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Abstract

Single-cell RNA sequencing (scRNA-seq) enables the resolution of cellular heterogeneity in diseases and facilitates the identification of
novel cell types and subtypes. However, the grouping effects caused by cell–cell interactions are often overlooked in the development
of tools for identifying subpopulations. We proposed LP_SGL which incorporates cell group structure to identify phenotype-associated
subpopulations by integrating scRNA-seq, bulk expression and bulk phenotype data. Cell groups from scRNA-seq data were obtained by
the Leiden algorithm, which facilitates the identification of subpopulations and improves model robustness. LP_SGL identified a higher
percentage of cancer cells, T cells and tumor-associated cells than Scissor and scAB on lung adenocarcinoma diagnosis, melanoma drug
response and liver cancer survival datasets, respectively. Biological analysis on three original datasets and four independent external
validation sets demonstrated that the signaling genes of this cell subset can predict cancer, immunotherapy and survival.
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INTRODUCTION
Human tumors are complex ecosystems composed of multiple
cell types [1]. Fortunately, the increasing availability of omics
data has provided important support for unraveling the com-
plex features of tumors [2, 3]. Bulk data represent the average
measurement of the entire tissue, while single-cell RNA sequenc-
ing (scRNA-seq) offers advantages in identifying cell types and
therapeutic targets by revealing intratumoral heterogeneity [1, 4,
5]. Cell types are typically annotated by marker genes [6], but
determining the role of specific cells in driving sample phenotypes
remains a challenge. Although scRNA-seq data can provide high-
resolution cell type information, it frequently lacks adequate
sample phenotypes and clinical information due to its high cost
[1]. Conversely, publicly available databases such as TCGA [7]
contain a large amount of bulk data with sample phenotypes and
clinical information.

Integrating bulk and scRNA-seq data effectively leverages the
benefits of both phenotype and single-cell information simulta-
neously. Using scRNA-seq data, significant genes were selected
as features to build a predictive breast cancer prognosis model
with bulk data [8]. To identify subpopulations associated with
sample phenotype, Scissor was developed with a sparse regression
model [9]. In addition, scAB was developed to detect clinically

significant multiresolution cell states using a knowledge- and
graph-guided matrix factorization method [10]. As biological pro-
cesses depend on complex interactions among different cells, we
contend that incorporating cell group structure into the model
will facilitate the identification of subpopulations associated with
the phenotype. The implementation of Scissor and scAB relies
on a correlation matrix, which comprises Pearson correlation
coefficients of shared genes from bulk and scRNA-seq data. The
screening of differentially expressed genes (DEGs) may potentially
influence the performance of these methods. Thus, integrating
the cell group structure into the model is likely to bolster its
robustness.

Feature grouping has been considered in previous studies.
Group lasso (GL) method was introduced to select features at
the group level while performing regression [11]. To achieve
intragroup sparsity, the sparse group lasso (SGL) was formulated
for applications in linear regression, logistic regression and Cox
regression [12]. A fundamental requirement for successfully
applying SGL to bioinformatics is to group features before-
hand. Although weighted gene co-expression network analysis
(WGCNA) has been successfully applied to gene grouping of
cancer bulk data [13, 14], it is not readily applicable to scRNA-
seq data due to a large number of genes and cells. Therefore,
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Figure 1. The workflow of LP_SGL.

identifying biologically meaningful group structures for scRNA-
seq data is a challenging problem. Fortunately, community
clustering algorithms such as Louvain [15] and Leiden [16] present
promising avenues to solve this problem.

Inspired by the similarity between community connectivity
and cell–cell interactions, we considered the cell communities
obtained by the Leiden algorithm on scRNA-seq data as cell
groups. We then proposed LP_SGL which incorporates cell group
structure to identify phenotype-associated subpopulations by
integrating scRNA-seq, bulk expression and bulk phenotype data.
The experimental results showed that LP_SGL outperformed
Scissor and scAB on datasets related to lung adenocarcinoma
(LUAD) diagnosis, melanoma drug response and liver cancer
survival. The robustness of the three methods was tested on
seven datasets, including six incomplete datasets obtained under
different threshold conditions. The subpopulation identification
performance of LP_SGL remained almost unchanged, while the
latter two methods showed significant fluctuations. Furthermore,
the biological analysis confirmed the effectiveness of the
proposed method.

MATERIALS AND METHODS
The structure of LP_SGL
LP_SGL is a specialized SGL [12] model that integrates scRNA-seq,
bulk expression and bulk phenotype data. The model calculates
the Pearson correlation coefficients between samples and cells by
sharing genes and integrates scRNA-seq and bulk expression data
into a correlation matrix. The letter ‘L’ indicates the use of the
Leiden algorithm to obtain the cellular community structure from
the scRNA-seq data. The letter ‘P’ represents the use of phenotype
information to construct sample labels. The LP_SGL workflow was
presented in Figure 1.

The Leiden algorithm [16] partitions nodes in a graph based
on their similarity, which is analogous to each cell group
representing a collection of cells with similar characteristics

or functions. Therefore, it is reasonable to consider the cell
communities obtained by the Leiden algorithm on scRNA-seq
data as cell groups. Before executing the Leiden algorithm, the
shared nearest neighbor graph was first constructed. Then, cells
were divided into communities by maximizing the following
modularity score:

Q = 1
2m

∑
i,j

(Aij − γ
kikj

2m
)δ(ci, cj), (1)

where m stands for the total number of edges in the graph, Aij

represents the weight of the edge between cell i and j, γ > 0 is a
resolution parameter, ki and kj are the degrees of cell i and cell j,
respectively. ci denotes the community to which cell i is assigned,
the δ function is 1 if ci = cj and 0 otherwise. The Leiden algorithm
utilizes an iterative approach to enhance the initial partition by
exchanging cells between communities to maximize the modu-
larity score. This process continues until no further improvement
is achievable. The algorithm was implemented through the R
package ‘leidenAlg’.

Let s be the number of the obtained cell groups, and pl be the
number of cells in the lth group. Let xi be the ith row vector from
the correlation matrix, and x(l)

i be its subvector corresponding to
the lth group. LP_SGL can be described as

min
β

1
n

l(β) + λ

{
(1 − α)

s∑
l=1

√
pl||β(l)||2 + α||β||1

}
, (2)

where l(β) is a loss function that depends on the phenotype
information, n represents the number of samples, λ > 0 and
0 ≤ α ≤ 1 are regularization parameters, β is the regression
coefficient vector and β(l) is its subvector corresponding to the
lth group. If the phenotype information on cancer diagnosis (or
treatment response) is utilized, then sample label yi is encoded as
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1 or 0, and the negative log-likelihood function is adopted

l(β) =
n∑

i=1

s∑
l=1

(log(1 + exp(x(l)T
i β(l))) − yix

(l)T
i β(l)). (3)

If the phenotype information on survival is utilized, then the
following loss function is adopted:

l(β) =
s∑

l=1

log

⎛
⎝∑

i∈D

⎛
⎝∑

j∈Ri

exp
(
x(l)T

j β(l)
)

− x(l)T
i β(l)

⎞
⎠

⎞
⎠ (4)

where D is the failure index set of samples determined by the
occurrence of events, and Ri is the index set of samples with
survival time longer than that of the ith sample.

The β in (2) can be solved through the R package ‘SGL’. The
regression coefficient reflects the cell’s impact on the phenotype,
with positive and negative coefficients indicating associations
with higher and lower value-encoding phenotypes, respectively.
In cases where the phenotype represents survival information,
positive coefficients correspond to cells that are consistently asso-
ciated with worse survival outcomes. To simplify, we denoted cells
as LP_SGL+ cells (positive coefficients), LP_SGL- cells (negative
coefficients) and Background cells (coefficients equal to 0).

During the implementation of the LP_SGL model, three
parameters need to be determined: the resolution parameter
γ , regularization parameters α and λ. The γ acts as a threshold,
requiring a minimum density of γ within each group. Higher
values of γ result in more groups being obtained. We used
a sequence of {0.3, 0.6, 0.9, 1.2, 1.5, 1.8} to test the impact of
different γ values on the results, with detailed results presented
in Supplementary Table 1 (see Supplementary Data available
online at https://academic.oup.com/bib). Due to minimal fluc-
tuations in the results as γ changed for each dataset, we
simplified the experimental process by setting γ to 0.6. The λ

determines the overall strength of the penalty term, while α

balances the lasso and GL penalties. We created a search list
of {0.005, 0.05, 0.1, 0.2, · · · , 0.8, 0.9, 0.95} in advance for α. For each
fixed α, λ was determined through 5-fold cross-validation, and
the optimal parameter pair (α∗, λ∗) was determined through
experimental results.

Datasets
The LUAD scRNA-seq data were downloaded from the Array-
Express (accession numbers: E-MTAB-6149 and E-MTAB-6653),
including 29 888 cells and 8 cell types [17]: cancer cell, endothelial
cell, T cell, B cell, myeloid cell, alveolar cell, epithelial cell and
fibroblasts cell. The bulk data of LUAD were downloaded from
TCGA-LUAD. There are in total of 539 tumors and 59 normal sam-
ples, and 508 samples with overall survival time and status. An
external bulk validation set of LUAD diagnosis was downloaded
from GEO (accession code: GSE40419), including 87 tumors and
77 normal samples.

The melanoma scRNA-seq data (accession code: GSE115978)
contained 6879 cells and 9 cell types [18]: T cell, CD4+ T cell,
CD8+ T cell, B cell, macrophage, malignant cell, cancer-associated
fibroblast (CAF), endothelial cell and Natural Killer (NK) cell. In
reference [18], cells were defined as T cells based on the overall
expression of established cell type markers (CD2, CD3D, CD3E,
CD3G). T cells were further classified as CD8+ or CD4+ T cells
if they expressed CD8 (CD8A or CD8B) or CD4, respectively, while
the rest were still labeled as T cells. The melanoma bulk dataset
PRJEB23709 was downloaded from [19]. There are in total of 46

treatment responders and 27 nonresponders. External bulk val-
idation sets for melanoma and thymic carcinoma were down-
loaded from GEO (accession codes: GSE91061 and GSE181815,
respectively).

The liver cancer scRNA-seq data (accession code: GSE125449)
contained 8853 cells and 7 cell types [20]: CAF, tumor-associated
macrophage (TAM), malignant cell, tumor-associated endothelial
cell (TEC), cells with an unknown entity but express hepatic
progenitor cell markers (HPC-like), T cell and B cell. TCGA-LIHC
provides bulk data of 370 liver cancer samples with survival
information, while GEO (GSE14520) provides another liver cancer
bulk validation set with survival and recurrence information.

The gene expression values were averaged for genes with mul-
tiple occurrences of the same name during data preprocess-
ing. For bulk data, a logarithmic transformation with a base
of 2 was performed on the original count data. For scRNA-seq
data, the R package ‘Seurat’ was used for preprocessing. Genes
expressed in at least 400 cells were retained, and the filtered
expression matrix was normalized using the ‘NormalizeData’
function. Highly variable genes between cells were identified
using the ‘FindVariableFeatures’ function with the default ‘vst’
method. Subsequently, standardization and principal component
analysis were performed using the ‘ScaleData’ and ‘RunPCA’ func-
tions, respectively. The shared nearest neighbor graph was con-
structed based on the first 10 principal components using the
‘FindNeighbors’ function. Two-dimensional cell visualization was
achieved using the ‘RunUMAP’ function.

Testing and biological analysis
To assess the robustness of the model to incomplete or missing
data, we deliberately removed some genes. We split the binary
phenotype bulk data into two groups and used the R package
‘limma’ to identify DEGs between the two groups, based on the
filtering criteria of Logarithm of fold change | log FC| greater than
the threshold and P-value obtained by the default t-test less than
0.05. We set the threshold sequence as {0.5, 0.6, 0.7, 0.8, 0.9, 1} to
obtain six different gene sets. The difference in gene sets resulted
in different correlation matrices when integrating bulk data with
scRNA-seq data. We evaluated the model’s robustness using six
different incomplete datasets.

We conducted functional enrichment analysis on DEGs
between LP_SGL+ cells and LP_SGL- cells. To assess the activity
level of the over-expressed gene set across different samples, we
employed the R package ‘GSVA’ to conduct gene set variation
analysis (GSVA). We calculated a statistical test between the two
types of samples using the t-test. Furthermore, we performed
gene set enrichment analysis (GSEA) to investigate the enrich-
ment of DEGs under different biological conditions. GSEA was
implemented by utilizing the ‘gseGO’ and ‘gseKEGG’ functions
in the R package ‘clusterProfiler’. P-values were calculated based
on the hypergeometric distribution, and the false discovery rate
(FDR) was calculated using the Benjamini–Hochberg method.

The lasso-cox model was implemented using the R package
‘glmnet’ based on DEGs between LP_SGL+ cells and LP_SGL-
cells. Subsequently, multivariable Cox regression was performed
using the R package ‘survival’ for genes with nonzero coeffi-
cients. Samples were then divided into high- and low-risk groups
based on the median of predicted prognostic scores. To assess
the difference in survival time between the two groups, Kaplan–
Meier (K-M) survival analysis was conducted using the R package
‘survminer’, with the log-rank test. In addition, the Concordance
index (C-index) was calculated to measure the predictive ability
of the model. To avoid the contingency of the results, 10-times
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Figure 2. Experimental results on the LUAD dataset. (A) UMAP visualization of 24 cell groups obtained using the Leiden algorithm. (B and C) Bar chart
of the distribution of LP_SGL+ cells and LP_SGL- cells with respect to cell groups and cell types, respectively. (D) Line chart of the proportions of cancer
cells contained in the LUAD phenotype cells identified by LP_SGL, Scissor and scAB. (E) Volcano map of DEGs between LP_SGL+ cells and LP_SGL- cells.
(F and G) Box plot of GSVA scores for cancer and normal samples on TCGA-LUAD and GSE40419 datasets, respectively. (H) K-M survival curves of high-
and low-risk group samples divided by the median prognostic score in the TCGA-LUAD dataset.

experiments were performed by setting seeds 1 to 10. For clini-
cal characteristics-based methods including age, stage and sex,
univariate cox regression was performed using the R package
‘survival’.

RESULTS
Identify cell subpopulations associated with
LUAD and normal
We initially applied the LP_SGL method to LUAD dataset in order
to identify cells that were associated with either the LUAD or
normal phenotype. After preprocessing the data, 29 888 cells were
assigned to 24 groups using the Leiden algorithm. The UMAP
visualization of 24 cell groups and 8 cell types was, respectively,
presented in Figure 2A and Supplementary Figure S1a (see Sup-
plementary Data available online at https://academic.oup.com/
bib). Subsequently, 1317 LP_SGL+ cells and 775 LP_SGL- cells were
selected by implementing the LP_SGL. A bar chart of the distribu-
tion of LP_SGL+ cells and LP_SGL- cells with respect to cell groups
was presented in Figure 2B and the corresponding UMAP visual-
ization was displayed in Supplementary Figure S1b (see Supple-
mentary Data available online at https://academic.oup.com/bib),
and 63.25% (833/1317) and 36.45% (480/1317) of LP_SGL+ cells
appeared in groups 12 and 21, respectively, while 100% of LP_SGL-
cells were presented in group 10. A bar chart of the distribution
of LP_SGL+ cells and LP_SGL- cells with respect to cell types
was presented in Figure 2C and 99.92% (1316/1317) of LP_SGL+
cells were cancer cells and 99.74% (773/775) of LP_SGL- cells were
endothelial cells. The concentrated characteristics observed in
the distribution of LP_SGL+ cells and LP_SGL- cells within both
cell groups and cell types demonstrated the ability of the LP_SGL
to accurately identify phenotype-associated subpopulations by
introducing cell group structure.

We then evaluated the robustness of LP_SGL, Scissor and
scAB by using seven datasets (including six different incomplete
datasets obtained under different thresholds). The line chart of
the proportions of cancer cells contained in the LUAD phenotype

cells identified by these methods was shown in Figure 2D. In
the original data, the proportion of cancer cells contained in the
LUAD-associated cells identified by LP_SGL was 99.92%, which
was 11.73 and 53.36% higher than that identified by Scissor
and scAB, respectively. On six incomplete datasets, the results
obtained by LP_SGL remained almost unchanged, while the other
two methods exhibited some degree of fluctuation.

To further reveal the biological significance of the identified
cells, we performed differential expression analysis (DEA)
between LP_SGL+ cells and LP_SGL- cells. A total of 210
upregulated and 89 downregulated genes were identified by
setting | log FC| greater than 1 and the FDR less than 0.05. The
volcanic plot of the DEGs was shown in Figure 2E. Notably, some of
these genes have been identified as important regulatory factors
in LUAD, such as ENO1, which has been previously reported to
promote tumor progression in LUAD [21]. Similarly, YBX1 has
been shown to induce the migration of LUAD cells and contribute
to tumor metastasis [22]. On the other hand, GPX3 has been found
to play an inhibitory role in LUAD, with lower expression levels
in tumors compared with normal tissues [23]. These findings
demonstrated the potential of LP_SGL for identifying significant
DEGs that may be used as diagnostic or therapeutic targets
for LUAD.

To assess the clinical relevance of the 210 over-expressed genes
identified by LP_SGL, GSVA scores were calculated for each sam-
ple in bulk data. As shown in Figure 2F, the cancer samples
exhibited significantly higher scores compared with the normal
samples in the TCGA-LUAD dataset (P = 9.6e − 16). The same
trend was observed in another independent LUAD dataset, as
depicted in Figure 2G (p = 1.7e − 09). These results suggested
that the identified upregulated genes were strongly correlated
with LUAD. Furthermore, using survival information from the
TCGA-LUAD dataset, 508 samples were divided into high- and
low-risk groups based on the median predicted prognostic score.
As presented in Figure 2H, the K-M survival curve indicated that
samples with higher prognostic scores had significantly worse
survival outcomes compared with those with lower scores. This
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analysis further supports the association of the identified LUAD-
associated subpopulations with poor prognosis. As a result, we
have successfully demonstrated the utility of LP_SGL in accu-
rately identifying cell subpopulations associated with a particular
phenotype.

Identifying T cell subpopulations related to
immunotherapy
Understanding the mechanism behind the immune checkpoint
blockade (ICB) response is crucial as it significantly improves the
10-year survival rate of melanoma patients, despite the therapy
not benefiting most treated patients [24]. To address this issue,
we employed LP_SGL to analyze melanoma data and identify T
cell subpopulations associated with ICB response, and 6879 cells
were assigned to 17 groups via the Leiden algorithm. The UMAP
visualization of 17 cell groups and 9 cell types were, respectively,
presented in Figure 3A and Supplementary Figure S2a (see Sup-
plementary Data available online at https://academic.oup.com/
bib). Then, 404 LP_SGL+ cells and 0 LP_SGL- cells were identified
by implementing the LP_SGL. A bar chart of the distribution of
LP_SGL+ cells with respect to cell types was presented in Figure 3B
and the corresponding UMAP visualization was displayed in Sup-
plementary Figure S2b (see Supplementary Data available online
at https://academic.oup.com/bib). According to statistics, 99.26%
(401/404) of LP_SGL+ cells were presented in group 1, showing
the concentrated characteristic consistent with the experimental
results on LUAD dataset. It is noteworthy that 99.26% (401/404)
of LP_SGL+ cells were T cells (CD8+ T cells: 92.82%, 375/404;
CD4+ T cells: 2.72%, 11/404; T cells: 3.72%, 15/404), with the
remaining 0.75% being NK cells. Recent research has highlighted
the great potential of NK cells in cancer immunotherapy [25].
This result demonstrated that LP_SGL can accurately identify
subpopulations related to ICB response, which has the potential
to improve the effectiveness of immunotherapy for melanoma
patients.

In addition, we tested the robustness of LP_SGL, Scissor and
scAB by using seven datasets of melanoma. The line chart in
Figure 3C showed the proportions of T cells contained in the
response phenotype cells identified by these methods. In the
original data, the proportion of T cells contained in the response
phenotype cells identified by LP_SGL was 99.26%, which was
16.92 and 38.49% higher than that identified by Scissor and scAB,
respectively. On six incomplete datasets, the results obtained by
LP_SGL remained stable, while the other two methods exhibited
significant fluctuations.

To gain a deeper understanding of the immunotherapy
response mechanism, we performed DEA between LP_SGL+ cells
and other cells, as LP_SGL- cells were not identified. A total of
253 upregulated and 131 downregulated DEGs were identified
by meeting the criteria of | log FC| greater than 3 and FDR less
than 0.05. The volcanic plot of the DEGs was shown in Figure 3D.
Among them, many of these genes have been confirmed to be
closely related to melanoma, such as the reduction of MITF
level promoting melanoma invasion [26], tumor regression being
abrogated by silencing CCL5 [27] and CST7 being significantly up-
regulated in melanoma patients who respond to ICB treatment
[28]. These results demonstrated that LP_SGL has the ability to
identify gene signals related to immunotherapy responses.

We subsequently calculated the GSVA score of each sample to
evaluate the clinical relevance of the identified DEGs. As shown
in Figure 3E, the responder in the melanoma dataset had sig-
nificantly higher scores than the nonresponder (P = 1.5e − 04).
Moreover, the external melanoma validation set showed similar

results, as depicted in Figure 3F (P = 2.4e − 02). Interestingly, we
also tested whether the immunotherapy-associated cell subpop-
ulations identified from melanoma dataset were applicable to
thymic carcinoma samples. Surprisingly, as shown in Figure 3G,
thymic carcinoma samples that responded to treatment had sig-
nificantly higher scores than those that did not respond (P =
7.1e − 04). Furthermore, the GSEA of the overall DEGs revealed
overactivation of immune response processes and suppression of
lipid transport processes, as shown in Figure 3H. The GSEA of the
upregulated DEGs was shown in Figure 3I, while no significant
enrichment of biological processes was observed for downregu-
lated DEGs. These findings were consistent with previous research
demonstrating that inhibiting lipid transport to melanoma cells
effectively reduces their growth and invasion [29]. In summary,
the LP_SGL identified cell subpopulations that were associated
with ICB response, and the signal genes from these cells could
reliably predict ICB response in melanoma and other types of
cancer.

Identifying cell subpopulations associated with
worse survival in liver cancer
To further evaluate the model’s performance in survival
phenotype data, we applied the LP_SGL method to the liver
cancer dataset to identify cell subpopulations associated with
poorer survival outcomes, and 8853 cells were assigned to 16
groups via the Leiden algorithm. The UMAP visualization of
16 cell groups and 7 cell types were, respectively, presented in
Figure 4A and Supplementary Figure S3a (see Supplementary
Data available online at https://academic.oup.com/bib), and 746
LP_SGL+ cells and 1243 LP_SGL- cells were identified. A bar chart
of the distribution of LP_SGL+ cells with respect to cell types was
presented in Figure 4B and the corresponding UMAP visualization
was displayed in Supplementary Figure S3b (see Supplementary
Data available online at https://academic.oup.com/bib), and
91.68% (684/746) of LP_SGL+ cells were composed of tumor-
associated cells (TAM, CAF, TEC and malignant cell). Additionally,
the cells identified by Scissor and scAB were labeled as Scissor+
cells, Scissor- cells and scAB+ cells, respectively, according to the
habits of their respective papers. We applied scAB and Scissor to
the liver cancer dataset and obtained the proportions of 85.14%
(779/915) and 90.48% (19/21) tumor-associated cells in scAB+
cells and Scissor+ cells, respectively. LP_SGL identified a higher
proportion of tumor-associated cells contained in cells associated
with poorer survival phenotype compared with Scissor and scAB.
Specifically, the proportion identified by LP_SGL was 1.2 and 6.54%
higher than that identified by Scissor and scAB, respectively.

We conducted DEA between LP_SGL+ cells and LP_SGL- cells
to explore potential biological mechanisms related to poorer sur-
vival. Figure 4C showed 77 upregulated and 12 downregulated
DEGs that met the conditions of | log FC| greater than 1 and
FDR less than 0.05. Among these DEGs, most of them have been
reported to be associated with liver cancer, such as high expres-
sion of YBX1 and NUPR1, which were associated with poor overall
survival in liver cancer [30, 31]. In addition, overexpression of IL32
has been found to inhibit cancer cell growth and may serve as a
therapeutic target for various cancers, including liver cancer [32].
We also identified DEGs between scAB+ cells and other cells, as
well as Scissor+ cells and Scissor- cells, using the same criteria.
Subsequently, we used the DEGs obtained from each method
to construct lasso-cox models. The average C-index of the 10-
times experimental results corresponding to each method was
presented in Figure 4D. We found that LP_SGL, scAB and Scissor
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Figure 3. Experimental results on the melanoma dataset. (A) UMAP visualization of 17 cell groups obtained using the Leiden algorithm. (B) Bar chart of
the distribution of LP_SGL+ cells with respect to cell types. (C) Line chart of the proportions of cancer cells contained in the response phenotype cells
identified by LP_SGL,Scissor and scAB. (D) Volcano map of DEGs between LP_SGL+ cells and other cells. (E–G) Box plot of GSVA scores for response and
non-response in PRJEB23709, GSE91061 and GSE181815 datasets, respectively. (H) GSEA plots of upregulated and downregulated biological processes (BP)
of the overall DEGs. (I) GSEA plots of upregulated BP of the upregulated DEGs.

all achieved comparable results and outperformed traditional
clinical characteristic-based methods.

We conducted a survival analysis on the TCGA-LIHC dataset.
As depicted in Figure 4E, there was a significant survival differ-
ence between the two groups, with the high-risk group having
almost four times lower median survival time than the low-risk
group. To verify the generalization of the identified DEGs, we con-
ducted a survival analysis on an independent external validation
set by following the same steps. The K-M survival curves of the
high- and low-risk groups were shown in Figure 4F. We found that
the high-risk group in the independent validation set still achieved
worse survival outcomes. We also predicted the recurrence risk
of the samples based on DEGs using the recurrence time and
status of the samples. Figure 4G showed a significant difference in
recurrence between the high- and low-risk groups. Furthermore,
we performed GSEA based on DEGs and found that the cholesterol
metabolism pathway was significantly enriched (Figure 4H). As
the liver is the main organ responsible for cholesterol metabolism,

abnormal cholesterol metabolism has been associated with the
occurrence of liver diseases [33].

DISCUSSION
In this paper, we proposed LP_SGL to identify phenotype-
associated subpopulations by integrating scRNA-seq, bulk
expression and bulk phenotype data. Importantly, our method
was applicable to binary, survival and linear phenotype data,
although we were unable to demonstrate the linear experiment
due to a lack of suitable data. Moreover, our method can be
extended to other omics data, such as chromatin accessibility and
DNA methylation data. We also evaluated the performance of cell
grouping using the Louvain algorithm (Supplementary Table 2, see
Supplementary Data available online at https://academic.oup.
com/bib), and the comparable results indicated that incorporating
cell group structure into the model was effective. This provides a

https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 4. Experimental results on the liver cancer datasets. (A) UMAP visualization of 16 cell groups obtained using the Leiden algorithm. (B) Bar chart
of the distribution of LP_SGL+ cells with respect to cell types. (C) Volcano map of DEGs between LP_SGL+ cells and LP_SGL- cells. (D) Bar chart of the
average C-index of the results from 10-times experiments results. (E) The K-M survival curves of high- and low-risk group samples in the TCGA-LIHC
dataset. (F and G) The survival and recurrence K-M curves of the high- and low-risk groups in the GSE14520 dataset, respectively. (H) Gene set enrichment
analysis plots of upregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of DEGs.

new perspective for incorporating other cell clustering methods
into integrated multi-omics data models.

We compared the proposed LP_SGL with the currently main-
stream phenotype-associated subpopulation identification meth-
ods, Scissor [9] and scAB [10], where the data preprocessing and
parameter settings of both methods were consistent with their
respective original literature. The LP_SGL selected the highest
proportions of cancer cells and T cells when the three methods
were applied to the LUAD diagnosis, melanoma drug response
and liver cancer survival datasets, respectively. It is worth not-
ing that compared with LP_SGL and Scissor, scAB consistently
selects the highest number of cells, which may be the reason
why the cells it identifies contain a lower proportion of cancer
cells or T cells. The LP_SGL selected a larger number of cells
than Scissor on both LUAD and liver cancer datasets. On the
melanoma dataset, LP_SGL identified 404 LP_SGL+ cells in the
optimal results. Moreover, when LP_SGL identified 1406 LP_SGL+
cells, which was more than the 1212 Scissor+ cells identified by
Scissor, the proportion of T cells in LP_SGL+ cells was 95.87%,
still higher than its proportion in Scissor+ cells. These results
indicated that LP_SGL had a more accurate and comprehensive
ability to identify phenotype-associated subpopulations.

Flow cytometry is a prevalent technique in experiments for
identifying cell subpopulations [34]. It enables the segregation
of target cells from a mixed cell population based on the fluo-
rescence signal of cell surface markers [35]. However, since our
research primarily focused on exploring phenotype-associated
subpopulations using available transcriptomic data, there is cur-
rently no available flow cytometry data for identifying cell sub-
populations. In ensuing studies, integrating flow cytometry data
with our algorithm will be on our agenda. Moreover, the patients
who underwent bulk RNA-seq in this study are different from
those who underwent scRNA-seq. This rendered us incapable
of scrutinizing the distribution of identified cells in response
and nonresponse samples. Nevertheless, the comparison of per-
formance among LP_SGL, Scissor and scAB, along with exten-
sive biological analyses, proved the credibility of the proposed
LP_SGL. Utilizing data from patients who have undergone both

bulk RNA-seq and scRNA-seq may be advantageous in identifying
phenotype-associated subpopulations. This will be a focus of our
future research.

Key Points

• Our proposed method LP_SGL for integrating scRNA-seq,
bulk expression and bulk phenotype data.

• The group effects caused by cell–cell interactions were
introduced into the model to guide the identification of
phenotype-associated subpopulations.

• LP_SGL identified a higher percentage of cancer cells, T
cells and tumor-associated cells than Scissor and scAB
on lung adenocarcinoma diagnosis, melanoma drug
response and liver cancer survival datasets, respectively.

• The biological analysis on three original datasets and
four independent external validation sets demonstrated
that the signaling genes of this cell subset have the
ability to predict cancer, immunotherapy and survival.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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