosine and L-DOPA. To assess this, 

100 μL of supernatants and 100 μL of 12.5 mM L-DOPA 

were then mixed and incubated at 37oC for 30 min. The 

absorbance was then measured at 475 nm and the corre-

sponding total protein was determined and used to nor-

malize the absorbance. 

Western blot analysis

Cells were collected and lysed in 1× radio immunopreci-

pitation assay (RIPA) buffer [10× RIPA lysis buffer (Up-

state, Boston, MA, USA), 0.1 mM PMSF, 0.1 M Na3VO4, 

0.5 M NaF, 5 mg/mL aportinin, and 5 mg/mL leupep-

tin]. Thirty micrograms of protein per lane were then se-

parated by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and subsequently blotted onto nitrocel-

lulose membranes. The nitrocellulose membranes were 

then blocked with 5% dried milk in tris-buffered saline 

containing 0.05% Tween 20. Next, the blots were incu-

bated with primary antibodies at a dilution of 1:1,000 and 

then further incubated with horseradish peroxidase-con-

jugated secondary antibody. The bound antibodies were 

then detected using an enhanced chemiluminescence kit 

(Amersham Cat. No. RPN2106V2, Amersham Life Sci-

ence, Arlington Heights, IL, USA). 

Statistical analysis

All experiments were performed in triplicate. Treatment 

effects were analyzed using the Student's t-test. P<0.05 

was considered to be statistically significant.



Pterostilbene as a Depigmentation Inducer 157

Fig. 1. Structure and activity relationships for resveratrol and 
its two methyl analogs. Chemical structures of resveratrol and 
its two methyl analogs, pterostilbene and resveratrol trimethyl 
ether (RTE) (A). Effects of resveratrol and its two methyl ana-
logs on cytotoxicity in α-melanocyte stimulating hormone (MSH)-
stimulated B16/F10 melanoma cells. Cytotoxicity was deter-
mined by lactate dehydrogenase (LDH) release assay (B). Ef-
fects of resveratrol and its two methyl analogs on melanin sysn-
thesis in α-MSH-stimulated B16/F10 melanoma cells (C). Cells 
were pre-incubated for 24 h, and then stimulated with α-MSH 
(50 nM) in the presence of pterostilbene, RTE, resveratrol (10 
μM), or arbutin (360 μM). Data are presented as means±SD of 
three independent experiments. **P<0.01 vs α-MSH-treated 
cells.

Fig. 2. Effects of pterostilbene on melanin sysnthesis (A) and intracellular tyrosinase activity (B) in α-melanocyte stimulating hor-
mone (MSH)-stimulated B16/F10 melanoma cells. Cells were pre-incubated for 24 h, and then stimulated with α-MSH (50 nM) 
in the presence of pterostilbene (2.5, 5, and 10 μM). Data are presented as mean±SD of three independent experiments. *P<0.05
and **P<0.01 vs α-MSH-treated cells.

RESULTS AND DISCUSSION

Previous research reported that the anti-melanogenic 

mechanism of oxyresveratrol suppresses tyrosinase in a 

noncompetitive manner with L-tyrosine as the substrate 

(31). In addition, resveratrol and pinostilbene (trans-3- 

methoxy-4’,5-dihydroxystilbene) have been shown to 

exert inhibitory effects against tyrosinase, while pterostil-

bene and RTE did not suppress tyrosinase directly (31). 

To investigate the mechanism of action on hypopigmen-

ting effects of pterostilbene and RTE in α-MSH-stimulated 

B16/F10 melanoma, cells were incubated with pterostil-

bene, RTE, resveratrol, or arbutin in the presence of α- 

MSH at indicated concentrations for 48 h (Fig. 1A). Ar-

butin was used as a reference. Treatment with 10 μM 

pterostibene or resveratrol for 48 h did not affect cyto-

toxicity in α-MSH-stimulated B16/F10 melanoma cells; 

however, treatment with 10 μM of RTE for 48 h induced 

cytotoxicity (Fig. 1B). Pterostilbene showed a greater 

suppressive effect on melanin biosynthesis than RTE, res-

veratrol, or arbutin (Fig. 1C), and these effects occurred 

in a dose-dependent manner, with up to 63% of the 

amount of melanin (Fig. 2A) and 58% of the tyrosinase 

activity being inhibited in response to treatment with 10 

μM of pterostilbene (Fig. 2B). These results show that 

pterostilbene suppressed melanin synthesis via inhibition 

of nonspecific tyrosinase, meanwhile, resveratrol and ar-

butin suppressed melanin synthesis in a tyrosinase-spe-

cific manner. 

To examine the relationship between proteins associa-
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Fig. 3. Effects of resveratrol and its two methyl analogs on mel-
anogenic proteins, tyrosinase and melan-A protein levels in 
α-melanocyte stimulating hormone (MSH)-stimulated B16/F10 
melanoma cells. Cells were pre-incubated for 24 h, and then 
stimulated with α-MSH (50 nM) in the presence of pterostilbene 
(2.5, 5, and 10 μM), RTE (10 μM), resveratrol (10 μM), or arbutin 
(360 μM) for 5 h and 48 h. The protein levels of tyrosinanse, 
melan-A, and β-actin were determined by Western blotting. 
β-Actin was used as a loading control.

ted with melanogenesis in α-MSH-induced B16/F10 mu-

rine melanoma, the cells were treated with resveratrol, 

pterostilbene or RTE in the presence of α-MSH for 5 h 

or 48 h. The total protein was then isolated and sub-

jected to Western blot analysis. The examination of the 

protein expression revealed that pterostilbene suppres-

sed tyrosinase protein expression, which is associated 

with eumelanogenesis, and downregulated melan-A pro-

tein expression, which is associated with α-MSH-induced 

differentiation of B16/F10 murine melanoma cells (Fig. 

3). Previous studies have reported that protein melan-A 

also known as melanoma antigen recognized by T cells 1 

regulated melanosomal matrix protein Pmel17 process-

ing and the maturation of melanosomes (32). More-

over, recent reports have shown that melanin biosynthe-

sis is induced by methoxylated compounds, such as no-

biletin, tangenretin, sinensetin, 4’-O-methylfisetin, sco-

parone, ferulic acid, while suppressed by diosgenin, α- 

tocopheryl ferulate, and 2,5-dimethyl-4-hydroxy-3(2H)- 

furanone (8-15,33,34). In the case of scoparone and fe-

rulic acid, addition of methoxy groups to original com-

pounds (coumarin and p-coumaric acid, respectively) is 

responsible for stimulating melanogenesis in B16 mela-

noma cells (13,15).

Taken together, this study suggests that pterostilbene 

can ameliorate acquired hyperpigmentation disorders 

without cytotoxic effects, and functions via downregula-

tion of tyrosinase protein expression and inhibition of 

melan-A protein expression in α-MSH-triggered B16/F10 

melanoma cells. Furthermore, this research also suggests 

that pterostilbene can regulate α-MSH-induced melano-

genic gene expression more efficiently than resveratrol 

and RTE. 
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