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Is the kinetome conserved?
Bernhard O Palsson* & James T Yurkovich**

Computational biologists have labored for
decades to produce kinetic models to
mechanistically explain complex metabolic
phenomena. The estimation of numerical
values for the large number of kinetic
parameters required for constructing
large-scale models has been a major chal-
lenge. This collection of kinetic constants
has recently been termed the kinetome
(Nilsson et al, 2017). In this Commentary,
we discuss the recent advances in the field
that suggest that the kinetome may be
more conserved than expected. A
conserved kinetome will accelerate the
development of future kinetic models of
integrated cellular functions and expand
their scope and usability in many fields of
biology and biomedicine.
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Genome-scale models

O nce whole-genome sequences

became available in the mid-1990s,

the reconstruction of metabolic

networks reached the genome-scale. Over

the past two decades, genome-scale meta-

bolic models (GEMs) built from these

network reconstructions have contributed to

our understanding of systems biology of

metabolism, with applications ranging from

metabolic engineering to bacterial evolution

to infectious disease. Genetic variation can

now be incorporated into genome-scale

models of metabolism, transcription, transla-

tion, proteostasis, and cellular stresses.

GEMs are often simulated using flux balance

analysis that requires a minimal number of

parameters estimated from empirical data.

Kinetic models, on the other hand, have

traditionally been limited by the need for

extensive parameterization. If the kinetome

can be estimated from high-throughput data,

then we can develop large-scale—even

genome-scale—kinetic models. Since GEMs

have a direct genetic basis, a new generation

of kinetic models can be directly rooted in

protein structures and sequence variation. The

kinetome of such models would be large,

requiring the estimation of many unmeasured

parameters. However, if segments of the kine-

tome are conserved, then parameterization

will be simplified. Reference kinetomes can be

estimated for well-characterized strains and

applied to less well-known strains.

Estimating the kinetome using
omic data

As omic technologies advanced, it was recog-

nized that multi-omic data combined with

GEMs could lead to the estimation of a large

set of enzyme turnover rates, the most impor-

tant kinetic parameters in the kinetome.

Indeed, in vivo turnover rates of bacterial

enzymes have been characterized using

ratios of proteomic and fluxomic data

(Davidi et al, 2016). This landmark study

showed that in vitro enzyme assays concur

with maximal in vivo rates for many

enzymes, and that in vivo estimated param-

eters could be used to fill in some of the

scarcity in the parameterization of large-

scale kinetic models (Fig 1A).

Enzyme turnover rates are
largely conserved

A few recent studies have suggested that the

kinetome is more conserved than previously

thought. The abundance of available whole-

genome sequences allows for large-scale

allelic comparison across metabolic genes,

and the initial analysis of such data shows

that most metabolic genes have a low amino

acid substitution rate (Norsigian et al, 2020)

(Fig 1B). Thus, only a small number of

metabolic genes seem to face selection pres-

sures, suggesting that their estimated

enzyme turnover rates may have broad

applicability.

This potential broad applicability of esti-

mated turnover rates has been further

supported by two recent adaptive laboratory

evolution (ALE) studies. ALE allows for the

generation of strains that have adapted to

high growth rates following the deletion of

genes that encode specific metabolic

enzymes. This approach results in the gener-

ation of “metabolic specialist” strains whose

pathway usage has been rewired by ALE

following the loss of a key metabolic

enzyme. A large study resulted in an esti-

mation of turnover rates for the same

enzyme in multiple metabolic specialists

(Fig 1C). These estimates were consistent

among the specialists and with the wild

type. Consistently, only relatively few struc-

tural mutations were identified, but regula-

tory mechanisms altered the abundance of

metabolic enzymes, resulting in the

required alteration of metabolic fluxes

(McCloskey et al, 2018).

A second ALE study swapped glycolytic

genes in E. coli with orthogenes from a

diverse range of other species, from hyper-

thermophilic archaea to humans (Sandberg

et al, 2020). Following ALE, many E. coli

lineages adapted to use the orthogenes to

replace their own. Adaptive mutations were

rarely found in orthogene coding sequences,

with the majority of mutations falling within

regulatory regions that altered enzyme

expression levels. These two ALE studies

suggest that optimal flux levels in vivo are

more often impacted by the adjustment of

an enzyme’s abundance rather than an alter-

ation to its turnover rate (Fig 1D). Again,

these results suggest that the kinetome may

exhibit a notable degree of conservation.
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The implications of a
conserved kinetome

The reason for the relatively small sequence

variance in metabolic alleles—and thus the

numerical values of kinetic parameters—is

not clear. One possibility is that key

enzymes have evolved to a relatively high

catalytic efficiency, and that the regulation

of metabolic flux is achieved through alter-

ing protein abundance between different

conditions. In other words, the cellular

components remain the same, but their

relative abundance is adjusted. This obser-

vation has two significant implications.

First, large-scale kinetic models will be

more easily constructed for related strains

and species due to the broad applicability

of estimated numerical values for kinetic

parameters. Second, a conserved kinetome

means that the enzyme abundances become

a key issue in determining in vivo fluxes.

Thus, models that explicitly compute

protein abundances will grow in importance

as they directly assess the phenotypic

consequences of proteome allocation (Chen

& Nielsen, 2019).
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Figure 1. The numerical values of turnover rates determine how much protein is needed to achieve a homeostatic state.

Recent studies have explored the numerical values of turnover rates, allelic variation, and the importance of mechanisms that influence enzyme abundance. A number
of recent advances show that the kin:166667emvivo

cat is a relatively constant parameter (panels A and C), and ei varies in vivo and is achieved through a variety of regulatory
mechanisms (panels B and D). (A) A comparison of in vivo and in vitro kinetic parameters through the use of omic data shows reasonable association in E. coli (r2 = 0.62);
adapted from Davidi et al (2016). (B) Core metabolic genes identified in 400 strains of C. difficile shown in blue. The pull-out horizontal bar chart shows the variation in
these metabolic alleles as measured by the average number of amino acid substitutions across wild-type strains. Most metabolic genes have conserved alleles,
suggesting that the kinetic parameters for these enzymes are also conserved. Adapted from Norsigian et al (2020). (C) Comparing numerical estimates kapp,max obtained
from evolved enzyme knock-out E. coli strains and kapp,max from growth conditions shows a strong association (r2 = 0.9). The in vivo turnover rates were estimated in the
same metabolic specialist grown on the substrate used for the evolution and an alternative substrate. Adapted from Heckmann et al (2020). (D) Allele swaps of the
coding region of a metabolic gene in wild-type E. coli with an orthogene from another species. The strain is then evolved and either the orthogene allele adapts function
after the evolution and the strain gets close to the wild-type growth rate (solid lines), or the allele fails to adapt and after evolution the strain shows a similar growth as
the evolved knock-out strain (dashed lines). In the former case, most adaptive mutations are related to enzyme abundance and not structural mutations that would
change the kinetic parameters of the enzyme. Adapted from Sandberg et al (2020).
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Models that constrain metabolic fluxes

with protein abundances have been devel-

oped. These models either compute the

composition of the abundances of the

enzymes (so-called metabolism and expres-

sion (ME) models), or they specify the

enzyme abundances based on measurement

(enzyme-constrained models). Ultimately,

these models enable the study of the princi-

ples that underlie how the limited number of

protein molecules that a cell can carry are

optimally allocated to metabolic enzymes

that have an inherent set of kinetic constants

(Chen & Nielsen, 2019).

Turnover rates and enzyme abundances

will both become important considerations as

kinetic models grow larger, thus tightly inte-

grating molecular and systems biology. Such

integration places component properties in

the context of the whole, and the principles

for overall functionality become based on

optimization—an evolutionary principle. The

computation of optimal proteome composi-

tion may become known as “proteometrics”

in analogy to econometrics.

A new generation of genome-scale
kinetic models

So how will a conserved kinetome affect the

construction of future models? The incorpo-

ration of kinetic information and other

multi-omic data into GEMs represents an

advance in computational biology, expand-

ing the scope and utility of models that

describe kinetic effects. GEMs have contin-

ued to integrate more and more multi-omic

data, with some of the most recent models

predicting whole-body metabolism in

humans (Thiele et al, 2020).

Kinetic parameterization is a challenge

for the generation of models for personal-

ized medicine applications due to both the

large number of parameters required and

the inherent individual variation. This chal-

lenge would in part be resolved if conserved

features of the human kinetome were identi-

fied and the variable parts could be traced to

sequence variation. While the metabolic

kinetome may be largely conserved, key

mutations—such as those causing G6PDH

deficiency—are known to affect cellular

function. The impact of sequence variation

on the kinetome has been examined in the

human red blood cell (RBC), providing

insight into whether different omic data

types can be used together to infer kinetic

parameter values.

The RBC is the most abundant cell in the

human body, thus representing an important

starting point for the development of personal-

ized medicine in human systems. In a recent

study, personalized RBC kinetic models were

constructed through parameterization based

on metabolomic, fluxomic, and genotyping

data (Bordbar et al, 2015). Remarkably, this

first set of personalized RBC models showed

that individual differences occur on physiolog-

ically relevant timescales of erythrocyte circu-

lation. They also predicted personalized

pharmacodynamic responses and identified

individuals at risk for a ribavirin-induced

anemic side effect, providing a mechanistic

explanation for how genetic variation (inosine

triphosphatase deficiency) may protect against

this drug side effect. Since the proteome was

not determined in this study, enzyme abun-

dances were standardized across all individual

models. Thus, the turnover rates and enzyme

abundances were not independent parameters

—yet their combination was notably shown to

have a stronger correlation with genotype

than metabolomics data. In the future, ex vivo

erythropoietic models might be used in

conjunction with gene editing of the adult

hematopoietic stem cells to engineer specialist

RBCs.

A path forward

If we can scale up and validate such

personalized models for other human cell

types, we could make progress toward the

development of personalized wellness and

disease models in humans. Progress is being

made in this area, with one study reporting

the use of transcriptomic data (as a proxy

for proteomic data) from individual tumor

samples to constrain maximum flux rates for

cancer patients (Lewis et al, 2021).

Currently, vast amounts of multi-omic data

are required to capture all relevant biological

functions and properly parameterize person-

alized kinetic models. However, if the kine-

tome proves to be conserved for different

human cell types, then only key variants

(like those that cause G6PDH deficiency)

will need to be measured for models to be

accurately parameterized.

Parameterized GEMs are likely to have

many uses in the life sciences. In particular,

GEMs are likely to be used for the purposes

of designing new genomes and to simulate

their phenotypes a priori. We are faced with

challenges that stem from our incomplete

understanding of the genome, with many

uncharacterized genes still present in even

the most well-studied model organisms.

Furthermore, there are challenges associated

with the complex regulatory networks that

govern cellular functions, and mechanisms

that will need to be better understood if they

are to be explicitly incorporated into compu-

tational models. Yet if these challenges can

be overcome, the resulting models could

lead to the design of novel genomes that can

be constructed in a laboratory and function

as self-sustaining organisms—an application

that would represent a key milestone in the

history of biology.

Genome-scale kinetic models rooted in

protein structures and sequence variation

offer the promise of bringing us closer to

really understanding the genotype–pheno-
type relationship to a point where we can

design and build genotypes that have

desired phenotypes. Defining the variable

and conserved part of a kinetome will lead

to computational models that can help with

designing new genomes by assisting genome

Box 1: A shift from kinetic parameters to enzyme concentrations and proteome allocation

Maximum flux catalyzed by an enzyme is determined by a product of the turnover rate (reac-
tions/protein molecule/time that is on average approximately 10s of reactions per second) and
protein concentration (protein molecules per unit volume) through the well-known equation,
Vm = kcat × etot, used to describe enzyme kinetics in vitro.
The in vivo flux (vi), determined via fluxomics, is given by vi = kapp,i × ei, where kapp,i is the appar-
ent catalytic rate for enzyme i in vivo, and ei is the in vivo enzyme concentration as determined
by proteomic measurements. The term kapp,max (the maximum kapp observed across multiple condi-
tions) is a proxy for kin:166667emvivo

cat and can be used in simulation models. When working with a
large number of enzymes, ei becomes constrained by limited proteome size (∑n

i¼1ei), and thus
proteome allocation becomes important (Nilsson et al, 2017). Enzyme-limited models offer new
challenges, such as determining what fraction of synthesized enzyme molecules are actively
involved in catalysis. Furthermore, thousands of reactions have to be balanced to achieve a stable
function of a metabolic network. Thus, the focus of construction of large-scale kinetic models
shifts from kinetic constants to enzyme concentrations, allowing for the detailed mechanistic
study of proteome allocation.
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designers in identifying the sequence varia-

tion with phenotypic consequences.
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